There are now supported two versions of the CF-E355AC board which differ
in 802.11ac radio chip. Include version number in board, model, image
filename, etc., also for the v1.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
COMFAST CF-E355AC v2 is a ceiling mount AP with PoE support, based on
Qualcomm/Atheros QCA9531 + QCA9886.
Short specification:
- 2x 10/100 Mbps Ethernet, with PoE support
- 128MB of RAM (DDR2)
- 16 MB of FLASH
- 2T2R 2.4 GHz, 802.11b/g/n
- 2T2R 5 GHz, 802.11ac/n/a, WAVE 2
- built-in 4x 3 dBi antennas
- output power (max): 500 mW (27 dBm)
- 1x RGB LED, 1x button
- built-in watchdog chipset
Flash instruction:
Original firmware is based on OpenWrt.
Use sysupgrade image directly in vendor GUI.
Signed-off-by: Ding Tengfei <dtf@comfast.cn>
[updated kernel config for both boards]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
WHQX E1700AC v2 is based on Qualcomm QCA9563 + QCA9880 + QCA8334.
Specification:
- 750/400/250 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 8/16 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz (QCA9563) with external FEM (SKY85309-11)
- 3T3R 5 GHz (QCA9880) with external FEM (SKY85728-11)
- 2x 10/100/1000 Mbps Ethernet (one port with PoE support)
- 1x miniPCIe slot (USB 2.0 bus only)
- 1x microSIM slot
- 1x USB 2.0
- 5x LED (4 driven by GPIO)
- 1x button (reset)
- 1x 2-pos switch
- 1x DC jack for main power input (9-48 V)
- UART (J5) and LEDs (J13) headers on PCB
WHQX E600G is based on Qualcomm QCA9531.
Specification:
- 650/391/216 MHz (CPU/DDR/AHB)
- 64/128 MB of RAM (DDR2)
- 8/16 MB of FLASH (SPI NOR)
- 2T2R 2.4 GHz (QCA9531) with external PA (LXK-6601)
- 2x 10/100 Mbps Ethernet (one port with PoE support)
- 1x miniPCIe slot (with PCIe and USB 2.0 buses)
- 1x microSIM slot
- 5x LED (4 driven by GPIO)
- 1x button (reset)
- 1x DC jack for main power input (9-48 V)
- UART (J100), SIM (J34), JTAG (J5) and LEDs (J7) headers on PCB
WHQX E600GAC is based on Qualcomm QCA9531 + QCA9887.
Specification:
- 650/391/216 MHz (CPU/DDR/AHB)
- 64/128 MB of RAM (DDR2)
- 8/16 MB of FLASH (SPI NOR)
- 2T2R 2.4 GHz (QCA9531)
- 1T1R 5 GHz (QCA9887) with external FEM (SKY85703-11)
- 2x 10/100 Mbps Ethernet
- 6x LED (1x RGB, 5 driven by GPIO)
- 1x button (reset)
- 1x DC jack for main power input (9-12 V)
- UART (J100), USB (J102), JTAG (J5) and LEDs (J7) header on PCB
Important notice:
First version of these boards are using different mtd layout, with ART
data at the end. You should not use v2 images on v1 board because it
will result in lost of ART data!
Flash instruction (using U-Boot CLI and tftp server):
1. Configure PC with static IP 192.168.1.10 and tftp server.
2. Rename "sysupgrade" filename to "firmware.bin" and place it in tftp
server directory.
3. Connect PC with one of RJ45 ports, power up the board and press
"enter" key to access U-Boot CLI.
4. Use the following command to update the device to OpenWrt: "run lfw".
Flash instruction (using U-Boot web-based recovery):
1. Configure PC with static IP 192.168.1.xxx(2-254)/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
the board and keep button pressed for around 6-7 seconds, until LEDs
start flashing.
3. Open your browser and enter 192.168.1.1, select "sysupgrade" image
and click the upgrade button.
Signed-off-by: Peng Zhang <sd20@qxwlan.com>
[reworked: image generation code, mach-* files, commit description,
fixed minor code style issues, rebased on master]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Calling nand_do_upgrade() from platform_pre_upgrade() was deprecated
with 30f61a34b4 ("base-files: always use staged sysupgrade").
Update the platform upgrade code to use platform_do_upgrade() for NAND
images as well.
