mirror of
https://codeberg.org/anoncontributorxmr/monero.git
synced 2024-12-30 17:28:07 +00:00
f51397b306
It introduces random integer math into the main loop.
348 lines
10 KiB
C++
348 lines
10 KiB
C++
// Copyright (c) 2014-2018, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
|
|
|
|
#include <cstddef>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
#include <ios>
|
|
#include <string>
|
|
#include <cfenv>
|
|
|
|
#include "warnings.h"
|
|
#include "crypto/hash.h"
|
|
#include "crypto/variant2_int_sqrt.h"
|
|
#include "../io.h"
|
|
|
|
using namespace std;
|
|
using namespace crypto;
|
|
typedef crypto::hash chash;
|
|
|
|
struct V4_Data
|
|
{
|
|
const void* data;
|
|
size_t length;
|
|
uint64_t height;
|
|
};
|
|
|
|
PUSH_WARNINGS
|
|
DISABLE_VS_WARNINGS(4297)
|
|
extern "C" {
|
|
static void hash_tree(const void *data, size_t length, char *hash) {
|
|
if ((length & 31) != 0) {
|
|
throw ios_base::failure("Invalid input length for tree_hash");
|
|
}
|
|
tree_hash((const char (*)[crypto::HASH_SIZE]) data, length >> 5, hash);
|
|
}
|
|
static void cn_slow_hash_0(const void *data, size_t length, char *hash) {
|
|
return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/, 0/*height*/);
|
|
}
|
|
static void cn_slow_hash_1(const void *data, size_t length, char *hash) {
|
|
return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/, 0/*height*/);
|
|
}
|
|
static void cn_slow_hash_2(const void *data, size_t length, char *hash) {
|
|
return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/, 0/*height*/);
|
|
}
|
|
static void cn_slow_hash_4(const void *data, size_t, char *hash) {
|
|
const V4_Data* p = reinterpret_cast<const V4_Data*>(data);
|
|
return cn_slow_hash(p->data, p->length, hash, 4/*variant*/, 0/*prehashed*/, p->height);
|
|
}
|
|
}
|
|
POP_WARNINGS
|
|
|
|
extern "C" typedef void hash_f(const void *, size_t, char *);
|
|
struct hash_func {
|
|
const string name;
|
|
hash_f &f;
|
|
} hashes[] = {{"fast", cn_fast_hash}, {"slow", cn_slow_hash_0}, {"tree", hash_tree},
|
|
{"extra-blake", hash_extra_blake}, {"extra-groestl", hash_extra_groestl},
|
|
{"extra-jh", hash_extra_jh}, {"extra-skein", hash_extra_skein},
|
|
{"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}, {"slow-4", cn_slow_hash_4}};
|
|
|
|
int test_variant2_int_sqrt();
|
|
int test_variant2_int_sqrt_ref();
|
|
|
|
int main(int argc, char *argv[]) {
|
|
hash_f *f;
|
|
hash_func *hf;
|
|
fstream input;
|
|
vector<char> data;
|
|
chash expected, actual;
|
|
size_t test = 0;
|
|
bool error = false;
|
|
if (argc != 3) {
|
|
if ((argc == 2) && (strcmp(argv[1], "variant2_int_sqrt") == 0)) {
|
|
if (test_variant2_int_sqrt_ref() != 0) {
|
|
return 1;
|
|
}
|
|
const int round_modes[3] = { FE_DOWNWARD, FE_TONEAREST, FE_UPWARD };
|
|
for (int i = 0; i < 3; ++i) {
|
|
std::fesetround(round_modes[i]);
|
|
const int result = test_variant2_int_sqrt();
|
|
if (result != 0) {
|
|
cerr << "FPU round mode was set to ";
|
|
switch (round_modes[i]) {
|
|
case FE_DOWNWARD:
|
|
cerr << "FE_DOWNWARD";
|
|
break;
|
|
case FE_TONEAREST:
|
|
cerr << "FE_TONEAREST";
|
|
break;
|
|
case FE_UPWARD:
|
|
cerr << "FE_UPWARD";
