Updated view

This commit is contained in:
jupfi 2023-08-28 08:59:39 +02:00
commit 9777ba3570
5 changed files with 566 additions and 111 deletions

View file

@ -1,6 +1,7 @@
import logging
import numpy as np
import json
import time
from serial.tools.list_ports import comports
from PyQt6.QtTest import QTest
from PyQt6 import QtSerialPort
@ -24,17 +25,41 @@ class AutoTMController(ModuleController):
for device in self.module.model.available_devices:
logger.debug("Found device: %s", device)
def connect(self, device: str) -> None:
"""Connect to the specified device.
def handle_connection(self, device: str) -> None:
"""Connect or disconnect to the specified device based on if there already is a connection.
Args:
device (str): The device port to connect to."""
device (str): The device port to connect to.
@TODO: If the user actually want to connect to another device while already connected to one,
this would have to be handled differently. But this doesn't really make sense in the current implementation.
"""
logger.debug("Connecting to device %s", device)
# If the user has already connected to a device, close the previous connection
if self.module.model.serial is not None:
if self.module.model.serial.isOpen():
logger.debug("Closing previous connection")
serial = self.module.model.serial
serial.close()
self.module.model.serial = serial
else:
self.open_connection(device)
# This is just for the first time the user connects to the device
else:
self.open_connection(device)
def open_connection(self, device: str) -> None:
"""Open a connection to the specified device.
Args:
device (str): The device port to connect to.
"""
try:
self.module.model.serial = QtSerialPort.QSerialPort(
serial = QtSerialPort.QSerialPort(
device, baudRate=self.BAUDRATE, readyRead=self.on_ready_read
)
self.module.model.serial.open(QtSerialPort.QSerialPort.OpenModeFlag.ReadWrite)
serial.open(QtSerialPort.QSerialPort.OpenModeFlag.ReadWrite)
self.module.model.serial = serial
logger.debug("Connected to device %s", device)
except Exception as e:
@ -77,9 +102,12 @@ class AutoTMController(ModuleController):
return
if start_frequency < MIN_FREQUENCY or stop_frequency > MAX_FREQUENCY:
error = "Could not start frequency sweep. Start and stop frequency must be between %s and %s MHz" % (
MIN_FREQUENCY / 1e6,
MAX_FREQUENCY / 1e6,
error = (
"Could not start frequency sweep. Start and stop frequency must be between %s and %s MHz"
% (
MIN_FREQUENCY / 1e6,
MAX_FREQUENCY / 1e6,
)
)
logger.error(error)
self.module.view.add_info_text(error)
@ -92,12 +120,15 @@ class AutoTMController(ModuleController):
stop_frequency,
frequency_step,
)
# We create the frequency sweep spinner dialog
self.module.model.clear_data_points()
self.module.view.create_frequency_sweep_spinner_dialog()
# Print the command 'f<start>f<stop>f<step>' to the serial connection
command = "f%sf%sf%s" % (start_frequency, stop_frequency, frequency_step)
self.send_command(command)
self.module.model.frequency_sweep_start = time.time()
confirmation = self.send_command(command)
if confirmation:
# We create the frequency sweep spinner dialog
self.module.model.clear_data_points()
self.module.view.create_frequency_sweep_spinner_dialog()
def on_ready_read(self) -> None:
"""This method is called when data is received from the serial connection."""
@ -108,7 +139,10 @@ class AutoTMController(ModuleController):
# logger.debug("Received data: %s", text)
# If the text starts with 'f' and the frequency sweep spinner is visible we know that the data is a data point
# then we have the data for the return loss and the phase at a certain frequency
if text.startswith("f") and self.module.view.frequency_sweep_spinner.isVisible():
if (
text.startswith("f")
and self.module.view.frequency_sweep_spinner.isVisible()
):
text = text[1:].split("r")
frequency = float(text[0])
return_loss, phase = map(float, text[1].split("p"))
@ -116,24 +150,46 @@ class AutoTMController(ModuleController):
# If the text starts with 'r' and no calibration is active we know that the data is a measurement
elif text.startswith("r") and self.module.model.active_calibration == None:
logger.debug("Measurement finished")
self.module.model.measurement = S11Data(self.module.model.data_points.copy())
self.module.model.measurement = S11Data(
self.module.model.data_points.copy()
)
self.module.view.frequency_sweep_spinner.hide()
self.module.model.frequency_sweep_stop = time.time()
self.module.view.add_info_text(
"Frequency sweep finished in %.2f seconds"
% (
self.module.model.frequency_sweep_stop
- self.module.model.frequency_sweep_start
)
)
# If the text starts with 'r' and a short calibration is active we know that the data is a short calibration
elif text.startswith("r") and self.module.model.active_calibration == "short":
elif (
text.startswith("r") and self.module.model.active_calibration == "short"
):
logger.debug("Short calibration finished")
self.module.model.short_calibration = S11Data(self.module.model.data_points.copy())
self.module.model.short_calibration = S11Data(
self.module.model.data_points.copy()
)
self.module.model.active_calibration = None
self.module.view.frequency_sweep_spinner.hide()
# If the text starts with 'r' and an open calibration is active we know that the data is an open calibration
elif text.startswith("r") and self.module.model.active_calibration == "open":
elif (
text.startswith("r") and self.module.model.active_calibration == "open"
):
logger.debug("Open calibration finished")
self.module.model.open_calibration = S11Data(self.module.model.data_points.copy())
self.module.model.open_calibration = S11Data(
self.module.model.data_points.copy()
)
self.module.model.active_calibration = None
self.module.view.frequency_sweep_spinner.hide()
# If the text starts with 'r' and a load calibration is active we know that the data is a load calibration
elif text.startswith("r") and self.module.model.active_calibration == "load":
elif (
text.startswith("r") and self.module.model.active_calibration == "load"
):
logger.debug("Load calibration finished")
self.module.model.load_calibration = S11Data(self.module.model.data_points.copy())
self.module.model.load_calibration = S11Data(
self.module.model.data_points.copy()
)
self.module.model.active_calibration = None
self.module.view.frequency_sweep_spinner.hide()
# If the text starts with 'i' we know that the data is an info message
@ -167,7 +223,9 @@ class AutoTMController(ModuleController):
logger.debug("Starting next voltage sweep: %s", command)
self.send_command(command)
def on_short_calibration(self, start_frequency: float, stop_frequency: float) -> None:
def on_short_calibration(
self, start_frequency: float, stop_frequency: float
) -> None:
"""This method is called when the short calibration button is pressed.