Signed-off-by: Mathias Kresin <dev@kresin.me>
The watchdog kill command was meant for busybox watchdog. Busybox watchdog
was replaced by the procd watchdog mid 2013 with commit df7ce9301a
("busybox: disable the watchdog utility by default"), which makes the kill
command obsolete since quite some time.
Signed-off-by: Mathias Kresin <dev@kresin.me>
EG-200 is a DIN rail mountable device with one ethernet port, wifi,
an RS-485 port, and an internal USB attached uSD card reader.
Two leds, "modbus" and "etactica" are managed by userspace applications
in factory firmware.
Flash instruction:
Original firmware is based on OpenWrt.
Use sysupgrade image directly in vendor GUI.
Signed-off-by: Karl Palsson <karlp@etactica.com>
This device is identical as TP-Link RE450
RE355 is a dual-band AC1200 router, based on Qualcomm/Atheros
QCA9558+QCA9880.
Specification:
720/600/200 MHz (CPU/DDR/AHB)
64/128 MB of RAM (DDR2)
8 MB of FLASH (SPI NOR)
3T3R 2.4 GHz
3T3R 5 GHz
1x 10/100/1000 Mbps Ethernet
7x LED, 3x button
UART header on PCB
Flash instruction:
Web:
Download lede-ar71xx-generic-archer-c60-v2-squashfs-factory.bin
and use OEM System Tools - Firmware Upgrade site.
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
COMFAST CF-E375AC is a ceiling mount AP with PoE support, based on
Qualcomm/Atheros QCA9563 + QCA9886 + QCA8337.
Short specification:
2x 10/100/1000 Mbps Ethernet, with PoE support
128MB of RAM (DDR2)
16 MB of FLASH
3T3R 2.4 GHz, 802.11b/g/n
2T2R 5 GHz, 802.11ac/n/a, wave 2
built-in 5x 3 dBi antennas
output power (max): 500 mW (27 dBm)
1x RGB LED, 1x button
built-in watchdog chipset
Flash instruction:
Original firmware is based on OpenWrt.
Use sysupgrade image directly in vendor GUI.
Signed-off-by: Ding Tengfei <dtf@comfast.cn>
Add the Embedded Wireless "Balin" platform
SoC: QCA AR9344 or AR9350
RAM: DDR2-RAM 64MBytes
Flash: SPI-NOR 16MBytes
WLAN: 2 x 2 MIMO 2.4 & 5 GHz IEEE802.11 a/b/g/n
Ethernet: 3 x 10/100 Mb/s
USB: 1 x USB2.0 Host/Device bootstrap-pin at power-up
PCI-Express: 1 x lane PCIe 1.2
UART: 1 x Normal, 1 x High-Speed
JTAG: 1 x EJTAG
GPIO: 10 x Input/Output multiplexed
The module comes already with the current vanilla OpenWrt firmware.
To update, use "sysupgrade" image directly in vendor firmware.
Signed-off-by: Catrinel Catrinescu <cc@80211.de>
The patch adds support for the MikroTik RB911-2Hn (911 Lite2)
and the RB911-5Hn (911 Lite5) boards:
https://mikrotik.com/product/RB911-2Hnhttps://mikrotik.com/product/RB911-5Hn
The two boards are using the same hardware design, the only difference
between the two is the supported wireless band.
Specifications:
* SoC: Atheros AR9344 (600MHz)
* RAM: 64MiB
* Storage: 16 MiB SPI NOR flash
* Ethernet: 1x100M (Passive PoE in)
* Wireless: AR9344 built-in wireless MAC, single chain
802.11b/g/n (911-2Hn) or 802.11a/g/n (911-5Hn)
Notes:
* Older versions of these boards might be equipped with a NAND
flash chip instead of the SPI NOR device. Those boards are not
supported (yet).
* The MikroTik RB911-5HnD (911 Lite5 Dual) board also uses the
same hardware. Support for that can be added later with little
effort probably.