|
|
break;
|
|
default:
|
|
cerr << "unknown";
|
|
break;
|
|
}
|
|
cerr << endl;
|
|
return result;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
cerr << "Wrong number of arguments" << endl;
|
|
return 1;
|
|
}
|
|
for (hf = hashes;; hf++) {
|
|
if (hf >= &hashes[sizeof(hashes) / sizeof(hash_func)]) {
|
|
cerr << "Unknown function" << endl;
|
|
return 1;
|
|
}
|
|
if (argv[1] == hf->name) {
|
|
f = &hf->f;
|
|
break;
|
|
}
|
|
}
|
|
input.open(argv[2], ios_base::in);
|
|
for (;;) {
|
|
++test;
|
|
input.exceptions(ios_base::badbit);
|
|
get(input, expected);
|
|
if (input.rdstate() & ios_base::eofbit) {
|
|
break;
|
|
}
|
|
input.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit);
|
|
input.clear(input.rdstate());
|
|
get(input, data);
|
|
if (f == cn_slow_hash_4) {
|
|
V4_Data d;
|
|
d.data = data.data();
|
|
d.length = data.size();
|
|
get(input, d.height);
|
|
f(&d, 0, (char *) &actual);
|
|
} else {
|
|
f(data.data(), data.size(), (char *) &actual);
|
|
}
|
|
if (expected != actual) {
|
|
size_t i;
|
|
cerr << "Hash mismatch on test " << test << endl << "Input: ";
|
|
if (data.size() == 0) {
|
|
cerr << "empty";
|
|
} else {
|
|
for (i = 0; i < data.size(); i++) {
|
|
cerr << setbase(16) << setw(2) << setfill('0') << int(static_cast<unsigned char>(data[i]));
|
|
}
|
|
}
|
|
cerr << endl << "Expected hash: ";
|
|
for (i = 0; i < 32; i++) {
|
|
cerr << setbase(16) << setw(2) << setfill('0') << int(reinterpret_cast<unsigned char *>(&expected)[i]);
|
|
}
|
|
cerr << endl << "Actual hash: ";
|
|
for (i = 0; i < 32; i++) {
|
|
cerr << setbase(16) << setw(2) << setfill('0') << int(reinterpret_cast<unsigned char *>(&actual)[i]);
|
|
}
|
|
cerr << endl;
|
|
error = true;
|
|
}
|
|
}
|
|
return error ? 1 : 0;
|
|
}
|
|
|
|
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64))
|
|
|
|
#include <emmintrin.h>
|
|
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
#include <intrin.h>
|
|
#else
|
|
#include <wmmintrin.h>
|
|
#endif
|
|
|
|
#endif
|
|
|
|
static inline bool test_variant2_int_sqrt_sse(const uint64_t sqrt_input, const uint64_t correct_result)
|
|
{
|
|
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64))
|
|
uint64_t sqrt_result;
|
|
VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2();
|
|
VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result);
|
|
if (sqrt_result != correct_result) {
|
|
cerr << "Integer sqrt (SSE2 version) returned incorrect result for N = " << sqrt_input << endl;
|
|
cerr << "Expected result: " << correct_result << endl;
|
|
cerr << "Returned result: " << sqrt_result << endl;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool test_variant2_int_sqrt_fp64(const uint64_t sqrt_input, const uint64_t correct_result)
|
|
{
|
|
#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50)
|
|
uint64_t sqrt_result;
|
|
VARIANT2_INTEGER_MATH_SQRT_STEP_FP64();
|
|
VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result);
|
|
if (sqrt_result != correct_result) {
|
|
cerr << "Integer sqrt (FP64 version) returned incorrect result for N = " << sqrt_input << endl;
|
|
cerr << "Expected result: " << correct_result << endl;
|
|