It starts a frequency sweep in the specified range and then starts a short calibration.
"""
@ -175,7 +233,9 @@ class AutoTMController(ModuleController):
self.module.model.init_short_calibration()
self.start_frequency_sweep(start_frequency, stop_frequency)
def on_open_calibration(self, start_frequency: float, stop_frequency: float) -> None:
def on_open_calibration(
self, start_frequency: float, stop_frequency: float
) -> None:
"""This method is called when the open calibration button is pressed.
It starts a frequency sweep in the specified range and then starts an open calibration.
"""
@ -183,7 +243,9 @@ class AutoTMController(ModuleController):
self.module.model.init_open_calibration()
self.start_frequency_sweep(start_frequency, stop_frequency)
def on_load_calibration(self, start_frequency: float, stop_frequency: float) -> None:
def on_load_calibration(
self, start_frequency: float, stop_frequency: float
) -> None:
"""This method is called when the load calibration button is pressed.
It starts a frequency sweep in the specified range and then loads a calibration.
"""
@ -205,13 +267,19 @@ class AutoTMController(ModuleController):
logger.debug("Calculating calibration")
# First we check if the short and open calibration data points are available
if self.module.model.short_calibration == None:
logger.error("Could not calculate calibration. No short calibration data points available.")
logger.error(
"Could not calculate calibration. No short calibration data points available."
)
return
if self.module.model.open_calibration == None:
logger.error("Could not calculate calibration. No open calibration data points available.")
logger.error(
"Could not calculate calibration. No open calibration data points available."
)
return
if self.module.model.load_calibration == None:
logger.error("Could not calculate calibration. No load calibration data points available.")
logger.error(
"Could not calculate calibration. No load calibration data points available."
)
return
# Then we calculate the calibration
@ -226,7 +294,9 @@ class AutoTMController(ModuleController):
e_00s = []
e_11s = []
delta_es = []
for gamma_s, gamma_o, gamma_l in zip(measured_gamma_short, measured_gamma_open, measured_gamma_load):
for gamma_s, gamma_o, gamma_l in zip(
measured_gamma_short, measured_gamma_open, measured_gamma_load
):
# This is the solution from
A = np.array(
[
@ -257,15 +327,21 @@ class AutoTMController(ModuleController):
logger.debug("Exporting calibration")
# First we check if the short and open calibration data points are available
if self.module.model.short_calibration == None:
logger.error("Could not export calibration. No short calibration data points available.")
logger.error(
"Could not export calibration. No short calibration data points available."
)
return
if self.module.model.open_calibration == None:
logger.error("Could not export calibration. No open calibration data points available.")
logger.error(
"Could not export calibration. No open calibration data points available."
)
return
if self.module.model.load_calibration == None:
logger.error("Could not export calibration. No load calibration data points available.")
logger.error(
"Could not export calibration. No load calibration data points available."
)
return
# Then we export the different calibrations as a json file
@ -316,7 +392,9 @@ class AutoTMController(ModuleController):
return
if tuning_voltage < 0 or matching_voltage < 0:
error = "Could not set voltages. Tuning and matching voltage must be positive"
error = (
"Could not set voltages. Tuning and matching voltage must be positive"
)
logger.error(error)
self.module.view.add_info_text(error)
return
@ -332,7 +410,7 @@ class AutoTMController(ModuleController):
tuning_voltage,
matching_voltage,
)
command = "v%sv%s" % (matching_voltage, tuning_voltage)
self.send_command(command)
@ -368,7 +446,12 @@ class AutoTMController(ModuleController):
self.module.view.add_info_text(error)
return
if start_frequency < 0 or stop_frequency < 0 or frequency_step < 0 or voltage_resolution < 0:
if (
start_frequency < 0
or stop_frequency < 0
or frequency_step < 0
or voltage_resolution < 0
):
error = "Could not generate LUT. Start frequency, stop frequency, frequency step and voltage resolution must be positive"
logger.error(error)
self.module.view.add_info_text(error)
@ -395,52 +478,88 @@ class AutoTMController(ModuleController):
)
# We create the lookup table
LUT = LookupTable(start_frequency, stop_frequency, frequency_step, voltage_resolution)
LUT = LookupTable(
start_frequency, stop_frequency, frequency_step, voltage_resolution
)
LUT.started_frequency = start_frequency
self.module.model.LUT = LUT
# We write the first command to the serial connection
command = "s%s" % (start_frequency)
self.send_command(command)
confirmation = self.send_command(command)
if not confirmation:
return
def switch_to_preamp(self) -> None:
""" This method is used to send the command 'cp' to the atm system. This switches the signal pathway of the atm system to 'RX' to 'Preamp'.