Installation:
1. Setup a DHCP/BOOTP Server with the following parameters:
* DHCP-Option 66 (TFTP server name): pointing to a local TFTP
server within the same subnet of the DHCP range
* DHCP-Option 67 (Bootfile-Name): matching the initramfs filename
of the to be booted image. The usable intramfs files are:
- openwrt-ar71xx-mikrotik-vmlinux-initramfs.elf
- openwrt-ar71xx-mikrotik-vmlinux-initramfs-lzma.elf
- openwrt-ar71xx-mikrotik-rb-nor-flash-16M-initramfs-kernel.bin
2. Press the reset button on the board and keep that pressed.
3. Connect the board to your local network via its ethernet port.
4. Release the button after the LEDs on the board are turned off.
Now the board should load and start the initramfs image from
the TFTP server.
5. Upload the sysupgrade image to the board with scp:
$ scp openwrt-ar71xx-mikrotik-rb-nor-flash-16M-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/fw.bin
5. Log in to the running system listening on 192.168.1.1 via ssh
as root (without password):
$ ssh root@192.168.1.1
7. Flash the uploaded firmware file from the ssh session via the
sysupgrade command:
root@OpenWrt:~# sysupgrade /tmp/fw.bin
Signed-off-by: Gabor Juhos <juhosg@freemail.hu>
This patch adds support for the MikroTik RouterBOARD wAP G-5HacT2HnD (wAP
AC), a small weatherproof dual band, dual-radio 802.11ac wireless AP with
integrated omnidirectional anntennae and one 10/100/1000 Mbps Ethernet
ports.
See https://mikrotik.com/product/RBwAPG-5HacT2HnD for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9556
- RAM: 64 MB
- Storage: 16 MB NOR
- Wireless:
· Atheros AR9550 (SoC) 802.11b/g/n 2x2:2, 2 dBi antennae
· Qualcomm QCA9880 802.11a/n/ac 3x3:3, 2 dBi antennae
- Ethernet: Atheros AG71xx (SoC, AR8033), 1x 1000/100/10 port, passive
PoE in
Working:
- Board/system detection
- Sysupgrade
- Serial console
- Ethernet
- 2.4 GHz radio
- 5 GHz radio
- Reset button
Not working:
- LEDs (added according to Mikrotik's GPL sources but not functional)
Unsupported:
- ZT2046Q SPI temperature and voltage sensor
Contributors: Giuseppe Tipaldi (@Ciusss89)
Ricky (@rickydee)
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[daniel@makrotopia.org: whitespace fix, use PHYADDR instead of PHYMASK]
GL.iNet GL-AR750 is a small size, dual-band (AC750) router, based on
Qualcomm/Atheros QCA9531 v2 + QCA9887. FCC ID: 2AFIW-AR750.
Specification:
- 650/597/216 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 3x 10/100 Mbps Ethernet
- 2T2R 2.4 GHz (QCA9531)
- 1T1R 5 GHz (QCA9887)
- 1x USB 2.0 (power controlled by GPIO)
- 1x microSD (GL857L)
- 3x LED (all driven by GPIO)
- 1x button (reset)
- 1x 2-pos switch
- header for optional PoE module
- 1x micro USB for main power input
- UART + I2C header on PCB
Flash instruction:
Vendor firmware is based on OpenWrt/LEDE. GUI or sysupgrade can be used
to flash OpenWrt/LEDE firmware.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
ALFA Network R36A is a successor of the previous model, the R36 (Ralink
RT3050F based). New version is based on Qualcomm/Atheros QCA9531 v2.
Specification:
- 650/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 2x 10/100 Mbps Ethernet, with passive PoE support (24 V)
- 2T2R (QCA9531) 2.4 GHz, 2x u.fl connectors on PCB
- 1x USB 2.0 (power controlled by GPIO)
- 6x LED (5 of them are driven by GPIO)
- 2x button (reset, wifi/wps)
- external h/w watchdog (EM6324QYSP5B, disabled and not used)
- DC jack for main power input (12 V)
- UART header on PCB
Flash instruction:
You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
device, wait for first blink of all LEDs (indicates network setup),
then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Teltonika RUT900 is an industrial 3G router based on Atheros AR9344.
There are available 3 other models in RUT9xx series: RUT905, RUT950 and
RUT955, which differ in availability of additional I/O ports, built-in
GSM modem type, GPS antenna and other features. FCC ID of the RUT950
model (LTE module built-in): 2AET4-RUT950.
This patch adds support for the RUT900 model only but can be easily
extended to cover whole series. Also, as there are several different
3/4G modules (Huawei, Quectel, Telit) used in whole series, packages
required for WWAN support are not included by default. It is up to the
user to install required software for built-in modem.
