nqr-blochsimulator/src/nqr_blochsimulator/classes/simulation.py

489 lines
16 KiB
Python

import numpy as np
import logging
from scipy.constants import h, Boltzmann
from .sample import Sample
from .pulse import PulseArray
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler())
class Simulation:
"""Class for the simulation of the Bloch equations."""
def __init__(
self,
sample: Sample,
number_isochromats: int,
initial_magnetization: float,
gradient: float,
noise: float,
length_coil: float,
diameter_coil: float,
number_turns: float,
q_factor_transmitt:float,
q_factor_receive:float,
power_amplifier_power: float,
pulse: PulseArray,
averages: int,
gain: float,
temperature: float,
loss_TX: float = 0,
loss_RX: float = 0,
conversion_factor: float = 1,
) -> None:
"""
Constructs all the necessary attributes for the simulation object.
Parameters
----------
sample : Sample
The sample that is used for the simulation.
number_isochromats : int
The number of isochromats used for the simulation.
initial_magnetization : float
The initial magnetization of the sample.
gradient : float
The gradient of the magnetic field in mt/M.
noise : float
The RMS Noise of the measurement setup in µVolts.
length_coil : float
The length of the coil in meters.
diameter_coil : float
The diameter of the coil in meters.
number_turns : float
The number of turns of the coil.
q_factor_transmitt : float
The Q-factor of the transmitt path of the probe coil.
q_factor_receive : float
The Q-factor of the receive path of the probe coil.
power_amplifier_power : float
The power of the power amplifier in Watts.
pulse: PulseArray
The pulse that is used for the simulation.
averages:
The number of averages that are used for the simulation.
gain:
The gain of the amplifier.
temperature:
The temperature of the sample in Kelvin.
loss_TX:
The loss of the transmitter in dB.
loss_RX:
The loss of the receiver in dB.
conversion_factor:
The conversion factor of the receiver in spectromter units / Volt.
"""
self.sample = sample
self.number_isochromats = number_isochromats
self.initial_magnetization = initial_magnetization
self.gradient = gradient
self.noise = noise
self.length_coil = length_coil
self.diameter_coil = diameter_coil
self.number_turns = number_turns
self.q_factor_transmitt = q_factor_transmitt
self.q_factor_receive = q_factor_receive
self.power_amplifier_power = power_amplifier_power
self.pulse = pulse
self.averages = averages
self.gain = gain
self.temperature = temperature
self.loss_TX = loss_TX
self.loss_RX = loss_RX
self.conversion_factor = conversion_factor
def simulate(self):
reference_voltage = self.calculate_reference_voltage()
B1 = (
self.calc_B1() * 1e3
) # I think this is multiplied by 1e3 because everything is in mT
print(B1)
# B1 = 17.3 # Something might be wrong with the calculation of the B1 field. This has to be checked.
self.sample.gamma = self.sample.gamma * 1e-6 # We need our gamma in MHz / T
self.sample.T1 = self.sample.T1 * 1e3 # We need our T1 in ms
self.sample.T2 = self.sample.T2 * 1e3 # We need our T2 in ms
# Calculate the x distribution of the isochromats
xdis = self.calc_xdis()
real_pulsepower = self.pulse.get_real_pulsepower()
imag_pulsepower = self.pulse.get_imag_pulsepower()
# Calculate losses on the pulse
real_pulsepower = real_pulsepower * (1 - 10 ** (-self.loss_TX / 20))
imag_pulsepower = imag_pulsepower * (1 - 10 ** (-self.loss_TX / 20))
# Calculate the magnetization
M_sy1 = self.bloch_symmetric_strang_splitting(
B1, xdis, real_pulsepower, imag_pulsepower
)
# Z-Component
Mlong = np.squeeze(M_sy1[2, :, :]) # Indices start at 0 in Python
Mlong_avg = np.mean(Mlong, axis=0)
Mlong_avg = np.delete(Mlong_avg, -1) # Remove the last element
# XY-Component
Mtrans = np.squeeze(
M_sy1[0, :, :] + 1j * M_sy1[1, :, :]
) # Indices start at 0 in Python
Mtrans_avg = np.mean(Mtrans, axis=0)
Mtrans_avg = np.delete(Mtrans_avg, -1) # Remove the last element
# Scale the signal according to the reference voltage, averages and gain
timedomain_signal = Mtrans_avg * reference_voltage * self.conversion_factor
# Add the losses of the receiver - this should probably be done before the scaling
timedomain_signal = timedomain_signal * (1 - 10 ** (-self.loss_RX / 20))
# Add noise to the signal
noise_data = self.calculate_noise(timedomain_signal)
timedomain_signal = timedomain_signal * self.averages * self.gain + noise_data * self.gain
return timedomain_signal
def bloch_symmetric_strang_splitting(
self, B1, xdis, real_pulsepower, imag_pulsepower, relax=1
):
"""This method simulates the Bloch equations using the symmetric strang splitting method.