"""This method is used to send the command 'cp' to the atm system. This switches the signal pathway of the atm system to 'RX' to 'Preamp'.
This is the mode for either NQR or NMR measurements or if on wants to check the tuning of the probe coil on a network analyzer.
"""
logger.debug("Switching to preamp")
self.send_command("cp")
def switch_to_atm(self) -> None:
""" This method is used to send the command 'ca' to the atm system. This switches the signal pathway of the atm system to 'RX' to 'ATM.
"""This method is used to send the command 'ca' to the atm system. This switches the signal pathway of the atm system to 'RX' to 'ATM.
In this state the atm system can be used to measure the reflection coefficient of the probecoils.
"""
logger.debug("Switching to atm")
self.send_command("ca")
def send_command(self, command : str) -> None:
""" This method is used to send a command to the active serial connection.
def send_command(self, command: str) -> bool:
"""This method is used to send a command to the active serial connection.
Args:
command (str): The command that should be send to the atm system.
Returns:
bool: True if the command was send successfully, False otherwise.
"""
logger.debug("Sending command %s", command)
timeout = 10000 # ms
if self.module.model.serial is None:
logger.error("Could not send command. No serial connection")
self.module.view.add_error_text(
"Could not send command. No serial connection"
)
return False
if self.module.model.serial.isOpen() == False:
logger.error("Could not send command. Serial connection is not open")
self.module.view.add_error_text(
"Could not send command. Serial connection is not open"
)
return False
try:
self.module.model.serial.write(command.encode("utf-8"))
# Wait for 0.5 seconds
QTest.qWait(500)
# Make sure that the command is being send
QApplication.processEvents()
except AttributeError:
logger.error("Could not send command. No device connected.")
self.module.view.add_error_text("Could not send command. No device connected.")
# Wait for the confirmation of the command ('c') to be read with a timeout of 1 second
if not self.module.model.serial.waitForReadyRead(timeout):
logger.error("Could not send command. Timeout")
self.module.view.add_error_text("Could not send command. Timeout")
return False
confirmation = self.module.model.serial.readLine().data().decode("utf-8")
logger.debug("Confirmation: %s", confirmation)
if confirmation == "c":
logger.debug("Command send successfully")
return True
else:
logger.error("Could not send command. No confirmation received")
self.module.view.add_error_text(
"Could not send command. No confirmation received"
)
return False
except Exception as e:
logger.error("Could not send command. %s", e)
self.module.view.add_error_text("Could not send command. %s" % e)
def homing(self) -> None:
""" This method is used to send the command 'h' to the atm system.
"""This method is used to send the command 'h' to the atm system.
This command is used to home the stepper motors of the atm system.
"""
logger.debug("Homing")
self.send_command("h")

View file

@ -1,6 +1,7 @@
import cmath
import numpy as np
import logging
from scipy.signal import find_peaks
from PyQt6.QtCore import pyqtSignal
from PyQt6.QtSerialPort import QSerialPort
from nqrduck.module.module_model import ModuleModel
@ -12,7 +13,7 @@ class S11Data:
# Conversion factors - the data is generally sent and received in mV
# These values are used to convert the data to dB and degrees
CENTER_POINT_MAGNITUDE = 900 # mV
CENTER_POINT_PHASE = 900 # mV
CENTER_POINT_PHASE = 0 # mV
MAGNITUDE_SLOPE = 30 # dB/mV
PHASE_SLOPE = 10 # deg/mV
@ -32,9 +33,18 @@ class S11Data:
) / self.MAGNITUDE_SLOPE
@property
def phase_deg(self):
"""Returns the absolute value of the phase in degrees"""
return (self.phase_mv - self.CENTER_POINT_PHASE) / self.PHASE_SLOPE
def phase_deg(self, phase_correction=True):
"""Returns the absolute value of the phase in degrees
Keyword Arguments:
phase_correction {bool} -- If True, the phase correction is applied. (default: {False})
"""
phase_deg = (self.phase_mv - self.CENTER_POINT_PHASE) / self.PHASE_SLOPE
if phase_correction:
phase_deg = self.phase_correction(self.frequency, phase_deg)
return phase_deg
@property
def phase_rad(self):
@ -51,6 +61,86 @@ class S11Data:
for loss_db, phase_rad in zip(self.return_loss_db, self.phase_rad)
]
def phase_correction(
self, frequency_data: np.array, phase_data: np.array
) -> np.array:
"""This method fixes the phase sign of the phase data.
The AD8302 can only measure the absolute value of the phase.
Therefore we need to correct the phase sign. This can be done via the slope of the phase.
If the slope is negative, the phase is positive and vice versa.
Args:
frequency_data (np.array): The frequency data.
phase_data (np.array): The phase data.
Returns:
np.array: The corrected phase data.
