openwrtv4/package/rt2x00/src/rt2500usb.c

1613 lines
47 KiB
C
Raw Normal View History

/*
Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2500usb
Abstract: rt2500usb device specific routines.
Supported chipsets: RT2570.
*/
/*
* Set enviroment defines for rt2x00.h
*/
#define DRV_NAME "rt2500usb"
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/init.h>
#include <linux/usb.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
#include "rt2x00usb.h"
#include "rt2500usb.h"
/*
* Register access.
* All access to the CSR registers will go through the methods
* rt2500usb_register_read and rt2500usb_register_write.
* BBP and RF register require indirect register access,
* and use the CSR registers BBPCSR and RFCSR to achieve this.
* These indirect registers work with busy bits,
* and we will try maximal REGISTER_BUSY_COUNT times to access
* the register while taking a REGISTER_BUSY_DELAY us delay
* between each attampt. When the busy bit is still set at that time,
* the access attempt is considered to have failed,
* and we will print an error.
*/
static inline void rt2500usb_register_read(
const struct rt2x00_dev *rt2x00dev,
const u16 offset, u16 *value)
{
__le16 reg;
rt2x00usb_vendor_request(
rt2x00dev, USB_MULTI_READ, USB_VENDOR_REQUEST_IN,
offset, 0x00, &reg, sizeof(u16), REGISTER_TIMEOUT);
*value = le16_to_cpu(reg);
}
static inline void rt2500usb_register_multiread(
const struct rt2x00_dev *rt2x00dev,
const u16 offset, void *value, const u16 length)
{
rt2x00usb_vendor_request(
rt2x00dev, USB_MULTI_READ, USB_VENDOR_REQUEST_IN,
offset, 0x00, value, length,
REGISTER_TIMEOUT * (length / sizeof(u16)));
}
static inline void rt2500usb_register_write(
const struct rt2x00_dev *rt2x00dev,
const u16 offset, u16 value)
{
__le16 reg = cpu_to_le16(value);
rt2x00usb_vendor_request(
rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT,
offset, 0x00, &reg, sizeof(u16), REGISTER_TIMEOUT);
}
static inline void rt2500usb_register_multiwrite(
const struct rt2x00_dev *rt2x00dev,
const u16 offset, void *value, const u16 length)
{
rt2x00usb_vendor_request(
rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT,
offset, 0x00, value, length,
REGISTER_TIMEOUT * (length / sizeof(u16)));
}
static u16 rt2500usb_bbp_check(const struct rt2x00_dev *rt2x00dev)
{
u16 reg;
unsigned int i;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_register_read(rt2x00dev, PHY_CSR8, &reg);
if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
break;
udelay(REGISTER_BUSY_DELAY);
}
return reg;
}
static void rt2500usb_bbp_write(const struct rt2x00_dev *rt2x00dev,
const u8 reg_id, const u8 value)
{
u16 reg;
/*
* Wait until the BBP becomes ready.
*/
reg = rt2500usb_bbp_check(rt2x00dev);
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
return;
}
/*
* Write the data into the BBP.
*/
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, reg_id);
rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
rt2500usb_register_write(rt2x00dev, PHY_CSR7, reg);
}
static void rt2500usb_bbp_read(const struct rt2x00_dev *rt2x00dev,
const u8 reg_id, u8 *value)
{
u16 reg;
/*
* Wait until the BBP becomes ready.
*/
reg = rt2500usb_bbp_check(rt2x00dev);
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
return;
}
/*
* Write the request into the BBP.
*/
reg =0;
rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, reg_id);
rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
rt2500usb_register_write(rt2x00dev, PHY_CSR7, reg);
/*
* Wait until the BBP becomes ready.