Parameters
----------
B1 : float
The B1 field of the solenoid coil.
xdis : np.array
The x distribution of the isochromats.
real_pulsepower : np.array
The real part of the pulse power.
imag_pulsepower : np.array
The imaginary part of the pulse power.
relax : float
If relax = 1, the relaxation is taken into account. If relax = 0, the relaxation is not taken into account.
"""
Nx = self.number_isochromats
Nu = real_pulsepower.shape[0]
M0 = np.array([np.zeros(Nx), np.zeros(Nx), np.ones(Nx)])
dt = self.pulse.dwell_time * 1e3 # We need our dwell time in ms
w = np.ones((Nu, 1)) * self.gradient
# Bloch simulation in magnetization domain
gadt = self.sample.gamma * dt / 2
B1 = np.tile(
(gadt * (real_pulsepower - 1j * imag_pulsepower) * B1).reshape(-1, 1), Nx
)
K = gadt * xdis * w * self.gradient
phi = -np.sqrt(np.abs(B1) ** 2 + K**2)
cs = np.cos(phi)
si = np.sin(phi)
n1 = np.real(B1) / np.abs(phi)
n2 = np.imag(B1) / np.abs(phi)
n3 = K / np.abs(phi)
n1[np.isnan(n1)] = 1
n2[np.isnan(n2)] = 0
n3[np.isnan(n3)] = 0
Bd1 = n1 * n1 * (1 - cs) + cs
Bd2 = n1 * n2 * (1 - cs) - n3 * si
Bd3 = n1 * n3 * (1 - cs) + n2 * si
Bd4 = n2 * n1 * (1 - cs) + n3 * si
Bd5 = n2 * n2 * (1 - cs) + cs
Bd6 = n2 * n3 * (1 - cs) - n1 * si
Bd7 = n3 * n1 * (1 - cs) - n2 * si
Bd8 = n3 * n2 * (1 - cs) + n1 * si
Bd9 = n3 * n3 * (1 - cs) + cs
M = np.zeros((3, Nx, Nu + 1))
M[:, :, 0] = M0
Mt = M0
D = np.diag(
[
np.exp(-1 / self.sample.T2 * relax * dt),
np.exp(-1 / self.sample.T2 * relax * dt),
np.exp(-1 / self.sample.T1 * relax * dt),
]
)
b = np.array([0, 0, self.initial_magnetization]) - np.array(
[
0,
0,
self.initial_magnetization * np.exp(-1 / self.sample.T1 * relax * dt),
]
)
for n in range(Nu): # time loop
Mrot = np.zeros((3, Nx))
Mrot[0, :] = (
Bd1.T[:, n] * Mt[0, :] + Bd2.T[:, n] * Mt[1, :] + Bd3.T[:, n] * Mt[2, :]
)
Mrot[1, :] = (
Bd4.T[:, n] * Mt[0, :] + Bd5.T[:, n] * Mt[1, :] + Bd6.T[:, n] * Mt[2, :]
)
Mrot[2, :] = (
Bd7.T[:, n] * Mt[0, :] + Bd8.T[:, n] * Mt[1, :] + Bd9.T[:, n] * Mt[2, :]
)
Mt = np.dot(D, Mrot) + np.tile(b, (Nx, 1)).T
Mrot[0, :] = (
Bd1.T[:, n] * Mt[0, :] + Bd2.T[:, n] * Mt[1, :] + Bd3.T[:, n] * Mt[2, :]
)
Mrot[1, :] = (
Bd4.T[:, n] * Mt[0, :] + Bd5.T[:, n] * Mt[1, :] + Bd6.T[:, n] * Mt[2, :]
)
Mrot[2, :] = (
Bd7.T[:, n] * Mt[0, :] + Bd8.T[:, n] * Mt[1, :] + Bd9.T[:, n] * Mt[2, :]
)
Mt = Mrot
M[:, :, n + 1] = Mrot
return M
def calc_B1(self) -> float:
"""This method calculates the B1 field of our solenoid coil based on the coil parameters and the power amplifier power.
Returns
-------
B1 : float
The B1 field of the solenoid coil in T."""
B1 = (
np.sqrt(2 * self.power_amplifier_power / 50)
* np.pi
* np.sqrt(self.q_factor_transmitt)
* 4e-7
* self.number_turns
/ self.length_coil
)
return B1
def calc_xdis(self) -> np.array:
"""Calculates the x distribution of the isochromats.
Returns
-------
xdis : np.array
The x distribution of the isochromats.
"""
# Df is the Full Width at Half Maximum (FWHM) of Lorentzian in Hz
Df = 1 / np.pi / self.sample.T2_star
# Randomly generating frequency offset using Cauchy distribution
uu = np.random.rand(self.number_isochromats, 1) - 0.5
foffr = Df / 2 * np.tan(np.pi * uu)
# xdis is a spatial function, but it is being repurposed here to convert through the gradient to a phase difference per time -> T2 dispersion of the isochromats
xdis = np.linspace(-1, 1, self.number_isochromats)
xdis = (
(foffr.T * 1e-6) / (self.sample.gamma / 2 / np.pi) / (self.gradient * 1e-3)
)
return xdis
def calculate_reference_voltage(self) -> float:
"""This calculates the reference voltage of the measurement setup for the sample at a certain temperature.