"""
# First we apply a moving average filter to the phase data
WINDOW_SIZE = 5
phase_data_filtered = (
np.convolve(phase_data, np.ones(WINDOW_SIZE), "same") / WINDOW_SIZE
)
# Fix transient response
phase_data_filtered[: WINDOW_SIZE // 2] = phase_data[: WINDOW_SIZE // 2]
phase_data_filtered[-WINDOW_SIZE // 2 :] = phase_data[-WINDOW_SIZE // 2 :]
# Now we find the peaks and valleys of the data
HEIGHT = 100
distance = len(phase_data_filtered) / 10
peaks, _ = find_peaks(phase_data_filtered, distance=distance, height=HEIGHT)
valleys, _ = find_peaks(
180 - phase_data_filtered, distance=distance, height=HEIGHT
)
# Determine if the first point is a peak or a valley
if phase_data_filtered[0] > phase_data_filtered[1]:
peaks = np.insert(peaks, 0, 0)
else:
valleys = np.insert(valleys, 0, 0)
# Determine if the last point is a peak or a valley
if phase_data_filtered[-1] > phase_data_filtered[-2]:
peaks = np.append(peaks, len(phase_data_filtered) - 1)
else:
valleys = np.append(valleys, len(phase_data_filtered) - 1)
frequency_peaks = frequency_data[peaks]
frequency_valleys = frequency_data[valleys]
# Combine the peaks and valleys
frequency_peaks_valleys = np.sort(
np.concatenate((frequency_peaks, frequency_valleys))
)
peaks_valleys = np.sort(np.concatenate((peaks, valleys)))
# Now we can determine the slope of the phase
# For this we compare the phase of our peaks_valleys array to the next point
# If the phase is increasing, the slope is positive, if it is decreasing, the slope is negative
phase_slope = np.zeros(len(peaks_valleys) - 1)
for i in range(len(peaks_valleys) - 1):
phase_slope[i] = (
phase_data_filtered[peaks_valleys[i + 1]]
- phase_data_filtered[peaks_valleys[i]]
)
# Now we can determine the sign of the phase
# If the slope is negative, the phase is positive and vice versa
phase_sign = np.sign(phase_slope) * -1
# Now we can correct the phase for the different sections
phase_data_corrected = np.zeros(len(phase_data))
for i in range(len(peaks_valleys) - 1):
phase_data_corrected[peaks_valleys[i] : peaks_valleys[i + 1]] = (
phase_data_filtered[peaks_valleys[i] : peaks_valleys[i + 1]]
* phase_sign[i]
)
return phase_data_corrected
def to_json(self):
return {
"frequency": self.frequency.tolist(),
@ -148,6 +238,7 @@ class AutoTMModel(ModuleModel):
self.data_points = []
self.active_calibration = None
self.calibration = None
self.serial = None
@property
def available_devices(self):
@ -265,3 +356,21 @@ class AutoTMModel(ModuleModel):
@LUT.setter
def LUT(self, value):
self._LUT = value
@property
def frequency_sweep_start(self):
"""The timestamp for when the frequency sweep has been started. This is used for timing of the frequency sweep."""
return self._frequency_sweep_start
@frequency_sweep_start.setter
def frequency_sweep_start(self, value):
self._frequency_sweep_start = value
@property
def frequency_sweep_end(self):
"""The timestamp for when the frequency sweep has been ended. This is used for timing of the frequency sweep."""
return self._frequency_sweep_end
@frequency_sweep_end.setter
def frequency_sweep_end(self, value):
self._frequency_sweep_end = value

View file

@ -97,14 +97,114 @@
<attribute name="title">
<string>Mechanical</string>
</attribute>
<layout class="QVBoxLayout" name="verticalLayout" stretch="0">
<layout class="QVBoxLayout" name="verticalLayout" stretch="0,1,0">
<item>
<widget class="QPushButton" name="homingButton">
<layout class="QGridLayout" name="gridLayout_4" rowstretch="0,0,0,0,0,0">
<item row="5" column="1">
<widget class="QPushButton" name="homematcherButton">
<property name="text">
<string>Home</string>
</property>
</widget>
</item>
<item row="1" column="0">
<widget class="QLabel" name="label_17">
<property name="text">
<string>Step Size:</string>
</property>
</widget>
</item>
<item row="1" column="1">
<widget class="QSpinBox" name="stepsizeBox">
<property name="minimum">
<number>-1000</number>
</property>
<property name="maximum">
<number>1000</number>
</property>
<property name="value">
<number>500</number>
</property>
</widget>
</item>
<item row="2" column="0" colspan="3">
<widget class="QLabel" name="label_18">
<property name="text">
<string>Tuning Stepper:</string>
</property>
</widget>
</item>
<item row="3" column="0">
<widget class="QPushButton" name="decreasetunerButton">
<property name="text">
<string>-</string>
</property>
</widget>
</item>
<item row="3" column="2">
<widget class="QPushButton" name="increasetunerButton">
<property name="text">
<string>+</string>
</property>
</widget>
</item>
<item row="4" column="0" colspan="3">
<widget class="QLabel" name="label_19">
<property name="text">
<string>Matching Stepper:</string>
</property>
</widget>
</item>
<item row="5" column="0">
<widget class="QPushButton" name="decreasematcherButton">
<property name="text">