*/
reg = rt2500usb_bbp_check(rt2x00dev);
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
*value = 0xff;
return;
}
rt2500usb_register_read(rt2x00dev, PHY_CSR7, &reg);
*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
}
static void rt2500usb_rf_write(const struct rt2x00_dev *rt2x00dev,
const u32 value)
{
u16 reg;
unsigned int i;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_register_read(rt2x00dev, PHY_CSR10, &reg);
if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
goto rf_write;
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
return;
rf_write:
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
rt2500usb_register_write(rt2x00dev, PHY_CSR9, reg);
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
rt2500usb_register_write(rt2x00dev, PHY_CSR10, reg);
}
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
const unsigned long word, void *data)
{
rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), data);
}
static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
const unsigned long word, void *data)
{
rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), *((u16*)data));
}
static void rt2500usb_read_eeprom(struct rt2x00_dev *rt2x00dev,
const unsigned long word, void *data)
{
rt2x00_eeprom_read(rt2x00dev, word, data);
}
static void rt2500usb_write_eeprom(struct rt2x00_dev *rt2x00dev,
const unsigned long word, void *data)
{
rt2x00_eeprom_write(rt2x00dev, word, *((u16*)data));
}
static void rt2500usb_read_bbp(struct rt2x00_dev *rt2x00dev,
const unsigned long word, void *data)
{
rt2500usb_bbp_read(rt2x00dev, word, data);
}
static void rt2500usb_write_bbp(struct rt2x00_dev *rt2x00dev,
const unsigned long word, void *data)
{
rt2500usb_bbp_write(rt2x00dev, word, *((u8*)data));
}
static const struct rt2x00debug rt2500usb_rt2x00debug = {
.owner = THIS_MODULE,
.reg_csr = {
.read = rt2500usb_read_csr,
.write = rt2500usb_write_csr,
.word_size = sizeof(u16),
.word_count = CSR_REG_SIZE / sizeof(u16),
},
.reg_eeprom = {
.read = rt2500usb_read_eeprom,
.write = rt2500usb_write_eeprom,
.word_size = sizeof(u16),
.word_count = EEPROM_SIZE / sizeof(u16),
},
.reg_bbp = {
.read = rt2500usb_read_bbp,
.write = rt2500usb_write_bbp,
.word_size = sizeof(u8),
.word_count = BBP_SIZE / sizeof(u8),
},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
/*
* Configuration handlers.
*/
static void rt2500usb_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
{
u16 reg[3];
memset(&reg, 0, sizeof(reg));
memcpy(&reg, bssid, ETH_ALEN);
/*
* The BSSID is passed to us as an array of bytes,
* that array is little endian, so no need for byte ordering.
*/
rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, &reg, sizeof(reg));
}
static void rt2500usb_config_promisc(struct rt2x00_dev *rt2x00dev,
const int promisc)
{
u16 reg;
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME, !promisc);
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
}
static void rt2500usb_config_type(struct rt2x00_dev *rt2x00dev,
const int type)
{
u16 reg;
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
/*
* Apply hardware packet filter.
*/
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
if (!is_monitor_present(&rt2x00dev->interface) &&
(type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_STA))
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS, 1);
else
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS, 0);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC, 1);
if (is_monitor_present(&rt2x00dev->interface)) {
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL, 0);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL, 0);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 0);
} else {
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL, 1);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL, 1);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
}
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
/*
* Enable beacon config
*/
rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET,
(PREAMBLE + get_duration(IEEE80211_HEADER, 2)) >> 6);
if (type == IEEE80211_IF_TYPE_STA)
rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW, 0);
else
rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW, 2);
rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
/*
* Enable synchronisation.
*/
rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
if (is_interface_present(&rt2x00dev->interface)) {
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
}
rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
if (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_AP)
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 2);
else if (type == IEEE80211_IF_TYPE_STA)
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 1);
else if (is_monitor_present(&rt2x00dev->interface) &&
!is_interface_present(&rt2x00dev->interface))
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
}
static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
const int value, const int channel, const int txpower)
{
u32 rf1 = rt2x00dev->rf1;
u32 rf2 = value;
u32 rf3 = rt2x00dev->rf3;
u32 rf4 = rt2x00dev->rf4;
if (rt2x00_rf(&rt2x00dev->chip, RF2525))
rf2 |= 0x00080000;
if ((rt2x00_rf(&rt2x00dev->chip, RF2523) ||
rt2x00_rf(&rt2x00dev->chip, RF2524) ||
rt2x00_rf(&rt2x00dev->chip, RF2525)) &&
channel == 14)
rf4 &= ~0x00000018;
if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
if (channel & 0x01)
rf4 = 0x00000e1b;
else
rf4 = 0x00000e07;
if (channel == 14)
rf4 = 0x00000e23;
}
if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
if (channel < 14) {
rf1 = 0x00022020;
rf4 = 0x00000a0b;
} else if (channel == 14) {
rf1 = 0x00022010;
rf4 = 0x00000a1b;
} else if (channel < 64) {
rf1 = 0x00022010;
rf4 = 0x00000a1f;
} else if (channel < 140) {
rf1 = 0x00022010;
rf4 = 0x00000a0f;
} else if (channel < 161) {
rf1 = 0x00022020;
rf4 = 0x00000a07;
}
}
/*
* Set TXpower.
