Added sequence examples.

This commit is contained in:
jupfi 2024-06-16 18:22:02 +02:00
parent bb63d6908a
commit 054e87b5e3
6 changed files with 228 additions and 2 deletions

59
examples/COMPFID.py Normal file
View file

@ -0,0 +1,59 @@
"""Composite FID example.
This example demonstrates how to simulate a composite FID signal using the quackseq simulator.
See the paper:
Sauer, K.L., Klug, C.A., Miller, J.B. et al. Using quaternions to design composite pulses for spin-1 NQR. Appl. Magn. Reson. 25, 485500 (2004). https://doi.org/10.1007/BF03166543
This also works for Samples with spin > 1.
"""
import logging
from quackseq_simulator.simulator import Simulator
from quackseq.pulsesequence import QuackSequence
from quackseq.functions import RectFunction
from matplotlib import pyplot as plt
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
seq = QuackSequence("COMPFID")
seq.add_pulse_event("tx1", "3u", 100, 0, RectFunction())
seq.add_pulse_event("tx2", "6u", 100, 45, RectFunction())
# This makes the phase 45, 135, 225, 315
seq.set_tx_n_phase_cycles("tx2", 4)
seq.add_blank_event("blank", "5u")
seq.add_readout_event("rx", "100u")
# No phase shifiting of the receive data but weighting of -1 for the 45 degree pulse, +1 for the 135 degree pulse, -1 for the 225 degree pulse and +1 for the 315 degree pulse
readout_scheme = [[1, 0], [-1, 0], [1, 0], [-1, 0]]
sim = Simulator()
sim.set_averages(100)
sim.settings.noise = 1 # microvolts
result = sim.run_sequence(seq)
# Plot time and frequency domain next to each other
plt.subplot(1, 2, 1)
plt.title("Time domain Simulation of BiPh3 COMPFID")
plt.xlabel("Time (µs)")
plt.ylabel("Signal (a.u.)")
plt.plot(result.tdx[-1], result.tdy[-1].imag, label="imaginary")
plt.plot(result.tdx[-1], result.tdy[-1].real, label="real")
plt.plot(result.tdx[-1], abs(result.tdy[-1]), label="abs")
plt.subplot(1, 2, 2)
plt.title("Frequency domain Simulation of BiPh3 COMPFID")
plt.xlabel("Frequency (kHz)")
plt.ylabel("Signal (a.u.)")
plt.plot(result.fdx[-1], result.fdy[-1].imag, label="imaginary")
plt.plot(result.fdx[-1], result.fdy[-1].real, label="real")
plt.plot(result.fdx[-1], abs(result.fdy[-1]), label="abs")
plt.legend()
plt.show()

48
examples/FID.py Normal file
View file

@ -0,0 +1,48 @@
"""Example Free Induction Decay (FID) simulation using the quackseq simulator.
The sample is the default BiPh3 NQR sample.
"""
import logging
from quackseq_simulator.simulator import Simulator
from quackseq.pulsesequence import QuackSequence
from quackseq.functions import RectFunction
from matplotlib import pyplot as plt
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
seq = QuackSequence("FID")
seq.add_pulse_event("tx", "3u", 100, 0, RectFunction())
seq.add_blank_event("blank", "5u")
seq.add_readout_event("rx", "100u")
seq.add_blank_event("TR", "1m")
sim = Simulator()
sim.set_averages(100)
sim.settings.noise = 1 # microvolts
result = sim.run_sequence(seq)
# Plot time and frequency domain next to each other
plt.subplot(1, 2, 1)
plt.title("Time domain Simulation of BiPh3 FID")
plt.xlabel("Time (µs)")
plt.ylabel("Signal (a.u.)")
plt.plot(result.tdx[0], result.tdy[0].imag, label="imaginary")
plt.plot(result.tdx[0], result.tdy[0].real, label="real")
plt.plot(result.tdx[0], abs(result.tdy[0]), label="abs")
plt.subplot(1, 2, 2)
plt.title("Frequency domain Simulation of BiPh3 FID")
plt.xlabel("Frequency (kHz)")
plt.ylabel("Signal (a.u.)")
plt.plot(result.fdx[0], result.fdy[0].imag, label="imaginary")
plt.plot(result.fdx[0], result.fdy[0].real, label="real")
plt.plot(result.fdx[0], abs(result.fdy[0]), label="abs")
plt.legend()
plt.show()

49
examples/SE.py Normal file
View file

@ -0,0 +1,49 @@
"""Example Spin Echo (SE) simulation using the quackseq simulator.
The sample is the default BiPh3 NQR sample.
"""
import logging
from quackseq_simulator.simulator import Simulator
from quackseq.pulsesequence import QuackSequence
from quackseq.functions import RectFunction
from matplotlib import pyplot as plt
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
seq = QuackSequence("SE")
seq.add_pulse_event("pi-half", "3u", 100, 0, RectFunction())
seq.add_blank_event("te-half", "150u")
seq.add_pulse_event("pi", "6u", 100, 0, RectFunction())
seq.add_blank_event("blank", "50u")
seq.add_readout_event("rx", "200u")
sim = Simulator()
sim.set_averages(100)
sim.settings.noise = 1 # microvolts
result = sim.run_sequence(seq)
# Plot time and frequency domain next to each other
plt.subplot(1, 2, 1)
plt.title("Time domain Simulation of BiPh3 SE")
plt.xlabel("Time (µs)")
plt.ylabel("Signal (a.u.)")
plt.plot(result.tdx[0], result.tdy[0].imag, label="imaginary")
plt.plot(result.tdx[0], result.tdy[0].real, label="real")
plt.plot(result.tdx[0], abs(result.tdy[0]), label="abs")
plt.subplot(1, 2, 2)
plt.title("Frequency domain Simulation of BiPh3 SE")
plt.xlabel("Frequency (kHz)")
plt.ylabel("Signal (a.u.)")
plt.plot(result.fdx[0], result.fdy[0].imag, label="imaginary")
plt.plot(result.fdx[0], result.fdy[0].real, label="real")
plt.plot(result.fdx[0], abs(result.fdy[0]), label="abs")
plt.legend()
plt.show()