<string>-</string>
</property>
</widget>
</item>
<item row="5" column="2">
<widget class="QPushButton" name="increasematcherButton">
<property name="text">
<string>+</string>
</property>
</widget>
</item>
<item row="3" column="1">
<widget class="QPushButton" name="hometunerButton">
<property name="text">
<string>Home</string>
</property>
</widget>
</item>
<item row="0" column="0" colspan="3">
<widget class="QLabel" name="label_16">
<property name="text">
<string>Stepper Control:</string>
</property>
</widget>
</item>
</layout>
</item>
<item>
<widget class="QPushButton" name="starpositionButton">
<property name="text">
<string>Homing</string>
<string>Start Position</string>
</property>
</widget>
</item>
<item>
<spacer name="verticalSpacer">
<property name="orientation">
<enum>Qt::Vertical</enum>
</property>
<property name="sizeHint" stdset="0">
<size>
<width>20</width>
<height>40</height>
</size>
</property>
</spacer>
</item>
</layout>
</widget>
<widget class="QWidget" name="elecTab">
@ -257,7 +357,11 @@
<item>
<layout class="QGridLayout" name="gridLayout">
<item row="0" column="1">
<widget class="QLineEdit" name="startEdit"/>
<widget class="QLineEdit" name="startEdit">
<property name="text">
<string>80</string>
</property>
</widget>
</item>
<item row="1" column="2">
<widget class="QLabel" name="label_8">
@ -267,7 +371,11 @@
</widget>
</item>
<item row="1" column="1">
<widget class="QLineEdit" name="stopEdit"/>
<widget class="QLineEdit" name="stopEdit">
<property name="text">
<string>100</string>
</property>
</widget>
</item>
<item row="0" column="2">
<widget class="QLabel" name="label_6">

View file

@ -18,6 +18,10 @@ from PyQt6.QtWidgets import (
from PyQt6.QtCore import pyqtSlot, Qt
from nqrduck.module.module_view import ModuleView
from nqrduck.contrib.mplwidget import MplWidget
<<<<<<< HEAD
=======
from nqrduck.assets.icons import Logos
>>>>>>> c21dc155fa5b50d6dce64605a6d86007ea8086c7
from nqrduck.assets.animations import DuckAnimations
from .widget import Ui_Form
@ -32,8 +36,8 @@ class AutoTMView(ModuleView):
self._ui_form = Ui_Form()
self._ui_form.setupUi(self)
self.widget = widget
self.frequency_sweep_spinner = self.FrequencySweepSpinner()
self.frequency_sweep_spinner = self.FrequencySweepSpinner(self)
self.frequency_sweep_spinner.hide()
# Disable the connectButton while no devices are selected
@ -43,7 +47,9 @@ class AutoTMView(ModuleView):
self._ui_form.refreshButton.clicked.connect(self.module.controller.find_devices)
# Connect the available devices changed signal to the on_available_devices_changed slot
self.module.model.available_devices_changed.connect(self.on_available_devices_changed)
self.module.model.available_devices_changed.connect(
self.on_available_devices_changed
)
# Connect the serial changed signal to the on_serial_changed slot
self.module.model.serial_changed.connect(self.on_serial_changed)
@ -79,23 +85,35 @@ class AutoTMView(ModuleView):
)
# On clicking of the calibration button call the on_calibration_button_clicked method
self._ui_form.calibrationButton.clicked.connect(self.on_calibration_button_clicked)
self._ui_form.calibrationButton.clicked.connect(
self.on_calibration_button_clicked
)
# On clicking of the switchpreampButton call the switch_preamp method
self._ui_form.switchpreampButton.clicked.connect(self.module.controller.switch_to_preamp)
self._ui_form.switchpreampButton.clicked.connect(
self.module.controller.switch_to_preamp
)
# On clicking of the switchATMButton call the switch_atm method
self._ui_form.switchATMButton.clicked.connect(self.module.controller.switch_to_atm)
self._ui_form.switchATMButton.clicked.connect(
self.module.controller.switch_to_atm
)
# On clicking of the homingButton call the homing method
self._ui_form.homingButton.clicked.connect(self.module.controller.homing)
self._ui_form.starpositionButton.clicked.connect(self.module.controller.homing)
# Connect the measurement finished signal to the plot_measurement slot
self.module.model.measurement_finished.connect(self.plot_measurement)
# Add a vertical layout to the info box
self._ui_form.scrollAreaWidgetContents.setLayout(QVBoxLayout())
self._ui_form.scrollAreaWidgetContents.layout().setAlignment(Qt.AlignmentFlag.AlignTop)
self._ui_form.scrollAreaWidgetContents.layout().setAlignment(
Qt.AlignmentFlag.AlignTop
)
# Add button Icons
self._ui_form.startButton.setIcon(Logos.Play_16x16())
self._ui_form.startButton.setIconSize(self._ui_form.startButton.size())
self.init_plot()
self.init_labels()
@ -117,7 +135,7 @@ class AutoTMView(ModuleView):
ax.set_xlim(0, 100)
ax.set_ylim(-100, 0)
self._ui_form.S11Plot.canvas.draw()
self.phase_ax = self._ui_form.S11Plot.canvas.ax.twinx()
def on_calibration_button_clicked(self) -> None:
@ -125,7 +143,7 @@ class AutoTMView(ModuleView):
It opens the calibration window.
