0de14396 tests: add a CNv4 JIT test (moneromooo-monero)
24d281c3 crypto: plug CNv4 JIT into cn_slow_hash (moneromooo-monero)
78ab59ea crypto: clear cache after generating random program (moneromooo-monero)
b9a61884 performance_tests: add tests for new Cryptonight variants (moneromooo-monero)
fff23bf7 CNv4 JIT compiler for x86-64 and tests (SChernykh)
3dde67d8 blockchain: add v10 fork heights (moneromooo-monero)
2dbc487e Add support for V10 protocol with BulletProofV2 and short amount. (cslashm)
63cc02c0 Fix dummy decryption in debug mode (cslashm)
f0e55ceb fix log namespace (cslashm)
460da140 New scheme key destination contrfol (cslashm)
The 10 minute one will never trigger for 0 blocks, as it's still
fairly likely to happen even without the actual hash rate changing
much, so we add a 20 minute window, where it will (for 0 blocks)
and a one hour window.
This curbs runaway growth while still allowing substantial
spikes in block weight
Original specification from ArticMine:
here is the scaling proposal
Define: LongTermBlockWeight
Before fork:
LongTermBlockWeight = BlockWeight
At or after fork:
LongTermBlockWeight = min(BlockWeight, 1.4*LongTermEffectiveMedianBlockWeight)
Note: To avoid possible consensus issues over rounding the LongTermBlockWeight for a given block should be calculated to the nearest byte, and stored as a integer in the block itself. The stored LongTermBlockWeight is then used for future calculations of the LongTermEffectiveMedianBlockWeight and not recalculated each time.
Define: LongTermEffectiveMedianBlockWeight
LongTermEffectiveMedianBlockWeight = max(300000, MedianOverPrevious100000Blocks(LongTermBlockWeight))
Change Definition of EffectiveMedianBlockWeight
From (current definition)
EffectiveMedianBlockWeight = max(300000, MedianOverPrevious100Blocks(BlockWeight))
To (proposed definition)
EffectiveMedianBlockWeight = min(max(300000, MedianOverPrevious100Blocks(BlockWeight)), 50*LongTermEffectiveMedianBlockWeight)
Notes:
1) There are no other changes to the existing penalty formula, median calculation, fees etc.
2) There is the requirement to store the LongTermBlockWeight of a block unencrypted in the block itself. This is to avoid possible consensus issues over rounding and also to prevent the calculations from becoming unwieldy as we move away from the fork.
3) When the EffectiveMedianBlockWeight cap is reached it is still possible to mine blocks up to 2x the EffectiveMedianBlockWeight by paying the corresponding penalty.
Note: the long term block weight is stored in the database, but not in the actual block itself,
since it requires recalculating anyway for verification.
This will trigger if a reorg is seen. This may be used to do things
like stop automated withdrawals on large reorgs.
%s is replaced by the height at the split point
%h is replaced by the height of the new chain
%n is replaced by the number of new blocks after the reorg
b6534c40 ringct: remove unused senderPk from ecdhTuple (moneromooo-monero)
7d375981 ringct: the commitment mask is now deterministic (moneromooo-monero)
99d946e6 ringct: encode 8 byte amount, saving 24 bytes per output (moneromooo-monero)
cdc3ccec ringct: save 3 bytes on bulletproof size (moneromooo-monero)
f931e16c add a bulletproof version, new bulletproof type, and rct config (moneromooo-monero)
The blockchain prunes seven eighths of prunable tx data.
This saves about two thirds of the blockchain size, while
keeping the node useful as a sync source for an eighth
of the blockchain.
No other data is currently pruned.
There are three ways to prune a blockchain:
- run monerod with --prune-blockchain
- run "prune_blockchain" in the monerod console
- run the monero-blockchain-prune utility
The first two will prune in place. Due to how LMDB works, this
will not reduce the blockchain size on disk. Instead, it will
mark parts of the file as free, so that future data will use
that free space, causing the file to not grow until free space
grows scarce.
The third way will create a second database, a pruned copy of
the original one. Since this is a new file, this one will be
smaller than the original one.
Once the database is pruned, it will stay pruned as it syncs.
That is, there is no need to use --prune-blockchain again, etc.
c6d38718 core: include a dummy encrypted payment id when no payment is used (moneromooo-monero)
b7441c4a core, wallet: remember original text version of destination address (moneromooo-monero)
a9b1c04a crptonote_core: do not error out sending unparsable extra field (moneromooo-monero)
5ee6f037 blockchain: fix wrong hf version when popping multiple blocks (moneromooo-monero)
634d359a blockchain: use the version passed as parameter, not a new one (moneromooo-monero)
94a375d5 hardfork: remove batch transactions setup (moneromooo-monero)
6644b9b blockchain_db: remove a couple unused functions (moneromooo-monero)
ce594f5 blockchain_db: allocate known size vector only once (moneromooo-monero)
8332698 db_lmdb: inline check_open, it's trivial and called everywhere (moneromooo-monero)
5511563 db_lmdb: avoid pointless division (moneromooo-monero)
d1efe3d cryptonote: set tx hash on newly parsed txes when known (moneromooo-monero)
9cc68a2 tx_pool: add a few std::move where it can make a difference (moneromooo-monero)
While the lookups are faster, the zeroCommit calls have to be
done again when storing the new outputs in the db, which ends
up making the whole thing slower after all, and the ways this
can be cached aren't very nice code wise, so let's forget it
since the gains aren't very large anyway.