Specification:
- 550/400/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 4x 10/100 Mbps Ethernet, with passive PoE support on LAN1
- 2T2R 2,4 GHz (AR9344), with ext. PA (MGA-22103) and LNA
- built-in 3G module (example: Telit HE910-D)
- 2x miniSIM slot
- 2x RP-SMA/F (Wi-Fi), 2x SMA/F (3G)
- PCA9539 16-bit GPIO I2C expander
- 12x LED (4 are driven by AR9344, 7 by PCA9539)
- 1x button (reset)
- DC jack for main power input (9-30 V)
- UART available on PCB edge connector
Serial console pinout:
- RX: pin1 (square) on top side of the main PCB (AR9344 is on top)
- TX: pin1 (square) on bottom side
Flash instruction:
Vendor firmware is based on OpenWrt CC release. Use the "factory" image
directly in GUI (make sure to uncheck "keep settings") or in U-Boot web
based recovery. To avoid any problems, make sure to first update vendor
firmware to latest version - "factory" image was successfully tested on
device running "RUT9XX_R_00.03.960" firmware and U-Boot "3.0.1".
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
ALFA Network N5Q is a successor of previous model, the N5 (outdoor
CPE/AP, based on Atheros AR7240 + AR9280). New version is based on
Atheros AR9344.
Specification:
- 550/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 2x 10/100 Mbps Ethernet, with passive PoE support (24 V)
- 2T2R 5 GHz (AR9344), with ext. PA (RFPA5542) and LNA, up to 27 dBm
- 8x LED (7 are driven by GPIO)
- 1x button (reset)
- external h/w watchdog (EM6324QYSP5B, disabled and not used)
- header for optional 802.3at/af PoE module
- DC jack for main power input (optional, not installed by default)
- UART header on PCB
Flash instruction:
You can use sysupgrade image directly in vendor firmare which is based
on OpenWrt/LEDE. Alternatively, you can use web recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
device, wait for first blink of all LEDs (indicates network setup),
then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
ALFA Network AP91-5G is a 5 GHz outdoor AP/CPE board, based on Atheros
AR7240 + AR9280.
Specification:
- 400/400/200 MHz (CPU/DDR/AHB)
- 32 MB of RAM (DDR1)
- 8 MB of FLASH (SPI NOR)
- 1x 10/100 Mbps Ethernet, with passive PoE support (24 V)
- 1T1R 5 GHz (AR9280), with ext. PA (SE5004L) and LNA, up to 27 dBm
- 6x LED (5 are driven by GPIO)
- 1x button (reset)
- external h/w watchdog (EM6324QYSP5B, disabled and not used)
- header for optional 802.3at/af PoE module
- DC jack for main power input (optional, not installed by default)
- UART and LEDs headers on PCB
Flash instruction:
Use "factory" image in vendor GUI (in case of problems, make sure your
board has up to date firmware). Alternatively, TFTP in U-Boot can be
used: select option "2. Load system code then write to Flash via TFTP"
during early boot and use "sysupgrade" image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
This patch adds support for the MikroTik RouterBOARD 921GS-5HPacD r2
(mANTBox 15s), an outdoor sector antenna with a built-in 802.11ac
wireless router. Additionally, it adds a new profile for devices with
>= 128 MB NAND flash and 802.11ac to the ar71xx/mikrotik subtarget.
See https://mikrotik.com/product/RB921GS-5HPacD-15S for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9558 (720 MHz)
- RAM: 128 MB
- Storage: 128 MB NAND
- Wireless: external QCA9822 802.11a/ac 2x2:2
- Ethernet: 1x 1000/100/10 Mbps, integrated, via AR8031 PHY, passive PoE in
- SFP: 1x host
Working:
- Board/system detection
- NAND storage detection
- Wireless
- Ethernet
- 1x user LED
- Reset button
- Sysupgrade
Untested:
- SFP cage (probably not working)
Installation:
- Boot initramfs image via TFTP and then flash sysupgrade image
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
The boardname isn't used any longer to find the subdirectory in the
sysupgrade tar archive, which makes this override useless.
Signed-off-by: Mathias Kresin <dev@kresin.me>
TP-Link TL-WR1043N v5 appears to be identical to the TL-WR1043ND v4,
except that the USB port has been removed and there is no longer a
removable antenna option.