Returns
-------
reference_voltage : float
The reference voltage of the measurement setup for the sample at a certain temperature in Volts.
"""
u = 4 * np.pi * 1e-7 # permeability of free space
magnetization = (
self.sample.gamma
* 2
* self.sample.atoms
/ (2 * self.sample.nuclear_spin + 1)
* h**2
* self.sample.resonant_frequency
/ Boltzmann
/ self.temperature
* self.sample.spin_factor
)
coil_crossection = np.pi * (self.diameter_coil / 2) ** 2
reference_voltage = (
self.number_turns
* coil_crossection
* u
* self.sample.gamma
* 2
* self.sample.atoms
/ (2 * self.sample.nuclear_spin + 1)
* h**2
* self.sample.resonant_frequency**2
/ Boltzmann
/ self.temperature
* self.sample.spin_factor
)
reference_voltage = (
reference_voltage * self.sample.powder_factor * self.sample.filling_factor
)
# This is assumes thatour noise is dominated by everything after the resonator - this is not true for low Q probe coils
reference_voltage = reference_voltage * np.sqrt(self.q_factor_receive)
return reference_voltage
def calculate_noise(self, timedomain_signal: np.array) -> np.array:
"""Calculates the noise array that is added to the signal.
Parameters
----------
timedomain_signal : np.array
The time domain signal that is used for the simulation.
Returns
-------
noise_data : np.array
The noise array that is added to the signal."""
n_timedomain_points = timedomain_signal.shape[0]
noise_data = self.noise * np.random.randn(
self.averages, n_timedomain_points
) + 1j * self.noise * np.random.randn(self.averages, n_timedomain_points)
noise_data = np.sum(noise_data, axis=0) # Sum along the first axis
return noise_data
@property
def sample(self) -> Sample:
"""Sample that is used for the simulation."""
return self._sample
@sample.setter
def sample(self, sample):
self._sample = sample
@property
def number_isochromats(self) -> int:
"""Number of isochromats used for the simulation."""
return self._number_isochromats
@number_isochromats.setter
def number_isochromats(self, number_isochromats):
self._number_isochromats = number_isochromats
@property
def initial_magnetization(self) -> float:
"""Initial magnetization of the sample."""
return self._initial_magnetization
@initial_magnetization.setter
def initial_magnetization(self, initial_magnetization):
self._initial_magnetization = initial_magnetization
@property
def gradient(self) -> float:
"""Gradient of the magnetic field in mt/M."""
return self._gradient
@gradient.setter
def gradient(self, gradient):
self._gradient = gradient
@property
def noise(self) -> float:
"""RMS Noise of the measurement setup in Volts"""
return self._noise
@noise.setter
def noise(self, noise):
self._noise = noise
@property
def length_coil(self) -> float:
"""Length of the coil in meters."""
return self._length_coil
@length_coil.setter
def length_coil(self, length_coil):
self._length_coil = length_coil
@property
def diameter_coil(self) -> float:
"""Diameter of the coil in meters."""
return self._diameter_coil
@diameter_coil.setter
def diameter_coil(self, diameter_coil):
self._diameter_coil = diameter_coil
@property
def number_turns(self) -> float:
"""Number of turns of the coil."""
return self._number_turns
@number_turns.setter
def number_turns(self, number_turns):
self._number_turns = number_turns
@property
def q_factor_transmitt(self) -> float:
"""Q-factor of the transmitt path of the probe coil."""
return self._q_factor_transmitt
@q_factor_transmitt.setter
def q_factor_transmitt(self, q_factor_transmitt):
self._q_factor_transmitt = q_factor_transmitt
@property
def q_factor_receive(self) -> float:
"""Q-factor of the receive path of the probe coil."""
return self._q_factor_receive
@q_factor_receive.setter
def q_factor_receive(self, q_factor_receive):
self._q_factor_receive = q_factor_receive
@property
def power_amplifier_power(self) -> float:
"""Power of the power amplifier in Watts."""
return self._power_amplifier_power
@power_amplifier_power.setter
def power_amplifier_power(self, power_amplifier_power):
self._power_amplifier_power = power_amplifier_power
@property
def pulse(self) -> PulseArray:
"""Pulse that is used for the simulation."""
return self._pulse
@pulse.setter
def pulse(self, pulse):
self._pulse = pulse
@property
def averages(self) -> int:
"""Number of averages that are used for the simulation."""
return self._averages
@averages.setter
def averages(self, averages):
self._averages = averages
@property
def gain(self) -> float:
"""Gain of the amplifier."""
return self._gain
@gain.setter
def gain(self, gain):
self._gain = gain
@property
def temperature(self) -> float:
"""Temperature of the sample."""
return self._temperature
@temperature.setter
def temperature(self, temperature):
self._temperature = temperature