"""
logger.debug("Calibration button clicked")
self.calibration_window = self.CalibrationWindow(self.module)
self.calibration_window = self.CalibrationWindow(self.module, self)
self.calibration_window.show()
@pyqtSlot(list)
@ -148,7 +166,7 @@ class AutoTMView(ModuleView):
"""
logger.debug("Connect button clicked")
selected_device = self._ui_form.portBox.currentText()
self.module.controller.connect(selected_device)
self.module.controller.handle_connection(selected_device)
@pyqtSlot(QSerialPort)
def on_serial_changed(self, serial: QSerialPort) -> None:
@ -157,11 +175,16 @@ class AutoTMView(ModuleView):
Args:
serial (serial.Serial): The current serial connection."""
logger.debug("Updating serial connection label")
if serial:
if serial.isOpen():
self._ui_form.connectionLabel.setText(serial.portName())
self.add_info_text("Connected to device %s" % serial.portName())
# Change the connectButton to a disconnectButton
self._ui_form.connectButton.setText("Disconnect")
else:
self._ui_form.connectionLabel.setText("Disconnected")
self.add_info_text("Disconnected from device")
self._ui_form.connectButton.setText("Connect")
logger.debug("Updated serial connection label")
def plot_measurement(self, data: "S11Data") -> None:
@ -179,7 +202,7 @@ class AutoTMView(ModuleView):
gamma = data.gamma
self._ui_form.S11Plot.canvas.ax.clear()
magnitude_ax = self._ui_form.S11Plot.canvas.ax
magnitude_ax.clear()
@ -188,26 +211,27 @@ class AutoTMView(ModuleView):
# Calibration for visualization happens here.
if self.module.model.calibration is not None:
calibration = self.module.model.calibration
e_00 = calibration[0]
e11 = calibration[1]
delta_e = calibration[2]
gamma_corr = [
(data_point - e_00[i]) / (data_point * e11[i] - delta_e[i]) for i, data_point in enumerate(gamma)
(data_point - e_00[i]) / (data_point * e11[i] - delta_e[i])
for i, data_point in enumerate(gamma)
]
return_loss_db_corr = [
-20 * cmath.log10(abs(g + 1e-12)) for g in gamma_corr
]
return_loss_db_corr = [-20 * cmath.log10(abs(g + 1e-12)) for g in gamma_corr]
magnitude_ax.plot(frequency, return_loss_db_corr, color="red")
else:
else:
magnitude_ax.plot(frequency, return_loss_db, color="blue")
self.phase_ax.set_ylabel("|Phase (deg)|")
self.phase_ax.plot(frequency, phase, color="orange", linestyle="--")
self.phase_ax.set_ylim(-180, 180)
self.phase_ax.invert_yaxis()
# self.phase_ax.invert_yaxis()
magnitude_ax.set_xlabel("Frequency (MHz)")
magnitude_ax.set_ylabel("S11 (dB)")
@ -234,7 +258,9 @@ class AutoTMView(ModuleView):
text_label = QLabel(text)
text_label.setStyleSheet("font-size: 25px;")
self._ui_form.scrollAreaWidgetContents.layout().addWidget(text_label)
self._ui_form.scrollArea.verticalScrollBar().setValue(self._ui_form.scrollArea.verticalScrollBar().maximum())
self._ui_form.scrollArea.verticalScrollBar().setValue(
self._ui_form.scrollArea.verticalScrollBar().maximum()
)
def add_error_text(self, text: str) -> None:
"""Adds text to the error text box.
@ -242,17 +268,30 @@ class AutoTMView(ModuleView):
Args:
text (str): Text to add to the error text box.
"""
message_widget = QWidget()
message_widget.setLayout(QHBoxLayout())
error_icon = QLabel()
error_icon.setPixmap(
Logos.Error_16x16().pixmap(Logos.Error_16x16().availableSizes()[0])
)
# Add a timestamp to the text
timestamp = datetime.now().strftime("%H:%M:%S")
text = "[%s] %s ERROR:" % (timestamp, text)
text = "[%s] %s" % (timestamp, text)
text_label = QLabel(text)
text_label.setStyleSheet("font-size: 25px; color: red;")
self._ui_form.scrollAreaWidgetContents.layout().addWidget(text_label)
self._ui_form.scrollArea.verticalScrollBar().setValue(self._ui_form.scrollArea.verticalScrollBar().maximum())
message_widget.layout().addWidget(error_icon)
message_widget.layout().addWidget(text_label)
self._ui_form.scrollAreaWidgetContents.layout().addWidget(message_widget)
self._ui_form.scrollArea.verticalScrollBar().setValue(
self._ui_form.scrollArea.verticalScrollBar().maximum()
)
def create_frequency_sweep_spinner_dialog(self) -> None:
"""Creates a frequency sweep spinner dialog."""
self.frequency_sweep_spinner = self.FrequencySweepSpinner()
self.frequency_sweep_spinner = self.FrequencySweepSpinner(self)
self.frequency_sweep_spinner.show()
def view_lut(self) -> None:
@ -264,19 +303,24 @@ class AutoTMView(ModuleView):
class FrequencySweepSpinner(QDialog):
"""This class implements a spinner dialog that is shown during a frequency sweep."""
def __init__(self):
super().__init__()
def __init__(self, parent=None):
super().__init__(parent)
self.setWindowTitle("Frequency sweep")
self.setModal(True)
self.setWindowFlag(Qt.WindowType.FramelessWindowHint)
self.setAttribute(Qt.WidgetAttribute.WA_TranslucentBackground)
<<<<<<< HEAD
self.spinner_movie = DuckAnimations.DuckKick128x128()
=======
self.spinner_movie = DuckAnimations.DuckSleep128x128()
>>>>>>> c21dc155fa5b50d6dce64605a6d86007ea8086c7
self.spinner_label = QLabel(self)
self.spinner_label.setMovie(self.spinner_movie)
self.layout = QVBoxLayout(self)
self.layout.addWidget(QLabel("Performing frequency sweep..."))