The software is more in line with the Archer series in that it uses a
nested bootloader scheme.
Specifications:
- QCA9563 at 775 MHz
- 64 MB RAM
- 16 MB flash
- 3 (non-detachable) Antennas / 450 Mbit
- 1x/4x WAN/LAN Gbps Ethernet (QCA8337)
- reset and Wi-Fi buttons
Signed-off-by: Tim Thorpe <tim@tfthorpe.net>
Signed-off-by: Ludwig Thomeczek <ledesrc@wxorx.net>
The TL-WA901ND v5 has the same hardware as v4, although the PCB has
a different layout. Installation from factory is done via TFTP.
(rename -factory image to wa901ndv4_tp_recovery.bin for tftp)
Signed-off-by: Paul Wassi <p.wassi@gmx.at>
This patch adds support for the MikroTik RouterBOARD mAP 2nD
https://mikrotik.com/product/RBmAP2nD
Specifications:
- SoC: Qualcomm QCA9531 (650 MHz)
- RAM: 64 MB
- Storage: 16 MB NOR SPI flash
- Wireless: builtin QCA9531, 2x2:2
- Ethernet: 2x100M (802.3af/at POE in and passive POE out on ETH2)
- USB: microUSB type AB port
This patch adds missing code to fully support mAP. Machfile already
contained configuration for mAP 2nD, but device specific configuration
like LEDs etc., was missing.
Note: The POE LED works but doesn't turn on when POE passthrough is
enabled, despite being configured with GPIO trigger.
Installation
1. Login to the Mikrotik WebUI to backup your licence keys
2. Setup a DHCP/BOOTP server with:
- DHCP-Option 66 (TFTP server name) pointing to a local TFTP
server within the same subnet of the DHCP range
- DHCP-Option 67 (Bootfile-Name) matching the initramfs filename
of the to be booted image
3. Connect the port labeled internet to your local network
4. Keep the reset button pushed down and power on the board
The board should load and start the initramfs image from the TFTP
server. Login as root/without password to the started LEDE via SSH
listing on IPv4 address 192.168.1.1. Use sysupgrade to install LEDE.
Revert to RouterOS
Use the "rbcfg" package on in LEDE:
- rbcfg set boot_protocol bootp
- rbcfg set boot_device ethnand
- rbcfg apply
Open Netinstall and reboot routerboard. Now Netinstall sees RouterBOARD
and you can install RouterOS. If NetInstall gets stuck on Sending offer
just wait for it to timeout and then close and open Netinstall again.
Click on install again.
In order for RouterOS to function properly, you need to restore license
for the device. You can do that by including license in NetInstall.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This patch adds support for the MikroTik RouterBOARD wAP
https://mikrotik.com/product/RBwAP2nD
Specifications:
- SoC: Qualcomm QCA9533 (650 MHz)
- RAM: 64 MB
- Storage: 16 MB NOR SPI flash
- Wireless: built-in QCA9533, 2x2:2
- Ethernet: 1x100M (802.3af/at POE in)
This patch adds missing code to fully support wAP. Machfile already
contained configuration for wAP 2nD but device specific configuration
like LEDs etc. was missing.
Installation:
1. Login to the Mikrotik WebUI to backup your licence keys
2. Setup a DHCP/BOOTP server with:
- DHCP-Option 66 (TFTP server name) pointing to a local TFTP
server within the same subnet of the DHCP range
- DHCP-Option 67 (Bootfile-Name) matching the initramfs filename
of the to be booted image
3. Connect the port labeled internet to your local network
4. Keep the reset button pushed down and power on the board
The board should load and start the initramfs image from the TFTP
server. Login as root/without password to the started LEDE via SSH
listing on IPv4 address 192.168.1.1. Use sysupgrade to install LEDE.
Revert to RouterOS
Use the "rbcfg" package on in LEDE:
- rbcfg set boot_protocol bootp
- rbcfg set boot_device ethnand
- rbcfg apply
Open Netinstall and reboot routerboard. Now Netinstall sees RouterBOARD
and you can install RouterOS. If NetInstall gets stuck on Sending offer
just wait for it to timeout and then close and open Netinstall again.
Click on install again.
In order for RouterOS to function properly, you need to restore license
for the device. You can do that by including license in NetInstall.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Wallys DR342 is a 5 GHz, 2T2R AP/CPE board based on Atheros AR9342.
