UniElec U7621-06 is a router platform board based on MediaTek MT7621AT.
The device has the following specifications:
- MT7621AT (880 MHz)
- 256/512 MB of RAM (DDR3)
- 8/16/32/64 MB of FLASH (SPI NOR)
- 5x 1 Gbps Ethernet (MT7621 built-in switch)
- 1x ASMedia ASM1061 (for mSATA and SATA)
- 2x miniPCIe slots (PCIe bus only)
- 1x mSATA slot (with USB 2.0 bus for modem)
- 1x SATA
- 1x miniSIM slot
- 1x microSD slot
- 1x USB 3.0
- 12x LEDs (3 GPIO-controlled)
- 1x reset button
- 1x UART header (4-pins)
- 1x GPIO header (30-pins)
- 1x FPC connector for LEDs (20-pin, 0.5 mm pitch)
- 1x DC jack for main power (12 V)
The following has been tested and is working:
- Ethernet switch
- miniPCIe slots (tested with Wi-Fi cards)
- mSATA slot (tested with modem and mSATA drive)
- miniSIM slot
- sysupgrade
- reset button
- microSD slot
Installation:
This board might come with a different firmware versions (MediaTek SDK,
PandoraBox, Padavan, etc.). If your board comes with PandoraBox, you can
install LEDE using sysupgrade. Just SSH to the router and perform forced
sysupgrade (due to a board name mismatch). The default IP of this board
should be: 192.168.1.1 and username/password: root/admin. In case of a
different firmware, you can use web based recovery described below.
Use the following command to perform the sysupgrade (for the 256MB
RAM/16MB flash version):
sysupgrade -n -F lede-ramips-mt7621-u7621-06-256M-16M-squashfs-sysupgrade.bin
Recovery:
This board contains a Chinese, closed-source bootloader called Breed
(Boot and Recovery Environment for Embedded Devices). Breed supports web
recovery and to enter it, you keep the reset button pressed for around
5 seconds during boot. Your machine will be assigned an IP through DHCP
and the router will use IP address 192.168.1.1. The recovery website is
in Chinese, but is easy to use. Click on the second item in the list to
access the recovery page, then the second item on the next page is where
you select the firmware. In order to start the recovery, you click the
button at the bottom.
LEDs list (top row, left to right):
- LED_WWAN# (connected with pin 42 in LTE/mSATA slot)
- Power (connected directly to 3V3)
- CTS2_N (GPIO10, configured as "status" LED)
- TXD2 (GPIO11, configured as "led4", without default trigger)
- RXD2 (GPIO12, configured as "led5", without default trigger)
- LED_WLAN# (connected with pin 44 in wifi0 slot)
LEDs list (bottom row, left to right):
- ESW_P0_LED_0
- ESW_P1_LED_0
- ESW_P2_LED_0
- ESW_P3_LED_0
- ESW_P4_LED_0
- LED_WLAN# (connected with pin 44 in wifi1 slot)
Other notes:
1. The board is available with different amounts of RAM and flash. We
have only added support for the 256/16 MB configuration, as that seems
to be the default. However, all the required infrastructure is in place
for making support for the other configurations easy.
2. The manufacturer offers five different wireless cards with MediaTek
chipsets, based on MT76x2, MT7603 and MT7615. Images of the board all
show that the miniPCIe slots are dedicated to specific Wi-Fi cards.
However, the slots are generic.
3. All boards we got access to had the same EEPROM content. The default
firmware reads the Ethernet MAC from offset 0xe000 in factory partition.
This offset only contains 0xffs, so a random MAC will be generated on
every boot of the router. There is a valid MAC stored at offset 0xe006
and this MAC is shown as the WAN MAC in the bootloader. However, it is
the same on all boards we have checked. Based on information provided
by the vendor, all boards sold in small quantities are considered more
as samples for development purposes.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
This increases kernel partition size and fixes rootfs (file-system)
partition size on TP-Link RE450 v1. Also, while we are at it, switch
from statically defined kernel and rootfs partitions in kernel cmdline
to "tplink-fw" mtd splitter.
Fixes: FS#1072.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
This patch increases kernel partition size and re-enables image
generation for below TP-Link boards:
- archer-c58-v1
- archer-c60-v1
- tl-wr902ac-v1
- tl-wr942n-v1
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
[commit message and title reworded]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
There is no need to allocate buffer as big as the whole image in order
to calculate CRC32. It's enough to use small buffer and just read file
content block by block.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
This requires changing this helper to accept initial/current CRC32
value as argument but it allows dropping duplicated (complex?) code
calculating the CRC32.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Remove multicast routing firewall rules when the igmpproxy is stopped by
triggering a firewall config change.
Keeping the firewall open from the wan for igmp and udp multicast is not
desired when the igmpproxy service is inactive.
