mirror of
https://github.com/nqrduck/nqrduck-autotm.git
synced 2024-12-30 11:28:07 +00:00
Implemented phase correction. Now the calibration works :).
This commit is contained in:
parent
b6676f709f
commit
c21dc155fa
2 changed files with 94 additions and 5 deletions
|
@ -1,6 +1,7 @@
|
|||
import cmath
|
||||
import numpy as np
|
||||
import logging
|
||||
from scipy.signal import find_peaks
|
||||
from PyQt6.QtCore import pyqtSignal
|
||||
from PyQt6.QtSerialPort import QSerialPort
|
||||
from nqrduck.module.module_model import ModuleModel
|
||||
|
@ -32,9 +33,18 @@ class S11Data:
|
|||
) / self.MAGNITUDE_SLOPE
|
||||
|
||||
@property
|
||||
def phase_deg(self):
|
||||
"""Returns the absolute value of the phase in degrees"""
|
||||
return (self.phase_mv - self.CENTER_POINT_PHASE) / self.PHASE_SLOPE
|
||||
def phase_deg(self, phase_correction=True):
|
||||
"""Returns the absolute value of the phase in degrees
|
||||
|
||||
Keyword Arguments:
|
||||
phase_correction {bool} -- If True, the phase correction is applied. (default: {False})
|
||||
"""
|
||||
|
||||
phase_deg = (self.phase_mv - self.CENTER_POINT_PHASE) / self.PHASE_SLOPE
|
||||
if phase_correction:
|
||||
phase_deg = self.phase_correction(self.frequency, phase_deg)
|
||||
|
||||
return phase_deg
|
||||
|
||||
@property
|
||||
def phase_rad(self):
|
||||
|
@ -51,6 +61,86 @@ class S11Data:
|
|||
for loss_db, phase_rad in zip(self.return_loss_db, self.phase_rad)
|
||||
]
|
||||
|
||||
def phase_correction(
|
||||
self, frequency_data: np.array, phase_data: np.array
|
||||
) -> np.array:
|
||||
"""This method fixes the phase sign of the phase data.
|
||||
The AD8302 can only measure the absolute value of the phase.
|
||||
Therefore we need to correct the phase sign. This can be done via the slope of the phase.
|
||||
If the slope is negative, the phase is positive and vice versa.
|
||||
|
||||
Args:
|
||||
frequency_data (np.array): The frequency data.
|
||||
phase_data (np.array): The phase data.
|
||||
|
||||
Returns:
|
||||
np.array: The corrected phase data.
|
||||
"""
|
||||
# First we apply a moving average filter to the phase data
|
||||
WINDOW_SIZE = 5
|
||||
phase_data_filtered = (
|
||||
np.convolve(phase_data, np.ones(WINDOW_SIZE), "same") / WINDOW_SIZE
|
||||
)
|
||||
|
||||
# Fix transient response
|
||||
phase_data_filtered[: WINDOW_SIZE // 2] = phase_data[: WINDOW_SIZE // 2]
|
||||
phase_data_filtered[-WINDOW_SIZE // 2 :] = phase_data[-WINDOW_SIZE // 2 :]
|
||||
|
||||
# Now we find the peaks and valleys of the data
|
||||
HEIGHT = 100
|
||||
distance = len(phase_data_filtered) / 10
|
||||
|
||||
peaks, _ = find_peaks(phase_data_filtered, distance=distance, height=HEIGHT)
|
||||
|
||||
valleys, _ = find_peaks(
|
||||
180 - phase_data_filtered, distance=distance, height=HEIGHT
|
||||
)
|
||||
|
||||
# Determine if the first point is a peak or a valley
|
||||
if phase_data_filtered[0] > phase_data_filtered[1]:
|
||||
peaks = np.insert(peaks, 0, 0)
|
||||
else:
|
||||
valleys = np.insert(valleys, 0, 0)
|
||||
|
||||
# Determine if the last point is a peak or a valley
|
||||
if phase_data_filtered[-1] > phase_data_filtered[-2]:
|
||||
peaks = np.append(peaks, len(phase_data_filtered) - 1)
|
||||
else:
|
||||
valleys = np.append(valleys, len(phase_data_filtered) - 1)
|
||||
|
||||
frequency_peaks = frequency_data[peaks]
|
||||
frequency_valleys = frequency_data[valleys]
|
||||
|
||||
# Combine the peaks and valleys
|
||||
frequency_peaks_valleys = np.sort(
|
||||
np.concatenate((frequency_peaks, frequency_valleys))
|
||||
)
|
||||
peaks_valleys = np.sort(np.concatenate((peaks, valleys)))
|
||||
|
||||
# Now we can determine the slope of the phase
|
||||
# For this we compare the phase of our peaks_valleys array to the next point
|
||||
# If the phase is increasing, the slope is positive, if it is decreasing, the slope is negative
|
||||
phase_slope = np.zeros(len(peaks_valleys) - 1)
|
||||
for i in range(len(peaks_valleys) - 1):
|
||||
phase_slope[i] = (
|
||||
phase_data_filtered[peaks_valleys[i + 1]]
|
||||
- phase_data_filtered[peaks_valleys[i]]
|
||||
)
|
||||
|
||||
# Now we can determine the sign of the phase
|
||||
# If the slope is negative, the phase is positive and vice versa
|
||||
phase_sign = np.sign(phase_slope) * -1
|
||||
|
||||
# Now we can correct the phase for the different sections
|
||||
phase_data_corrected = np.zeros(len(phase_data))
|
||||
for i in range(len(peaks_valleys) - 1):
|
||||
phase_data_corrected[peaks_valleys[i] : peaks_valleys[i + 1]] = (
|
||||
phase_data_filtered[peaks_valleys[i] : peaks_valleys[i + 1]]
|
||||
* phase_sign[i]
|
||||
)
|
||||
|
||||
return phase_data_corrected
|
||||
|
||||
def to_json(self):
|
||||
return {
|
||||
"frequency": self.frequency.tolist(),
|
||||
|
|
|
@ -231,8 +231,7 @@ class AutoTMView(ModuleView):
|
|||
|
||||
self.phase_ax.set_ylabel("|Phase (deg)|")
|
||||
self.phase_ax.plot(frequency, phase, color="orange", linestyle="--")
|
||||
self.phase_ax.set_ylim(0, 180)
|
||||
self.phase_ax.invert_yaxis()
|
||||
# self.phase_ax.invert_yaxis()
|
||||
|
||||
magnitude_ax.set_xlabel("Frequency (MHz)")
|
||||
magnitude_ax.set_ylabel("S11 (dB)")
|
||||
|
|
Loading…
Reference in a new issue