Short specification:
- 560/450/225 MHz (CPU/DDR/AHB)
- 1x Gbps Ethernet (AR8035) with passive PoE support (24-56 V)
- 64 MB of RAM (DDR2)
- 16 MB of FLASH
- 2T2R 5 GHz with external FEM (SKY85728-11), up to 30 dBm
- 2x MMCX connectors
- miniPCIe connector with PCIe and USB 2.0 buses
- optional miniSIM slot
- 7x LED, 1x button
- UART, (E)JTAG and LED headers
- 1x DC jack for main power (12-56 V)
Flash instruction (do it under U-Boot, using UART):
1. tftp 0x82000000 lede-ar71xx-generic-dr342-squashfs-sysupgrade.bin
2. erase 0x9f050000 +$filesize
3. cp.b $fileaddr 0x9f050000 $filesize
4. setenv bootcmd "bootm 0x9f050000"
5. saveenv && reset
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
TP-Link Archer C7 v4 is a dual-band AC1750 router, based on Qualcomm/Atheros
QCA9561+QCA9888.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 3T3R 5 GHz
- 5x 10/100/1000 Mbps Ethernet
- 7x LED, 2x button
- UART header on PCB
Flash instruction:
1. Upload lede-ar71xx-generic-archer-c7-v4-squashfs-factory.bin via Web interface
Flash instruction using TFTP recovery:
1. Set PC to fixed ip address 192.168.0.66
2. Download lede-ar71xx-generic-archer-c7-v4-squashfs-factory.bin
and rename it to ArcherC7v4_tp_recovery.bin
3. Start a tftp server with the file tp_recovery.bin in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
Flash instruction under U-Boot, using UART:
1. tftp 0x81000000 lede-ar71xx-...-sysupgrade.bin
2. erase 0x9f040000 +$filesize
3. cp.b $fileaddr 0x9f040000 $filesize
4. reset
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Specifications:
- SoC: Qualcomm QCA9558 (720 MHz)
- RAM: 256MB
- Storage: 1MB NOR, 128 MB NAND flash
- Ethernet: 1x1000M
Installation:
1. Connect to serial console on the board
2. Boot initramfs image over u-boot
3. Copy image to the device and run sysupgrade
Installation without serial console is not supported at this time
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Specifications:
- SoC: Qualcomm QCA9531 (650MHz)
- RAM: 64MB
- Storage: 16MB NOR SPI flash
- Ethernet: 5x100M (1 PoE in, 4 PoE out)
- Outdoor use ready
This ethernet router is based on the same platform as the hEX PoE lite.
Installation
1. login to the Mikrotik WebUI to backup your licence keys
2. setup a DHCP/BOOTP Server with:
* DHCP-Option 66 (TFTP server name) pointing to a local TFTP
Server within the same subnet of the DHCP range
* DHCP-Option 67 (Bootfile-Name) matching the initramfs filename
of the to be booted image
3. connect the port labled internet to your local network
4. keep the reset button pushed down and power on the board
The board should load and start the initramfs image from the TFTP
Server. Login as root/without password to the started LEDE via ssh
listing on IPv4 address 192.168.1.1. Use sysupgrade to install LEDE.
Revert to RouterOS
Use the "rbcfg" package on in LEDE:
* rbcfg set boot_protocol bootp
* rbcfg set boot_device ethnand
* rbcfg apply
Open Netinstall and reboot routerboard. Now netinstall sees routerboard
and you can install RouterOS. If NetInstall gets stuck on Sending offer
just wait for it to timeout and then close and open Netinstall again.
Click on install again.
In order for RouterOS to function properly, you need to restore license
for the device. You can do that by including license in NetInstall
Signed-off-by: Robert Marko <robimarko@gmail.com>
COMFAST CF-E355AC is a ceiling mount AP with PoE support, based on
Qualcomm/Atheros QCA9531 + QCA9882.
Short specification:
- 2x 10/100 Mbps Ethernet, with PoE support
- 64MB of RAM (DDR2)
- 16 MB of FLASH
- 2T2R 2.4 GHz, 802.11b/g/n
- 2T2R 5 GHz, 802.11ac/n/a
- built-in 4x 3 dBi antennas
- output power (max): 500 mW (27 dBm)
- 1x RGB LED, 1x button
- built-in watchdog chipset
Flash instruction:
Original firmware is based on OpenWrt.