Signed-off-by: Hans Dedecker <dedeckeh@gmail.com>
When a library is using fortify-packages GCC will complain about
"error: format not a string literal, argument types not checked".
Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
don't set no-ssl3-method when CONFIG_OPENSSL_WITH_SSL3 di disabled otherwise the compile breaks with this error:
../libssl.so: undefined reference to `SSLv3_client_method'
Fixes CVE: CVE-2017-3735, CVE-2017-3736
Signed-off-by: Peter Wagner <tripolar@gmx.at>
Check if the compiler defines __linux__, instead of assuming that the
host OS is the same as the target OS.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
There was a typo in module.mk for pfe module autoload.
This patch is to fix this and remove useless rc.local
which was for loading pfe module.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
The QorIQ FRDM-LS1012A Board is an ultra-low-cost
development platform for QorIQ LS1012A Series Network
Processors built on ARM Cortex-A53 processor.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
This patch is to add PPA (The Primary Protected Application)
package and also enable it for all layerscape devices.
LSDK github provides ppa source code git tree, but it
only could be compiled with 64-bit toolchain. For 32-bit
devices, there was no method to use it.
https://github.com/qoriq-open-source/ppa-generic
This patch is to directly use a private ppa binary tree for
both 32-bit and 64-bit devices.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
This patch is to use ppfe git tree on LSDK github
instead of private git tree, and support the latest
ppfe on ls1012ardb.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Some new options were introduced by kernel patches.
And some options should be removed/added.
The config-4.9 should be updated accordingly.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Updated kernel patches to align layerscape kernel
with latest LSDK linux (LSDK-17.09-update-103017-V4.9 tag).
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Default profile had to enable many packages for all devices
support. This made these packages still enabled when built
for single device. This patch is to remove default profile.
For multiple devices build, it's proper to build with multiple
devices profile.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
restool is a user space application providing the
ability to dynamically create and manage Layerscape
DPAA2 containers and objects from Linux.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
This patch is to add data path layout files for the
second generation Data Path Acceleration Architecture.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
This patch is to add package support for Management
Complex Firmware for the second generation Data Path
Acceleration Architecture.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
A previous patch disaggregated kernel patch 601 intending to
reverse the ndo_get_stats64 change, but it also dropped
many other changes without a reason. This caused build issue
for layerscape. This patch is to fix that with below steps.
1. Reversed patch "1c4415a layerscape: reverse changes to ndo_get_stats64",
but kept kernel patch 701 which was a proper fix.
2. Reversed the ndo_get_stats64 change in kernel patch 601.
3. Renamed patch 601 (net patch) to 202 (core-linux patch). Maybe it's
more proper.
Fixes: 1c4415a679 ("layerscape: reverse changes to ndo_get_stats64")
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
On the Asus RT-N16, the ports are not mapped the in the same way as
the RT-N12. It is, however, the same as the Linksys E3000v1.
Signed-off-by: Tim Thorpe <timfthorpe@gmail.com>
The memcpy of the init data relies on chip->registers to be initialized,
which only happens later in the code. Move this initialization further
down to make it work.
This was breaking PCIe/USB on some MikroTik RouterBoard devices.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Shell function return code only has range [0, 255]. Other values will
be truncated, e.g. return 65536 will have the same effect as return 0
While at it, drop other "return $rc" where rc will almost always take
value 0 and whose value current callers actually do not check
Fixes FS#988
Signed-off-by: Yousong Zhou <yszhou4tech@gmail.com>
The MAC addresses were not being set for LAN and WAN. This will now use the
same MAC mechanism as the rest of the target.
Signed-off-by: Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>
TP-Link TL-WR840N v5 is simple N300 router with 5-port FE switch and
non-detachable antennas, based on MediaTek MT7628NN (aka MT7628N) WiSoC.
Specification:
- MT7628N/N (580 MHz)
- 64 MB of RAM (DDR2)
- 4 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- 1x LED (GPIO-controlled), 1x button
* LED in TL-WR840N v5 is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the green part of the LED.
Orange LED is registered so you can later use it for your own purposes.
Flash instruction:
Unlike TL-WR840N v4 flashing through WEB UI works in v5.
1. Download lede-ramips-mt76x8-tl-wr840n-v5-squashfs-sysupgrade.bin image.
2. Go to 192.168.0.1
3. Flash the sysupgrade image through Firmware upgrade section of WEB UI.
4. Wait until green LED stops flashing and use the router.
Notes:
TFTP recovery is broken since TP-Link reused bootloader code for v4 and
that does not take into account only 4 MB of flash and bricks the device.
So do not use TFTP Recovery or you will have to rewrite SPI flash.
They fixed it in later GPL code,but it is unknown which version of
bootloader you have.
After manually compiling and flashing bootloader from GPL sources TFTP
recovery works properly.
Signed-off-by: Robert Marko <robimarko@gmail.com>