mirror of
https://github.com/nqrduck/quackseq-simulator.git
synced 2025-01-02 18:08:07 +00:00
48 lines
1.5 KiB
Python
48 lines
1.5 KiB
Python
"""Composite FID example.
|
||
|
||
This example demonstrates how to simulate a composite FID signal using the quackseq simulator.
|
||
|
||
See the paper:
|
||
Sauer, K.L., Klug, C.A., Miller, J.B. et al. Using quaternions to design composite pulses for spin-1 NQR. Appl. Magn. Reson. 25, 485–500 (2004). https://doi.org/10.1007/BF03166543
|
||
|
||
This also works for Samples with spin > 1.
|
||
"""
|
||
|
||
import logging
|
||
|
||
from quackseq.sequences.COMPFID import create_COMPFID
|
||
from quackseq_simulator.simulator import Simulator
|
||
from matplotlib import pyplot as plt
|
||
|
||
if __name__ == "__main__":
|
||
logging.basicConfig(level=logging.INFO)
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
sim = Simulator()
|
||
sim.set_averages(100)
|
||
|
||
sim.settings.noise = 1 # microvolts
|
||
|
||
COMPFID = create_COMPFID()
|
||
|
||
result = sim.run_sequence(COMPFID)
|
||
# Plot time and frequency domain next to each other
|
||
plt.subplot(1, 2, 1)
|
||
plt.title("Time domain Simulation of BiPh3 COMPFID")
|
||
plt.xlabel("Time (µs)")
|
||
plt.ylabel("Signal (a.u.)")
|
||
plt.plot(result.tdx, result.tdy[:, -1].imag, label="imaginary")
|
||
plt.plot(result.tdx, result.tdy[:, -1].real, label="real")
|
||
plt.plot(result.tdx, abs(result.tdy[:, -1]), label="abs")
|
||
|
||
plt.subplot(1, 2, 2)
|
||
plt.title("Frequency domain Simulation of BiPh3 COMPFID")
|
||
plt.xlabel("Frequency (kHz)")
|
||
plt.ylabel("Signal (a.u.)")
|
||
plt.plot(result.fdx, result.fdy[:, -1].imag, label="imaginary")
|
||
plt.plot(result.fdx, result.fdy[:, -1].real, label="real")
|
||
plt.plot(result.fdx, abs(result.fdy[:, -1]), label="abs")
|
||
|
||
plt.legend()
|
||
plt.show()
|