*/
rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
/*
* For RT2525E we should first set the channel to half band higher.
*/
if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
static const u32 vals[] = {
0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
0x00000902, 0x00000906
};
rt2500usb_rf_write(rt2x00dev, vals[channel - 1]);
if (rf4)
rt2500usb_rf_write(rt2x00dev, rf4);
}
rt2500usb_rf_write(rt2x00dev, rf1);
rt2500usb_rf_write(rt2x00dev, rf2);
rt2500usb_rf_write(rt2x00dev, rf3);
if (rf4)
rt2500usb_rf_write(rt2x00dev, rf4);
/*
* Update rf fields
*/
rt2x00dev->rf1 = rf1;
rt2x00dev->rf2 = rf2;
rt2x00dev->rf3 = rf3;
rt2x00dev->rf4 = rf4;
rt2x00dev->tx_power = txpower;
}
static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
const int txpower)
{
rt2x00_set_field32(&rt2x00dev->rf3, RF3_TXPOWER,
TXPOWER_TO_DEV(txpower));
rt2500usb_rf_write(rt2x00dev, rt2x00dev->rf3);
}
static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
const int antenna_tx, const int antenna_rx)
{
u8 r2;
u8 r14;
u16 csr5;
u16 csr6;
rt2500usb_bbp_read(rt2x00dev, 2, &r2);
rt2500usb_bbp_read(rt2x00dev, 14, &r14);
rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
/*
* Configure the TX antenna.
*/
if (antenna_tx == ANTENNA_DIVERSITY) {
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
} else if (antenna_tx == ANTENNA_A) {
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
} else if (antenna_tx == ANTENNA_B) {
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
}
/*
* Configure the RX antenna.
*/
if (antenna_rx == ANTENNA_DIVERSITY)
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
else if (antenna_rx == ANTENNA_A)
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
else if (antenna_rx == ANTENNA_B)
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
/*
* RT2525E and RT5222 need to flip TX I/Q
*/
if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
rt2x00_rf(&rt2x00dev->chip, RF5222)) {
rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
/*
* RT2525E does not need RX I/Q Flip.
*/
if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
} else {
rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
}
rt2500usb_bbp_write(rt2x00dev, 2, r2);
rt2500usb_bbp_write(rt2x00dev, 14, r14);
rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
}
static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
const int short_slot_time, const int beacon_int)
{
u16 reg;
rt2500usb_register_write(rt2x00dev, MAC_CSR10,
short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, beacon_int * 4);
rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
}
static void rt2500usb_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
{
struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
u16 reg;
u16 value;
u16 preamble;
preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE)
? SHORT_PREAMBLE : PREAMBLE;
reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATE;
rt2500usb_register_write(rt2x00dev, TXRX_CSR11, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
SHORT_DIFS : DIFS) +
PLCP + preamble + get_duration(ACK_SIZE, 10);
rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, value);
rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
if (preamble == SHORT_PREAMBLE)
rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE, 1);
else
rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
}
static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
const int phymode)
{
struct ieee80211_hw_mode *mode;
struct ieee80211_rate *rate;
if (phymode == MODE_IEEE80211A)
rt2x00dev->curr_hwmode = HWMODE_A;
else if (phymode == MODE_IEEE80211B)
rt2x00dev->curr_hwmode = HWMODE_B;
else
rt2x00dev->curr_hwmode = HWMODE_G;
mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
rate = &mode->rates[mode->num_rates - 1];
rt2500usb_config_rate(rt2x00dev, rate->val2);
if (phymode == MODE_IEEE80211B) {
rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x000b);
rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x0040);
} else {
rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0005);
rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x016c);
}
}
static void rt2500usb_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
{
u16 reg[3];
memset(&reg, 0, sizeof(reg));
memcpy(&reg, addr, ETH_ALEN);
/*
* The MAC address is passed to us as an array of bytes,
* that array is little endian, so no need for byte ordering.