Use sysupgrade image directly in vendor GUI.
Signed-off-by: Enrique Giraldo <enrique.giraldo@galgus.net>
[whitespace fixes, ac radio caldata offset fix]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
GL.iNet GL-USB150 is an USB dongle WiFi router, based on Atheros AR9331.
Specification:
- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- Realtek RTL8152B USB to Ethernet bridge (connected with AR9331 PHY4)
- 1T1R 2.4 GHz
- 2x LED, 1x button
- UART header on PCB
Flash instruction:
Vendor firmware is based on OpenWrt CC. GUI or sysupgrade can be used
to flash LEDE firmware.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
ALFA Network AP121F is a pocket-size router dedicated for VPN/TOR users.
Device is based on Atheros AR9331 WiSoC and is running a custom version
(updated from OpenWrt CC to LEDE 17.01 release) of NetAidKit firmware.
Specification:
- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR1)
- 16 MB of FLASH (SPI NOR)
- 1x 10/100 Mbps Ethernet
- 1T1R 2.4 GHz
- 1x microSD (optional, on separate PCB)
- 3x LED, 1x button, 1x switch
- UART header on PCB
Flash instruction (under U-Boot web recovery mode):
1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with RJ45 port, press the reset button, power up device,
wait for first blink of all LEDs (indicates network setup), then keep
button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Do not parse /tmp/sysinfo/board_name, /proc/cpuinfo or the device tree
compatible string directly. Always use the board_name function to get
the board name.
The admswconfig package still reads /proc/cpuinfo directly. The code
looks somehow broken and the whole adm5120 which uses this package
looks unmaintained. Leave it as it is for now.
Signed-off-by: Mathias Kresin <dev@kresin.me>
For targets using the generic board detection and board specific
settings in diag.sh, the board name is still unset at the time the
set_state() provided by diag.sh is called by 10_indicate_preinit.
Change the execution order to ensure the boardname is populated before
required the first time. Do the target specific board detection as
early as possible, directly followed by the generic one to allow a
seamless switch to the generic function for populating /tmp/sysinfo/.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Depending on busybox applet selection, paths of basic utiilties may differ,
and may not work as symlinks to busybox. Simply using whatever binary is
found in PATH and detecting symlinks automatically is more robust and
easier to maintain.
The list of binaries is also slightly cleaned up and duplicates are
removed.
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
Until we enable requirement for metadata in sysupgrade images under
ar71xx target, this prevents users from using wrong image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
TP-Link TL-WR902AC v1 is a pocket-size, dual-band (AC750), successor of
TL-MR3020 (both devices use very similar enclosure, in same size). New
device is based on Qualcomm QCA9531 v2 + QCA9887. FCC ID: TE7WR902AC.
Specification:
- 650/391/216 MHz (CPU/DDR/AHB)
- 1x 10/100 Mbps Ethernet
- 1x USB 2.0 (GPIO-controlled power)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH
- 2T2R 2.4 GHz (QCA9531)
- 1T1R 5 GHz (QCA9887)
- 5x LED (GPIO-controlled), 2x button, 1x 3-pos switch
- UART pads on PCB (TP1 -> TX, TP2 -> RX, TP3 -> GND, TP4 -> 3V3, jumper
resitors are missing on TX/RX lines)
- 1x micro USB (for power only)
Flash instructions:
Use "factory" image under vendor GUI.
Recovery instructions:
This device contains tftp recovery mode inside U-Boot. You can use it to
flash LEDE (use "factory" image) or vendor firmware.
1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "lede-ar71xx-generic-tl-wr902ac-v1-squashfs-factory.bin"
to "wr902acv1_un_tp_recovery.bin" and place it in tftp server dir.
3. Connect PC with LAN port, press the reset button, power up the router
and keep button pressed until WPS LED lights up.
4. Router will download file from server, write it to flash and reboot.
Root access over serial line in vendor firmware: root/sohoadmin.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
TP-Link Archer C58 v1 is a dual-band AC1350 router, based on Qualcomm
QCA9561 + QCA9886. It looks like Archer C59 v1 without USB port.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 2T2R 5 GHz
- 5x 10/100 Mbps Ethernet
- 6x LED, 3x button
- UART header on PCB, RX, TX at TP4+5 (backside)
QCA9886 wlan needs pre_cal_data file and enable ieee80211 phy hotplug to
patch macaddress.