58
examples/SEPC.py Normal file
View file

@ -0,0 +1,58 @@
"""Spin Echo with Phase Cycling (SEPC) simulation using the quackseq simulator.
The sample is the default BiPh3 NQR sample.
"""
import logging
from quackseq_simulator.simulator import Simulator
from quackseq.pulsesequence import QuackSequence
from quackseq.functions import RectFunction
from matplotlib import pyplot as plt
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
seq = QuackSequence("SEPC")
seq.add_pulse_event("pi-half", "3u", 100, 0, RectFunction())
# This causes the phase to cycle through 0, 90, 180, 270
seq.set_tx_n_phase_cycles("pi-half", 4)
seq.add_blank_event("te-half", "150u")
# For the second pulse we just need a phase of 180
seq.add_pulse_event("pi", "6u", 100, 180, RectFunction())
seq.add_blank_event("blank", "50u")
seq.add_readout_event("rx", "200u")
# Readout scheme for phase cycling TX pulses have the scheme 0 90 180 270 for the first pulse and 180 always for the second pulse
readout_scheme = [[1, 0], [1, 90], [1, 180], [1, 270]]
seq.set_rx_readout_scheme("rx", readout_scheme)
sim = Simulator()
sim.set_averages(100)
sim.settings.noise = 1 # microvolts
result = sim.run_sequence(seq)
# Plot time and frequency domain next to each other
plt.subplot(1, 2, 1)
plt.title("Time domain Simulation of BiPh3 SEPC")
plt.xlabel("Time (µs)")
plt.ylabel("Signal (a.u.)")
plt.plot(result.tdx[-1], result.tdy[-1].imag, label="imaginary")
plt.plot(result.tdx[-1], result.tdy[-1].real, label="real")
plt.plot(result.tdx[-1], abs(result.tdy[-1]), label="abs")
plt.subplot(1, 2, 2)
plt.title("Frequency domain Simulation of BiPh3 SEPC")
plt.xlabel("Frequency (kHz)")
plt.ylabel("Signal (a.u.)")
plt.plot(result.fdx[-1], result.fdy[-1].imag, label="imaginary")
plt.plot(result.fdx[-1], result.fdy[-1].real, label="real")
plt.plot(result.fdx[-1], abs(result.fdy[-1]), label="abs")
plt.legend()
plt.show()

View file

@ -38,7 +38,7 @@ class SimulatorModel(SpectrometerModel):
# Sample settings, this will be done in a separate module later on # Sample settings, this will be done in a separate module later on
SAMPLE_NAME = "Name" SAMPLE_NAME = "Name"
NUMBER_ATOMS = "Number of atoms per unit volume (1/m^3)" NUMBER_ATOMS = "N. atoms (1/m^3)"
DENSITY = "Density (g/cm^3)" DENSITY = "Density (g/cm^3)"
MOLAR_MASS = "Molar mass (g/mol)" MOLAR_MASS = "Molar mass (g/mol)"
RESONANT_FREQUENCY = "Resonant freq. (MHz)" RESONANT_FREQUENCY = "Resonant freq. (MHz)"

View file

@ -170,10 +170,22 @@ class TestQuackSequence(unittest.TestCase):
# Plotting the results # Plotting the results
plt.title("Phase cycling") plt.title("Phase cycling")
logger.info(f"Number of data sets {len(result.tdy)}") logger.info(f"Number of data sets {len(result.tdy)}")
plt.plot(result.tdx[0], result.tdy[0].real, label="pc 1") plt.plot(result.tdx[0], result.tdy[0].real, label="pc 1 real")
plt.plot(result.tdx[0], result.tdy[0].imag, label="pc 2 imag")
plt.legend()
plt.show()
plt.plot(result.tdx[1], result.tdy[1].real, label="pc 2") plt.plot(result.tdx[1], result.tdy[1].real, label="pc 2")
plt.plot(result.tdx[1], result.tdy[1].imag, label="pc 2")
plt.legend()
plt.show()
plt.plot(result.tdx[2], result.tdy[2].real, label="pc 3") plt.plot(result.tdx[2], result.tdy[2].real, label="pc 3")
plt.plot(result.tdx[2], result.tdy[2].imag, label="pc 3")
plt.legend()
plt.show()
plt.plot(result.tdx[3], result.tdy[3].real, label="pc 4") plt.plot(result.tdx[3], result.tdy[3].real, label="pc 4")
plt.plot(result.tdx[3], result.tdy[3].imag, label="pc 4")
plt.legend()
plt.show()
plt.plot(result.tdx[4], abs(result.tdy[4]), label="Phase Cycling") plt.plot(result.tdx[4], abs(result.tdy[4]), label="Phase Cycling")
plt.legend() plt.legend()
plt.show() plt.show()