According to console log during TP-Link TL-WR840N v5 OEM firmware update
procedure 0x3e0000-0x3f0000 64kB "config" partition, which is used to store
router's configuration settings, is erased and recreated again during every
OEM firmware update procedure, thus does not contain any valuable factory data.
So it is conviniant to use this extra 64kB erase block for jffs overlay due
limited flash size on this device like it used on TP-Link's ar71xx boards.
Signed-off-by: Serg Studzinskii <serguzhg@gmail.com>
mktplinkfw/mktplinkfw2 utilities put JFFS2 EOF market only at 64KB
boundary, this could lead to current device configuration lost during
the sysupgrade on a device, which is equpped with flash with the 4KB
erase block size (e.g. TP-Link Archer C20).
This happens when 64KB and 4KB alignments do not match, so the JFFS2
data is written not exactly at the partition beginnig and startup
scripts can not find the JFFS2 during the first boot just after the
sysupgrade.
Fix this by placing additional JFFS2 EOF marker at a 4KB boundary. Also
keep the marker at 64KB intact, so the utilities will produce images
suitable for devices with both 4KB and 64KB erase blocks.
Fixes: 29a2c2ea80 (add ability to put
jffs2 eof marker into the image)
Signed-off-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
bswap32 undefined is the issue. Added the proper header. Also fixed a few format/conversion warnings that clang complained about without -Wall or -Wextra.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
It can be a replacement for the trx tool. The advantage is that otrx
doesn't alloc buffer for the whole TRX which can be a nice optimization
when creating big images.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Acked-by: Hauke Mehrtens <hauke@hauke-m.de>
CPE ids helps to tracks CVE in packages.
https://cpe.mitre.org/specification/
Thanks to swalker for CPE to package mapping and
keep tracking CVEs.
Acked-by: Jo-Philipp Wich <jo@mein.io>
Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
TP-Link TL-WR1043N v5 appears to be identical to the TL-WR1043ND v4,
except that the USB port has been removed and there is no longer a
removable antenna option.
The software is more in line with the Archer series in that it uses a
nested bootloader scheme.
Specifications:
- QCA9563 at 775 MHz
- 64 MB RAM
- 16 MB flash
- 3 (non-detachable) Antennas / 450 Mbit
- 1x/4x WAN/LAN Gbps Ethernet (QCA8337)
- reset and Wi-Fi buttons
Signed-off-by: Tim Thorpe <tim@tfthorpe.net>
Signed-off-by: Ludwig Thomeczek <ledesrc@wxorx.net>
This increases kernel partition size and fixes rootfs (file-system)
partition size on TP-Link RE450 v1. Also, while we are at it, switch
from statically defined kernel and rootfs partitions in kernel cmdline
to "tplink-fw" mtd splitter.
Fixes: FS#1072.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
This patch increases kernel partition size and re-enables image
generation for below TP-Link boards:
- archer-c58-v1
- archer-c60-v1
- tl-wr902ac-v1
- tl-wr942n-v1
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
[commit message and title reworded]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
TP-Link TL-WR840N v5 is simple N300 router with 5-port FE switch and
non-detachable antennas, based on MediaTek MT7628NN (aka MT7628N) WiSoC.
Specification:
- MT7628N/N (580 MHz)
- 64 MB of RAM (DDR2)
- 4 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
- 2x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- 1x LED (GPIO-controlled), 1x button
* LED in TL-WR840N v5 is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the green part of the LED.
Orange LED is registered so you can later use it for your own purposes.
Flash instruction:
Unlike TL-WR840N v4 flashing through WEB UI works in v5.
1. Download lede-ramips-mt76x8-tl-wr840n-v5-squashfs-sysupgrade.bin image.
2. Go to 192.168.0.1
3. Flash the sysupgrade image through Firmware upgrade section of WEB UI.
4. Wait until green LED stops flashing and use the router.
Notes:
TFTP recovery is broken since TP-Link reused bootloader code for v4 and
that does not take into account only 4 MB of flash and bricks the device.
So do not use TFTP Recovery or you will have to rewrite SPI flash.
They fixed it in later GPL code,but it is unknown which version of
bootloader you have.
After manually compiling and flashing bootloader from GPL sources TFTP
recovery works properly.
Signed-off-by: Robert Marko <robimarko@gmail.com>
With '-a' specified on the command line, the current code:
- computes an aligned _kernel length_ instead of an aligned _rootfs
offset_.