*/
rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, &reg, sizeof(reg));
}
/*
* LED functions.
*/
static void rt2500usb_enable_led(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
rt2x00_set_field16(&reg, MAC_CSR20_LINK, 1);
rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 0);
} else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
rt2x00_set_field16(&reg, MAC_CSR20_LINK, 0);
rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 1);
} else {
rt2x00_set_field16(&reg, MAC_CSR20_LINK, 1);
rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 1);
}
rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
}
static void rt2500usb_disable_led(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
rt2x00_set_field16(&reg, MAC_CSR20_LINK, 0);
rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 0);
rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
}
/*
* Link tuning
*/
static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
{
int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
u16 bbp_thresh;
u16 cca_alarm;
u16 vgc_bound;
u16 sens;
u16 r24;
u16 r25;
u16 r61;
u16 r17_sens;
u8 r17;
u8 up_bound;
u8 low_bound;
/*
* Determine the BBP tuning threshold and correctly
* set BBP 24, 25 and 61.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
if ((rssi + bbp_thresh) > 0) {
r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
} else {
r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
}
rt2500usb_bbp_write(rt2x00dev, 24, r24);
rt2500usb_bbp_write(rt2x00dev, 25, r25);
rt2500usb_bbp_write(rt2x00dev, 61, r61);
/*
* Read current r17 value, as well as the sensitivity values
* for the r17 register.
*/
rt2500usb_bbp_read(rt2x00dev, 17, &r17);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
/*
* A too low RSSI will cause too much false CCA which will
* then corrupt the R17 tuning. To remidy this the tuning should
* be stopped (While making sure the R17 value will not exceed limits)
*/
if (rssi >= -40) {
if (r17 != 0x60)
rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
return;
}
/*
* Special big-R17 for short distance
*/
if (rssi >= -58) {
sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
if (r17 != sens)
rt2500usb_bbp_write(rt2x00dev, 17, sens);
return;
}
/*
* Special mid-R17 for middle distance
*/
if (rssi >= -74) {
sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
if (r17 != sens)
rt2500usb_bbp_write(rt2x00dev, 17, sens);
return;
}
/*
* Leave short or middle distance condition, restore r17
* to the dynamic tuning range.
*/
rt2500usb_register_read(rt2x00dev, STA_CSR3, &cca_alarm);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
vgc_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
low_bound = 0x32;
if (rssi >= -77)
up_bound = vgc_bound;
else
up_bound = vgc_bound - (-77 - rssi);
if (up_bound < low_bound)
up_bound = low_bound;
if (r17 > up_bound) {
rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
rt2x00dev->rx_status.noise = up_bound;
} else if (cca_alarm > 512 && r17 < up_bound) {
rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
rt2x00dev->rx_status.noise = r17;
} else if (cca_alarm < 100 && r17 > low_bound) {
rt2500usb_bbp_write(rt2x00dev, 17, --r17);
rt2x00dev->rx_status.noise = r17;
}
}
/*
* Initialization functions.
*/
static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
rt2x00usb_vendor_request(rt2x00dev, USB_DEVICE_MODE,
USB_VENDOR_REQUEST_OUT, 0x0001, USB_MODE_TEST, NULL, 0,
REGISTER_TIMEOUT);
rt2x00usb_vendor_request(rt2x00dev, USB_SINGLE_WRITE,
USB_VENDOR_REQUEST_OUT, 0x0308, 0xf0, NULL, 0,
REGISTER_TIMEOUT);
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
rt2500usb_register_write(rt2x00dev, MAC_CSR1, 0x0003);
rt2500usb_register_write(rt2x00dev, MAC_CSR1, 0x0000);
rt2500usb_register_write(rt2x00dev, TXRX_CSR5, 0x8c8d);
rt2500usb_register_write(rt2x00dev, TXRX_CSR6, 0x8b8a);
rt2500usb_register_write(rt2x00dev, TXRX_CSR7, 0x8687);
rt2500usb_register_write(rt2x00dev, TXRX_CSR8, 0x0085);
rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
return -EBUSY;
rt2500usb_register_write(rt2x00dev, MAC_CSR1, 0x0004);
if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
reg &= ~0x0002;
} else {
reg = 0x3002;
}
rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
rt2x00dev->rx->data_size);
rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 0x5a);
rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg | 0x0001);
return 0;
}
static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u16 eeprom;
u8 value;
u8 reg_id;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_bbp_read(rt2x00dev, 0, &value);
if ((value != 0xff) && (value != 0x00))
goto continue_csr_init;
NOTICE(rt2x00dev, "Waiting for BBP register.\n");
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
return -EACCES;
continue_csr_init:
rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
rt2500usb_bbp_write(rt2x00dev, 17, 0x48);
rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
if (eeprom != 0xffff && eeprom != 0x0000) {
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
reg_id, value);
rt2500usb_bbp_write(rt2x00dev, reg_id, value);
}
}
DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
rt2500usb_bbp_write(rt2x00dev, 24, value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
rt2500usb_bbp_write(rt2x00dev, 25, value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
rt2500usb_bbp_write(rt2x00dev, 61, value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
rt2500usb_bbp_write(rt2x00dev, 17, value);
return 0;
}
/*
* Device state switch handlers.