self.layout.addWidget(self.spinner_label)
self.spinner_movie.start()
@ -294,13 +338,19 @@ class AutoTMView(ModuleView):
# Create table widget
self.table_widget = QTableWidget()
self.table_widget.setColumnCount(3)
self.table_widget.setHorizontalHeaderLabels(["Frequency (MHz)", "Matching Voltage", "Tuning Voltage"])
self.table_widget.setHorizontalHeaderLabels(
["Frequency (MHz)", "Matching Voltage", "Tuning Voltage"]
)
LUT = self.module.model.LUT
for row, frequency in enumerate(LUT.data.keys()):
self.table_widget.insertRow(row)
self.table_widget.setItem(row, 0, QTableWidgetItem(str(frequency)))
self.table_widget.setItem(row, 1, QTableWidgetItem(str(LUT.data[frequency][0])))
self.table_widget.setItem(row, 2, QTableWidgetItem(str(LUT.data[frequency][1])))
self.table_widget.setItem(
row, 1, QTableWidgetItem(str(LUT.data[frequency][0]))
)
self.table_widget.setItem(
row, 2, QTableWidgetItem(str(LUT.data[frequency][1]))
)
# Add table widget to main layout
main_layout.addWidget(self.table_widget)
@ -321,11 +371,11 @@ class AutoTMView(ModuleView):
matching_voltage = str(self.module.model.LUT.data[frequency][0])
self.module.controller.set_voltages(tuning_voltage, matching_voltage)
class CalibrationWindow(QWidget):
class CalibrationWindow(QDialog):
def __init__(self, module, parent=None):
super().__init__()
self.module = module
super().__init__(parent)
self.setParent(parent)
self.module = module
self.setWindowTitle("Calibration")
# Add vertical main layout
@ -344,6 +394,7 @@ class AutoTMView(ModuleView):
frequency_layout.addWidget(stop_edit)
unit_label = QLabel("MHz")
frequency_layout.addWidget(unit_label)
frequency_layout.addStretch()
# Add horizontal layout for the calibration type
type_layout = QHBoxLayout()
@ -353,7 +404,9 @@ class AutoTMView(ModuleView):
short_layout = QVBoxLayout()
short_button = QPushButton("Short")
short_button.clicked.connect(
lambda: self.module.controller.on_short_calibration(start_edit.text(), stop_edit.text())
lambda: self.module.controller.on_short_calibration(
start_edit.text(), stop_edit.text()
)
)
# Short plot widget
self.short_plot = MplWidget()
@ -365,7 +418,9 @@ class AutoTMView(ModuleView):
open_layout = QVBoxLayout()
open_button = QPushButton("Open")
open_button.clicked.connect(
lambda: self.module.controller.on_open_calibration(start_edit.text(), stop_edit.text())
lambda: self.module.controller.on_open_calibration(
start_edit.text(), stop_edit.text()
)
)
# Open plot widget
self.open_plot = MplWidget()
@ -377,7 +432,9 @@ class AutoTMView(ModuleView):
load_layout = QVBoxLayout()
load_button = QPushButton("Load")
load_button.clicked.connect(
lambda: self.module.controller.on_load_calibration(start_edit.text(), stop_edit.text())
lambda: self.module.controller.on_load_calibration(
start_edit.text(), stop_edit.text()
)
)
# Load plot widget
self.load_plot = MplWidget()
@ -405,9 +462,15 @@ class AutoTMView(ModuleView):
self.setLayout(main_layout)
# Connect the calibration finished signals to the on_calibration_finished slot
self.module.model.short_calibration_finished.connect(self.on_short_calibration_finished)
self.module.model.open_calibration_finished.connect(self.on_open_calibration_finished)
self.module.model.load_calibration_finished.connect(self.on_load_calibration_finished)
self.module.model.short_calibration_finished.connect(
self.on_short_calibration_finished
)
self.module.model.open_calibration_finished.connect(
self.on_open_calibration_finished
)
self.module.model.load_calibration_finished.connect(
self.on_load_calibration_finished
)
def on_short_calibration_finished(self, short_calibration: "S11Data") -> None:
self.on_calibration_finished("short", self.short_plot, short_calibration)
@ -418,7 +481,9 @@ class AutoTMView(ModuleView):
def on_load_calibration_finished(self, load_calibration: "S11Data") -> None:
self.on_calibration_finished("load", self.load_plot, load_calibration)
def on_calibration_finished(self, type: str, widget: MplWidget, data: "S11Data") -> None:
def on_calibration_finished(
self, type: str, widget: MplWidget, data: "S11Data"
) -> None:
"""This method is called when a calibration has finished.
It plots the calibration data on the given widget.