- does not update the rootfs offset after computing the new kernel
length, and instead retains the layout default.
When the kernel length exceeds the available space left with this
fixed offset, the resulting image header contains invalid data, with
the recorded rootfs offset overlapping the kernel area.
This patch ensures that rootfs offset is correctly computed and
reflected in the final image.
Furthermore, the build_fw() function special cases the rootfs_align
option because of the above invalid logic. This is also fixed and
the computed (or command-line provided, or layout-provided) rootfs_ofs
value is used in all cases.
There seems to be no valid reason to extend the kernel length beyond
the actual length of the kernel itself (OFW images don't do it) so this
part of the existing behavior is dropped.
Example image before the patch:
Kernel data offset : 0x00000200 / 512 bytes
Kernel data length : 0x00158438 / 1410104 bytes
Kernel load address : 0x00000080
Kernel entry point : 0x00000080
Rootfs data offset : 0x00140000 / 1310720 bytes
Rootfs data length : 0x001e4f7e / 1986430 bytes
Example image after the patch:
Kernel data offset : 0x00000200 / 512 bytes
Kernel data length : 0x001583fe / 1410046 bytes
Kernel load address : 0x00000080
Kernel entry point : 0x00000080
Rootfs data offset : 0x00158600 / 1410560 bytes
Rootfs data length : 0x001e4e22 / 1986082 bytes
Tested-by: Mathias Kresin <dev@kresin.me>
Tested-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
Tested-by: Daniel Engberg <daniel.engberg.lists@pyret.net>
Tested-by: Henryk Heisig <hyniu@o2.pl>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
glibc is moving to remove the include of sys/sysmacros.h from
sys/types.h, and some distros have done this early. Other libcs may
already lack this include. Include sysmacros.h explicitly.
Fixes: FS#1017
Signed-off-by: Alex Maclean <monkeh@monkeh.net>
[refresh patches]
Signed-off-by: Mathias Kresin <dev@kresin.me>
glibc is moving to remove the include of sys/sysmacros.h from
sys/types.h, and some distros have done this early. Other libcs may
already lack this include. Include sysmacros.h explicitly.
Fixes: FS#1018
Signed-off-by: Alex Maclean <monkeh@monkeh.net>
glibc is moving to remove the include of sys/sysmacros.h from
sys/types.h, and some distros have done this early. Other libcs may
already lack this include. Include sysmacros.h explicitly.
Fixes: FS#1015
Signed-off-by: Alex Maclean <monkeh@monkeh.net>
[refresh patches]
Signed-off-by: Mathias Kresin <dev@kresin.me>
glibc is moving to remove the include of sys/sysmacros.h from
sys/types.h, and some distros have done this early. Other libcs may
already lack this include. Include sysmacros.h explicitly.
Fixes: FS#1016
Signed-off-by: Alex Maclean <monkeh@monkeh.net>
TP-Link Archer C7 v4 is a dual-band AC1750 router, based on Qualcomm/Atheros
QCA9561+QCA9888.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 3T3R 5 GHz
- 5x 10/100/1000 Mbps Ethernet
- 7x LED, 2x button
- UART header on PCB
Flash instruction:
1. Upload lede-ar71xx-generic-archer-c7-v4-squashfs-factory.bin via Web interface
Flash instruction using TFTP recovery:
1. Set PC to fixed ip address 192.168.0.66
2. Download lede-ar71xx-generic-archer-c7-v4-squashfs-factory.bin
and rename it to ArcherC7v4_tp_recovery.bin
3. Start a tftp server with the file tp_recovery.bin in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
Flash instruction under U-Boot, using UART:
1. tftp 0x81000000 lede-ar71xx-...-sysupgrade.bin
2. erase 0x9f040000 +$filesize
3. cp.b $fileaddr 0x9f040000 $filesize
4. reset
Signed-off-by: Felix Fietkau <nbd@nbd.name>
This patch moves build_fw() to mktplinkfw-lib.c
The versions of mktplinkfw.c and mktplinkfw2.c had slight
differences in code flow, the version from mktplinkfw.c has been
preferred.
While it's expected that this change will not affect mktplinkfw2,
all use cases could not be tested and so this particular change
is committed separately.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
This patch carves out the duplicated code of mktplinfw.c and
mktplinkfw2.c and moves it to mktplinkfw-lib.c
This change is a semantic NOP (the code is unchanged).