*/
static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u16 reg;
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
state == STATE_RADIO_RX_OFF);
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
}
static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
{
/*
* Initialize all registers.
*/
if (rt2500usb_init_registers(rt2x00dev) ||
rt2500usb_init_bbp(rt2x00dev)) {
ERROR(rt2x00dev, "Register initialization failed.\n");
return -EIO;
}
rt2x00usb_enable_radio(rt2x00dev);
/*
* Enable LED
*/
rt2500usb_enable_led(rt2x00dev);
return 0;
}
static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
{
/*
* Disable LED
*/
rt2500usb_disable_led(rt2x00dev);
rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
/*
* Disable synchronisation.
*/
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
rt2x00usb_disable_radio(rt2x00dev);
}
static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u16 reg;
u16 reg2;
unsigned int i;
char put_to_sleep;
char bbp_state;
char rf_state;
put_to_sleep = (state != STATE_AWAKE);
reg = 0;
rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
/*
* Device is not guaranteed to be in the requested state yet.
* We must wait until the register indicates that the
* device has entered the correct state.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
if (bbp_state == state && rf_state == state)
return 0;
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
msleep(30);
}
NOTICE(rt2x00dev, "Device failed to enter state %d, "
"current device state: bbp %d and rf %d.\n",
state, bbp_state, rf_state);
return -EBUSY;
}
static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int retval = 0;
switch (state) {
case STATE_RADIO_ON:
retval = rt2500usb_enable_radio(rt2x00dev);
break;
case STATE_RADIO_OFF:
rt2500usb_disable_radio(rt2x00dev);
break;
case STATE_RADIO_RX_ON:
case STATE_RADIO_RX_OFF:
rt2500usb_toggle_rx(rt2x00dev, state);
break;
case STATE_DEEP_SLEEP:
case STATE_SLEEP:
case STATE_STANDBY:
case STATE_AWAKE:
retval = rt2500usb_set_state(rt2x00dev, state);
break;
default:
retval = -ENOTSUPP;
break;
}
return retval;
}
/*
* TX descriptor initialization
*/
static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
struct data_entry *entry, struct data_desc *txd,
struct data_entry_desc *desc, struct ieee80211_hdr *ieee80211hdr,
unsigned int length, struct ieee80211_tx_control *control)
{
u32 word;
/*
* Start writing the descriptor words.
*/
rt2x00_desc_read(txd, 1, &word);
rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
rt2x00_set_field32(&word, TXD_W1_AIFS, entry->ring->tx_params.aifs);
rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->ring->tx_params.cw_min);
rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->ring->tx_params.cw_max);
rt2x00_desc_write(txd, 1, word);
rt2x00_desc_read(txd, 2, &word);
rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
rt2x00_desc_write(txd, 2, word);
rt2x00_desc_read(txd, 0, &word);
rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
test_bit(ENTRY_TXD_MORE_FRAG, &entry->flags));
rt2x00_set_field32(&word, TXD_W0_ACK,
test_bit(ENTRY_TXD_REQ_ACK, &entry->flags));
rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &entry->flags));
rt2x00_set_field32(&word, TXD_W0_OFDM,
test_bit(ENTRY_TXD_OFDM_RATE, &entry->flags));
rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT);
rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
rt2x00_desc_write(txd, 0, word);
}
/*
* TX data initialization
*/
static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev, int queue)
{
u16 reg;
if (queue != IEEE80211_TX_QUEUE_BEACON)
return;
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
/*
* Beacon generation will fail initially.