cerr << "Returned result: " << sqrt_result << endl;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool test_variant2_int_sqrt_ref(const uint64_t sqrt_input, const uint64_t correct_result)
|
|
{
|
|
uint64_t sqrt_result;
|
|
VARIANT2_INTEGER_MATH_SQRT_STEP_REF();
|
|
if (sqrt_result != correct_result) {
|
|
cerr << "Integer sqrt (reference version) returned incorrect result for N = " << sqrt_input << endl;
|
|
cerr << "Expected result: " << correct_result << endl;
|
|
cerr << "Returned result: " << sqrt_result << endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool test_variant2_int_sqrt(const uint64_t sqrt_input, const uint64_t correct_result)
|
|
{
|
|
if (!test_variant2_int_sqrt_sse(sqrt_input, correct_result)) {
|
|
return false;
|
|
}
|
|
if (!test_variant2_int_sqrt_fp64(sqrt_input, correct_result)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int test_variant2_int_sqrt()
|
|
{
|
|
if (!test_variant2_int_sqrt(0, 0)) {
|
|
return 1;
|
|
}
|
|
if (!test_variant2_int_sqrt(1ULL << 63, 1930543745UL)) {
|
|
return 1;
|
|
}
|
|
if (!test_variant2_int_sqrt(uint64_t(-1), 3558067407UL)) {
|
|
return 1;
|
|
}
|
|
|
|
for (uint64_t i = 1; i <= 3558067407UL; ++i) {
|
|
// "i" is integer part of "sqrt(2^64 + n) * 2 - 2^33"
|
|
// n = (i/2 + 2^32)^2 - 2^64
|
|
|
|
const uint64_t i0 = i >> 1;
|
|
uint64_t n1;
|
|
if ((i & 1) == 0) {
|
|
// n = (i/2 + 2^32)^2 - 2^64
|
|
// n = i^2/4 + 2*2^32*i/2 + 2^64 - 2^64
|
|
// n = i^2/4 + 2^32*i
|
|
// i is even, so i^2 is divisible by 4:
|
|
// n = (i^2 >> 2) + (i << 32)
|
|
|
|
// int_sqrt_v2(i^2/4 + 2^32*i - 1) must be equal to i - 1
|
|
// int_sqrt_v2(i^2/4 + 2^32*i) must be equal to i
|
|
n1 = i0 * i0 + (i << 32) - 1;
|
|
}
|
|
else {
|
|
// n = (i/2 + 2^32)^2 - 2^64
|
|
// n = i^2/4 + 2*2^32*i/2 + 2^64 - 2^64
|
|
// n = i^2/4 + 2^32*i
|
|
// i is odd, so i = i0*2+1 (i0 = i >> 1)
|
|
// n = (i0*2+1)^2/4 + 2^32*i
|
|
// n = (i0^2*4+i0*4+1)/4 + 2^32*i
|
|
// n = i0^2+i0+1/4 + 2^32*i
|
|
// i0^2+i0 + 2^32*i < n < i0^2+i0+1 + 2^32*i
|
|
|
|
// int_sqrt_v2(i0^2+i0 + 2^32*i) must be equal to i - 1
|
|
// int_sqrt_v2(i0^2+i0+1 + 2^32*i) must be equal to i
|
|
n1 = i0 * i0 + i0 + (i << 32);
|
|
}
|
|
|
|
if (!test_variant2_int_sqrt(n1, i - 1)) {
|
|
return 1;
|
|
}
|
|
if (!test_variant2_int_sqrt(n1 + 1, i)) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int test_variant2_int_sqrt_ref()
|
|
{
|
|
if (!test_variant2_int_sqrt_ref(0, 0)) {
|
|
return 1;
|
|
}
|
|
if (!test_variant2_int_sqrt_ref(1ULL << 63, 1930543745UL)) {
|
|
return 1;
|
|
}
|
|
if (!test_variant2_int_sqrt_ref(uint64_t(-1), 3558067407UL)) {
|
|
return 1;
|
|
}
|
|
|
|
// Reference version is slow, so we test only every 83th edge case
|
|
// "i += 83" because 1 + 83 * 42868282 = 3558067407
|
|
for (uint64_t i = 1; i <= 3558067407UL; i += 83) {
|
|
const uint64_t i0 = i >> 1;
|
|
uint64_t n1;
|
|
if ((i & 1) == 0) {
|
|
n1 = i0 * i0 + (i << 32) - 1;
|
|
}
|
|
else {
|
|
n1 = i0 * i0 + i0 + (i << 32);
|
|
}
|
|
|
|
if (!test_variant2_int_sqrt_ref(n1, i - 1)) {
|
|
return 1;
|
|
}
|
|
if (!test_variant2_int_sqrt_ref(n1 + 1, i)) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|