To ensure compatibility with gcc-5.x and newer without changing
the code, -fgnu89-inline is added to the build flags for these
two binaries.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
This patch removes all the hardcoded board-specific values from
mktplinkfw2.c, and as well as the corresponding support code.
By design, this change also deletes all of the broken matching logic
that was embedded in mktplinkfw2 and aligns the "inspect" behavior
with that of mktplinkfw (i.e. print the parsed header content as
they are without further processing).
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Fix segmentation fault caused by implicit declaration of function 'reallocarray'. Added patch will enable
reallocarray() prototype in glibc 2.26+ on Linux systems. This fix will be included in flex 2.6.5.
Fixes LEDE issue: FS#1003 (Flex does not build with GCC 7.2)
Signed-off-by: Marko Ratkaj <marko.ratkaj@sartura.hr>
Update e2fsprogs to 1.43.6
* Remove FreeBSD patch as it's not needed, FreeBSD 9.1 is EoL and this
is compiling on FreeBSD 11.1.
* Remove libmagic patch, RHEL 5 is EoL (End of Production Phase) since
March 31, 2017.
Signed-off-by: Daniel Engberg <daniel.engberg.lists@pyret.net>
TP-Link Archer C20 v1 is a router with 5-port FE switch and
non-detachable antennas. It's very similiar to TP-Link Archer C50.
Also it's based on MediaTek MT7620A+MT7610EN.
Specification:
- MediaTek MT7620A (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 5x 10/100 Mbps Ethernet
- 2x external, non-detachable antennas
- UART (J1) header on PCB (115200 8n1)
- 8x LED (GPIO-controlled*), 2x button, power input switch
- 1 x USB 2.0 port
* WAN LED in this devices is a dual-color, dual-leads type which isn't
(fully) supported by gpio-leds driver. This type of LED requires both
GPIOs state change at the same time to select color or turn it off.
For now, we support/use only the blue part of the LED.
* MT7610EN ac chip isn't not supported by LEDE. Therefore 5Ghz won't
work.
Factory image notes:
These devices use version 3 of TP-Link header, fortunately without RSA
signature (at least in case of devices sold in Europe). The difference
lays in the requirement for a non-zero value in "Additional Hardware
Version" field. Ideally, it should match the value stored in vendor
firmware header on device.
We are able to prepare factory firwmare file which is accepted and
(almost) correctly flashed from the vendor GUI. As it turned out, it
accepts files without U-Boot image with second header at the beginning
but due to some kind of bug in upgrade routine, flashed image gets
corrupted before it's written to flash. So, to flash this device we must
to prepare image using original firmware from tp-link site with uboot.
Flash instruction:
Until (if at all) TP-Link fixes described problem, the only way to flash
LEDE image in these devices is to use tftp recovery mode in U-Boot.
There are two ways to flash the device to LEDE:
1) Using tftp mode with UART connection and original LEDE image
- Place lede-ramips-mt7620-ArcherC20-squashfs-factory.bin in tftp
server directory
- Configure PC with static IP 192.168.0.66/24 and tftp server.
- Connect PC with one of LAN ports, power up the router and press
key "4" to access U-Boot CLI.
- Use the following commands to update the device to LEDE:
setenv serverip 192.168.0.66
tftp 0x80060000 lede-ramips-mt7620-ArcherC20-squashfs-factory.bin
erase tplink 0x20000 0x7a0000
cp.b 0x80060000 0x20000 0x7a0000
reset
- After that the device will reboot and boot to LEDE
2) Using tftp mode without UART connection but require some
manipulations with target image
- Download and unpack TP-Link Archer C20 v1 firmware from original web
site
- Split uboot.bin from original firmware by this command (example):
dd if=Archer_C20v1_0.9.1_4.0_up_boot(160427)_2016-04-27_13.53.59.bin of=uboot.bin bs=512 count=256 skip=1
- Create ArcherC20V1_tp_recovery.bin using this command:
cat uboot.bin lede-ramips-mt7620-ArcherC20-squashfs-factory.bin > ArcherC20V1_tp_recovery.bin
- Place ArcherC20V1_tp_recovery.bin in tftp server directory.
- Configure PC with static IP 192.168.0.66/24 and tftp server.
- Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed for around 6-7 seconds, until
device starts downloading the file.
- Router will download file from server, write it to flash and reboot.
Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
Update (lib)expat to 2.2.3
Remove poor entropy hack, 2.2.3 uses /dev/urandom in worst case
Signed-off-by: Daniel Engberg <daniel.engberg.lists@pyret.net>