* To prevent this we need to register the TXRX_CSR19
* register several times.
*/
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
}
}
/*
* RX control handlers
*/
static int rt2500usb_fill_rxdone(struct data_entry *entry,
int *signal, int *rssi, int *ofdm)
{
struct urb *urb = entry->priv;
struct data_desc *rxd = (struct data_desc*)(entry->skb->data +
(urb->actual_length - entry->ring->desc_size));
u32 word0;
u32 word1;
rt2x00_desc_read(rxd, 0, &word0);
rt2x00_desc_read(rxd, 1, &word1);
/*
* TODO: Don't we need to keep statistics
* updated about these errors?
*/
if (rt2x00_get_field32(word0, RXD_W0_CRC) ||
rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
return -EINVAL;
/*
* Obtain the status about this packet.
*/
*signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
*rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
entry->ring->rt2x00dev->rssi_offset;
*ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
/*
* rt2570 includes the FCS, so fix data length accordingly.
*/
return rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT) - FCS_LEN;
}
/*
* Device initialization functions.
*/
static int rt2500usb_alloc_eeprom(struct rt2x00_dev *rt2x00dev)
{
u16 word;
u8 *mac;
/*
* Allocate the eeprom memory, check the eeprom width
* and copy the entire eeprom into this allocated memory.
*/
rt2x00dev->eeprom = kzalloc(EEPROM_SIZE, GFP_KERNEL);
if (!rt2x00dev->eeprom)
return -ENOMEM;
rt2x00usb_vendor_request(
rt2x00dev, USB_EEPROM_READ, USB_VENDOR_REQUEST_IN,
EEPROM_BASE, 0x00, rt2x00dev->eeprom, EEPROM_SIZE,
REGISTER_TIMEOUT * (EEPROM_SIZE / sizeof(u16)));
/*
* Start validation of the data that has been read.
*/
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
if (!is_valid_ether_addr(mac)) {
random_ether_addr(mac);
EEPROM(rt2x00dev, "MAC: " MAC_FMT "\n", MAC_ARG(mac));
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
DEFAULT_RSSI_OFFSET);
rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
}
return 0;
}
static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
u16 value;
u16 eeprom;
/*
* Read EEPROM word for configuration.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
/*
* Identify RF chipset.
*/
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
!rt2x00_rf(&rt2x00dev->chip, RF2523) &&
!rt2x00_rf(&rt2x00dev->chip, RF2524) &&
!rt2x00_rf(&rt2x00dev->chip, RF2525) &&
!rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
!rt2x00_rf(&rt2x00dev->chip, RF5222)) {
ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
return -ENODEV;
}
/*
* Identify default antenna configuration.
*/
rt2x00dev->hw->conf.antenna_sel_tx = rt2x00_get_field16(eeprom,
EEPROM_ANTENNA_TX_DEFAULT);
rt2x00dev->hw->conf.antenna_sel_rx = rt2x00_get_field16(eeprom,
EEPROM_ANTENNA_RX_DEFAULT);
/*
* Store led mode, for correct led behaviour.