"""

View file

@ -62,9 +62,51 @@ class Ui_Form(object):
self.mechTab.setObjectName("mechTab")
self.verticalLayout = QtWidgets.QVBoxLayout(self.mechTab)
self.verticalLayout.setObjectName("verticalLayout")
self.homingButton = QtWidgets.QPushButton(parent=self.mechTab)
self.homingButton.setObjectName("homingButton")
self.verticalLayout.addWidget(self.homingButton)
self.gridLayout_4 = QtWidgets.QGridLayout()
self.gridLayout_4.setObjectName("gridLayout_4")
self.homematcherButton = QtWidgets.QPushButton(parent=self.mechTab)
self.homematcherButton.setObjectName("homematcherButton")
self.gridLayout_4.addWidget(self.homematcherButton, 5, 1, 1, 1)
self.label_17 = QtWidgets.QLabel(parent=self.mechTab)
self.label_17.setObjectName("label_17")
self.gridLayout_4.addWidget(self.label_17, 1, 0, 1, 1)
self.stepsizeBox = QtWidgets.QSpinBox(parent=self.mechTab)
self.stepsizeBox.setMinimum(-1000)
self.stepsizeBox.setMaximum(1000)
self.stepsizeBox.setProperty("value", 500)
self.stepsizeBox.setObjectName("stepsizeBox")
self.gridLayout_4.addWidget(self.stepsizeBox, 1, 1, 1, 1)
self.label_18 = QtWidgets.QLabel(parent=self.mechTab)
self.label_18.setObjectName("label_18")
self.gridLayout_4.addWidget(self.label_18, 2, 0, 1, 3)
self.decreasetunerButton = QtWidgets.QPushButton(parent=self.mechTab)
self.decreasetunerButton.setObjectName("decreasetunerButton")
self.gridLayout_4.addWidget(self.decreasetunerButton, 3, 0, 1, 1)
self.increasetunerButton = QtWidgets.QPushButton(parent=self.mechTab)
self.increasetunerButton.setObjectName("increasetunerButton")
self.gridLayout_4.addWidget(self.increasetunerButton, 3, 2, 1, 1)
self.label_19 = QtWidgets.QLabel(parent=self.mechTab)
self.label_19.setObjectName("label_19")
self.gridLayout_4.addWidget(self.label_19, 4, 0, 1, 3)
self.decreasematcherButton = QtWidgets.QPushButton(parent=self.mechTab)
self.decreasematcherButton.setObjectName("decreasematcherButton")
self.gridLayout_4.addWidget(self.decreasematcherButton, 5, 0, 1, 1)
self.increasematcherButton = QtWidgets.QPushButton(parent=self.mechTab)
self.increasematcherButton.setObjectName("increasematcherButton")
self.gridLayout_4.addWidget(self.increasematcherButton, 5, 2, 1, 1)
self.hometunerButton = QtWidgets.QPushButton(parent=self.mechTab)
self.hometunerButton.setObjectName("hometunerButton")
self.gridLayout_4.addWidget(self.hometunerButton, 3, 1, 1, 1)
self.label_16 = QtWidgets.QLabel(parent=self.mechTab)
self.label_16.setObjectName("label_16")
self.gridLayout_4.addWidget(self.label_16, 0, 0, 1, 3)
self.verticalLayout.addLayout(self.gridLayout_4)
self.starpositionButton = QtWidgets.QPushButton(parent=self.mechTab)
self.starpositionButton.setObjectName("starpositionButton")
self.verticalLayout.addWidget(self.starpositionButton)
spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Policy.Minimum, QtWidgets.QSizePolicy.Policy.Expanding)
self.verticalLayout.addItem(spacerItem)
self.verticalLayout.setStretch(1, 1)
self.typeTab.addTab(self.mechTab, "")
self.elecTab = QtWidgets.QWidget()
self.elecTab.setObjectName("elecTab")
@ -215,7 +257,17 @@ class Ui_Form(object):
self.label_10.setText(_translate("Form", "Connected to:"))
self.connectButton.setText(_translate("Form", "Connect"))
self.titletypeLabel.setText(_translate("Form", "T&M Type:"))
self.homingButton.setText(_translate("Form", "Homing"))
self.homematcherButton.setText(_translate("Form", "Home"))
self.label_17.setText(_translate("Form", "Step Size:"))
self.label_18.setText(_translate("Form", "Tuning Stepper:"))
self.decreasetunerButton.setText(_translate("Form", "-"))
self.increasetunerButton.setText(_translate("Form", "+"))
self.label_19.setText(_translate("Form", "Matching Stepper:"))
self.decreasematcherButton.setText(_translate("Form", "-"))
self.increasematcherButton.setText(_translate("Form", "+"))
self.hometunerButton.setText(_translate("Form", "Home"))
self.label_16.setText(_translate("Form", "Stepper Control:"))
self.starpositionButton.setText(_translate("Form", "Start Position"))
self.typeTab.setTabText(self.typeTab.indexOf(self.mechTab), _translate("Form", "Mechanical"))
self.label_4.setText(_translate("Form", "Voltage Resolution"))
self.label_2.setText(_translate("Form", "Voltage Tuning"))
@ -233,7 +285,9 @@ class Ui_Form(object):
self.switchATMButton.setText(_translate("Form", "ATM"))
self.typeTab.setTabText(self.typeTab.indexOf(self.elecTab), _translate("Form", "Electrical"))
self.titlefrequencyLabel.setText(_translate("Form", "Frequency Sweep:"))
self.startEdit.setText(_translate("Form", "80"))
self.label_8.setText(_translate("Form", "MHz"))
self.stopEdit.setText(_translate("Form", "100"))
self.label_6.setText(_translate("Form", "MHz"))
self.label_7.setText(_translate("Form", "Stop Frequency:"))
self.label_5.setText(_translate("Form", "Start Frequency:"))