Flash instruction:
Use "factory" image directly in vendor GUI.
Recovery method:
1. Set PC to fixed ip address 192.168.0.66/24.
2. Download "lede-ar71xx-generic-archer-c58-v1-squashfs-factory.bin" and
rename it to "tp_recovery.bin".
3. Start a tftp server with the file "tp_recovery.bin" in its root
directory.
4. Turn off the router.
5. Press and hold Reset button.
6. Turn on router with the reset button pressed and wait ~15 seconds.
7. Release the reset button and after a short time the firmware should
be transferred from the tftp server.
8. Wait ~30 second to complete recovery.
Flash instruction under U-Boot, using UART:
tftp 0x81000000 lede-ar71xx-...-sysupgrade.bin
erase 0x9f020000 +$filesize
cp.b $fileaddr 0x9f020000 $filesize
reset
This commit is based on GitHub PR#1112
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
TP-Link TL-WA855RE v1 is a wall-plug N300 Wi-Fi range extender,
based on Qualcomm/Atheros QCA9533 v2.
Short specification:
- 550/397/198 MHz (CPU/DDR/AHB)
- 1x 10/100 Mbps Ethernet
- 32 MB of RAM (DDR1)
- 4 MB of FLASH
- 2T2R 2.4 GHz
- 2x external antennas
- 2x LED (green and orange in the same package), 2x button
- UART: TP5(TX) and TP4(RX) test points on PCB
Flash instruction: use "factory" image directly in vendor GUI.
Warning: this device does not include any kind of recovery mechanism
in the bootloader and disassembling process is not trivial.
You can access vendor firmware over serial line using:
- login: root
- password: sohoadmin
Image was tested only in EU version of the device, but should work
also with the same device version sold in other countries.
Signed-off-by: Federico Cappon <dududede371@gmail.com>
Specifications:
* SoC: AR7242 (Virian 400MHz)
* RAM: 64 MB DDR (W9751G6JB-25)
* Flash: 16MB SPI flash (S25FL129PIF)
* WiFi: AR9382 (2.4/5GHz) + 2x SE2595L
* LAN: 1x1000M (PEF7071V)
To install LEDE via EVA bootloader, a FTP connection need to be
established to 192.168.178.1 within the first seconds after power on:
ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put lede-ar71xx-generic-fritz300e-squashfs-sysupgrade.bin mtd1
Signed-off-by: Mathias Kresin <dev@kresin.me>
TP-Link TL-WR942N v1 is a 2.4 GHz single-band N450 router, based on
Qualcomm/Atheros QCA9561.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x USB 2.0
- 11x LED (most are controlled by 74HC595)
- 2x button
- UART header on PCB*
* Serial console is disabled in OEM non-beta firmwares and corresponding
GPIO pins 14 and 15 are assigned to control USB1 and USB2 LEDs by
production (non-beta) U-Boot and firmware.
Currently not working:
1. USB1 and USB2 LEDs if UART RX and TX pins are assigned to their GPIOs
by some U-Boot versions.
Flash instruction under vendor GUI:
1. Download "lede-ar71xx-generic-tl-wr942n-v1-squashfs-factory.bin".
2. Go to WEB interface and perform usual firmware upgrade.
FLash instruction under U-Boot recovery mode (doesn't work in beta
firmware):
1. Setup PC with static IP "192.168.0.66/24" and tftp server.
2. Change "*-factory" image filename to "WR942v1_recovery.bin" and make
it available to download from your tftp server.
3. Press "reset" button and power up the router, wait till "WPS" LED
turns on.
Flash instruction under U-Boot, using UART (can be done only with
preinstalled UART-enabled U-Boot version!):
1. Use "tpl" to stop autobooting and obtain U-Boot CLI access.
2. Setup ip addresses for U-Boot and your tftp server.
3. Issue below commands:
tftp 0x81000000 lede-ar71xx-generic-tl-wr942n-v1-sysupgrade.bin
erase 0x9f020000 +$filesize
cp.b 0x81000000 0x9f020000 $filesize
reset
Signed-off-by: Serg Studzinskii <serguzhg@gmail.com>
[minor code style fixes, extended commit message]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>