*/
rt2x00dev->led_mode = rt2x00_get_field16(eeprom,
EEPROM_ANTENNA_LED_MODE);
/*
* Check if the BBP tuning should be disabled.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
/*
* Read the RSSI <-> dBm offset information.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
rt2x00dev->rssi_offset =
rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
return 0;
}
static const struct {
unsigned int chip;
u32 val[3];
} rf_vals[] = {
{ RF2522, { 0x00002050, 0x00000101, 0x00000000 } },
{ RF2523, { 0x00022010, 0x000e0111, 0x00000a1b } },
{ RF2524, { 0x00032020, 0x00000101, 0x00000a1b } },
{ RF2525, { 0x00022020, 0x00060111, 0x00000a1b } },
{ RF2525E, { 0x00022010, 0x00060111, 0x00000000 } },
{ RF5222, { 0x00000000, 0x00000101, 0x00000000 } }
};
/*
* RF value list for RF2522
* Supports: 2.4 GHz
*/
static const u32 rf_vals_bg_2522[] = {
0x000c1fda, 0x000c1fee, 0x000c2002, 0x000c2016, 0x000c202a,
0x000c203e, 0x000c2052, 0x000c2066, 0x000c207a, 0x000c208e,
0x000c20a2, 0x000c20b6, 0x000c20ca, 0x000c20fa
};
/*
* RF value list for RF2523, RF2524 & RF2525
* Supports: 2.4 GHz
*/
static const u32 rf_vals_bg_252x[] = {
0x00000c9e, 0x00000ca2, 0x00000ca6, 0x00000caa, 0x00000cae,
0x00000cb2, 0x00000cb6, 0x00000cba, 0x00000cbe, 0x00000d02,
0x00000d06, 0x00000d0a, 0x00000d0e, 0x00000d1a
};
/*
* RF value list for RF2525E
* Supports: 2.4 GHz
*/
static const u32 rf_vals_bg_2525e[] = {
0x0000089a, 0x0000089e, 0x0000089e, 0x000008a2, 0x000008a2,
0x000008a6, 0x000008a6, 0x000008aa, 0x000008aa, 0x000008ae,
0x000008ae, 0x000008b2, 0x000008b2, 0x000008b6
};
/*
* RF value list for RF5222
* Supports: 2.4 GHz & 5.2 GHz
*/
static const u32 rf_vals_abg_5222[] = {
0x00001136, 0x0000113a, 0x0000113e, 0x00001182, 0x00001186,
0x0000118a, 0x0000118e, 0x00001192, 0x00001196, 0x0000119a,
0x0000119e, 0x000011a2, 0x000011a6, 0x000011ae, 0x0001889a,
0x0001889a, 0x0001889e, 0x000188a2, 0x000188a6, 0x000188aa,
0x000188ae, 0x000188b2, 0x00008802, 0x00008806, 0x0000880a,
0x0000880e, 0x00008812, 0x00008816, 0x0000881a, 0x0000881e,
0x00008822, 0x00008826, 0x0000882a, 0x000090a6, 0x000090ae,
0x000090b6, 0x000090be
};
static void rt2500usb_init_hw_mode(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
u8 *txpower;
unsigned int i;
/*
* Initialize all hw fields.
*/
rt2x00dev->hw->flags = IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_WEP_INCLUDE_IV |
IEEE80211_HW_DATA_NULLFUNC_ACK |
IEEE80211_HW_NO_TKIP_WMM_HWACCEL |
IEEE80211_HW_MONITOR_DURING_OPER |
IEEE80211_HW_NO_PROBE_FILTERING;
rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
rt2x00dev->hw->max_rssi = MAX_RX_SSI;
rt2x00dev->hw->max_noise = MAX_RX_NOISE;
rt2x00dev->hw->queues = 2;
SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0));
/*
* Set device specific, but channel independent RF values.
*/
for (i = 0; i < ARRAY_SIZE(rf_vals); i++) {
if (rt2x00_rf(&rt2x00dev->chip, rf_vals[i].chip)) {
rt2x00dev->rf1 = rf_vals[i].val[0];
rt2x00dev->rf3 = rf_vals[i].val[1];
rt2x00dev->rf4 = rf_vals[i].val[2];
}
}
/*
* Convert tx_power array in eeprom.
*/
txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
for (i = 0; i < 14; i++)
txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
/*
* Initialize hw_mode information.
*/
spec->num_modes = 2;
spec->num_rates = 12;
spec->num_channels = 14;
spec->tx_power_a = NULL;
spec->tx_power_bg = txpower;
spec->tx_power_default = DEFAULT_TXPOWER;
spec->chan_val_a = NULL;
if (rt2x00_rf(&rt2x00dev->chip, RF2522))
spec->chan_val_bg = rf_vals_bg_2522;
else if (rt2x00_rf(&rt2x00dev->chip, RF2523) ||
rt2x00_rf(&rt2x00dev->chip, RF2524) ||
rt2x00_rf(&rt2x00dev->chip, RF2525))
spec->chan_val_bg = rf_vals_bg_252x;
else if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
spec->chan_val_bg = rf_vals_bg_2525e;
else if (rt2x00_rf(&rt2x00dev->chip, RF5222))
spec->chan_val_bg = rf_vals_abg_5222;
if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
spec->num_modes = 3;
spec->num_channels += 23;
spec->chan_val_a = &rf_vals_abg_5222[14];
}
}
static int rt2500usb_init_hw(struct rt2x00_dev *rt2x00dev)
{
int retval;
/*
* Allocate eeprom data.
*/
retval = rt2500usb_alloc_eeprom(rt2x00dev);
if (retval)
return retval;
retval = rt2500usb_init_eeprom(rt2x00dev);
if (retval)
return retval;
/*
* Initialize hw specifications.
*/
rt2500usb_init_hw_mode(rt2x00dev);
/*
* This device supports ATIM
*/
__set_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags);
return 0;
}
/*
* IEEE80211 stack callback functions.
*/
static int rt2500usb_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
u16 reg;
/*
* Update FCS error count from register.
* The dot11ACKFailureCount, dot11RTSFailureCount and
* dot11RTSSuccessCount are updated in interrupt time.
*/
rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
rt2x00dev->low_level_stats.dot11FCSErrorCount +=
rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
memcpy(stats, &rt2x00dev->low_level_stats, sizeof(*stats));
return 0;
}
static const struct ieee80211_ops rt2500usb_mac80211_ops = {
.tx = rt2x00lib_tx,
.reset = rt2x00lib_reset,
.add_interface = rt2x00lib_add_interface,
.remove_interface = rt2x00lib_remove_interface,
.config = rt2x00lib_config,
.config_interface = rt2x00lib_config_interface,
.set_multicast_list = rt2x00lib_set_multicast_list,
.get_stats = rt2500usb_get_stats,
.conf_tx = rt2x00lib_conf_tx,
.get_tx_stats = rt2x00lib_get_tx_stats,
.beacon_update = rt2x00usb_beacon_update,
};
static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
.init_hw = rt2500usb_init_hw,
.initialize = rt2x00usb_initialize,
.uninitialize = rt2x00usb_uninitialize,
.set_device_state = rt2500usb_set_device_state,
.link_tuner = rt2500usb_link_tuner,
.write_tx_desc = rt2500usb_write_tx_desc,
.write_tx_data = rt2x00usb_write_tx_data,
.kick_tx_queue = rt2500usb_kick_tx_queue,
.fill_rxdone = rt2500usb_fill_rxdone,
.config_type = rt2500usb_config_type,
.config_phymode = rt2500usb_config_phymode,
.config_channel = rt2500usb_config_channel,
.config_mac_addr = rt2500usb_config_mac_addr,
.config_bssid = rt2500usb_config_bssid,
.config_promisc = rt2500usb_config_promisc,
.config_txpower = rt2500usb_config_txpower,
.config_antenna = rt2500usb_config_antenna,
.config_duration = rt2500usb_config_duration,
};
static const struct rt2x00_ops rt2500usb_ops = {
.name = DRV_NAME,
.rxd_size = RXD_DESC_SIZE,
.txd_size = TXD_DESC_SIZE,
.lib = &rt2500usb_rt2x00_ops,
.hw = &rt2500usb_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
.debugfs = &rt2500usb_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};
/*
* rt2500usb module information.
*/
static struct usb_device_id rt2500usb_device_table[] = {
/* ASUS */
{ USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Belkin */
{ USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Cisco Systems */
{ USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Conceptronic */
{ USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
/* D-LINK */
{ USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Gigabyte */
{ USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Hercules */
{ USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Melco */
{ USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
/* MSI */
{ USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Ralink */
{ USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Siemens */
{ USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
/* SMC */
{ USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Spairon */
{ USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Trust */
{ USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Zinwell */
{ USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
{ 0, }
};
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
MODULE_LICENSE("GPL");
static struct usb_driver rt2500usb_driver = {
.name = DRV_NAME,
.id_table = rt2500usb_device_table,
.probe = rt2x00usb_probe,
.disconnect = rt2x00usb_disconnect,
#ifdef CONFIG_PM
.suspend = rt2x00usb_suspend,
.resume = rt2x00usb_resume,
#endif /* CONFIG_PM */
};
static int __init rt2500usb_init(void)
{
return usb_register(&rt2500usb_driver);
}
static void __exit rt2500usb_exit(void)
{
usb_deregister(&rt2500usb_driver);
}
module_init(rt2500usb_init);
module_exit(rt2500usb_exit);