import numpy as np import logging from scipy import signal from .sample import Sample from .pulse import PulseArray logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler()) class Simulation: """Class for the simulation of the Bloch equations.""" def __init__( self, sample : Sample, number_isochromats : int, initial_magnetization : float, gradient : float, noise : float, length_coil : float, diameter_coil : float, number_turns : float, power_amplifier_power : float, pulse : PulseArray, averages: int, gain: float ) -> None: """ Constructs all the necessary attributes for the simulation object. Parameters ---------- sample : Sample The sample that is used for the simulation. number_isochromats : int The number of isochromats used for the simulation. initial_magnetization : float The initial magnetization of the sample. gradient : float The gradient of the magnetic field in mt/M. noise : float The RMS Noise of the measurement setup in Volts. length_coil : float The length of the coil in meters. diameter_coil : float The diameter of the coil in meters. number_turns : float The number of turns of the coil. power_amplifier_power : float The power of the power amplifier in Watts. pulse: PulseArray The pulse that is used for the simulation. averages: The number of averages that are used for the simulation. gain: The gain of the amplifier. """ self.sample = sample self.number_isochromats = number_isochromats self.initial_magnetization = initial_magnetization self.gradient = gradient self.noise = noise self.length_coil = length_coil self.diameter_coil = diameter_coil self.number_turns = number_turns self.power_amplifier_power = power_amplifier_power self.pulse = pulse self.averages = averages self.gain = gain def simulate(self): B1 = self.calc_B1() * 1e3 # I think this is multiplied by 1e3 because everything is in mT self.sample.gamma = self.sample.gamma * 1e-6 # We need our gamma in MHz / T self.sample.T1 = self.sample.T1 * 1e3 # We need our T1 in ms self.sample.T2 = self.sample.T2 * 1e3 # We need our T2 in ms xdis = self.calc_xdis() real_pulsepower = self.pulse.get_real_pulsepower() imag_pulsepower = self.pulse.get_imag_pulsepower() M_sy1 = self.bloch_symmetric_strang_splitting(B1, xdis, real_pulsepower, imag_pulsepower) logger.debug("Shape of Msy1: %s", M_sy1.shape) # Z-Component Mlong = np.squeeze(M_sy1[2,:,:]) # Indices start at 0 in Python Mlong_avg = np.mean(Mlong, axis=0) Mlong_avg = np.delete(Mlong_avg, -1) # Remove the last element # XY-Component Mtrans = np.squeeze(M_sy1[0,:,:] + 1j*M_sy1[1,:,:]) # Indices start at 0 in Python Mtrans_avg = np.mean(Mtrans, axis=0) Mtrans_avg = np.delete(Mtrans_avg, -1) # Remove the last element reference = 4.5502 sigtrans = Mtrans_avg * reference * self.averages * self.gain return sigtrans def bloch_symmetric_strang_splitting(self, B1, xdis, real_pulsepower, imag_pulsepower, relax = 1): """This method simulates the Bloch equations using the symmetric strang splitting method. Parameters ---------- B1 : float The B1 field of the solenoid coil. xdis : np.array The x distribution of the isochromats. """ Nx = self.number_isochromats Nu = real_pulsepower.shape[0] M0 = np.array([np.zeros(Nx), np.zeros(Nx), np.ones(Nx)]) dt = self.pulse.dwell_time * 1e3 # We need our dwell time in ms w = np.ones((Nu, 1)) * self.gradient # Bloch simulation in magnetization domain gadt = self.sample.gamma * dt /2 B1 = np.tile((gadt * (real_pulsepower - 1j * imag_pulsepower) * B1).reshape(-1, 1), Nx) K = gadt * xdis * w * self.gradient phi = -np.sqrt(np.abs(B1) ** 2 + K ** 2) cs = np.cos(phi) si = np.sin(phi) n1 = np.real(B1) / np.abs(phi) n2 = np.imag(B1) / np.abs(phi) n3 = K / np.abs(phi) n1[np.isnan(n1)] = 1 n2[np.isnan(n2)] = 0 n3[np.isnan(n3)] = 0 Bd1 = n1 * n1 * (1 - cs) + cs Bd2 = n1 * n2 * (1 - cs) - n3 * si Bd3 = n1 * n3 * (1 - cs) + n2 * si Bd4 = n2 * n1 * (1 - cs) + n3 * si Bd5 = n2 * n2 * (1 - cs) + cs Bd6 = n2 * n3 * (1 - cs) - n1 * si Bd7 = n3 * n1 * (1 - cs) - n2 * si Bd8 = n3 * n2 * (1 - cs) + n1 * si Bd9 = n3 * n3 * (1 - cs) + cs M = np.zeros((3, Nx, Nu+1)) M[:, :, 0] = M0 Mt = M0 D = np.diag([np.exp(-1 / self.sample.T2 * relax * dt), np.exp(-1 / self.sample.T2 * relax * dt), np.exp(-1 / self.sample.T1 * relax * dt)]) b = np.array([0, 0, self.initial_magnetization]) - np.array([0, 0, self.initial_magnetization * np.exp(-1 / self.sample.T1 * relax * dt)]) logger.debug(b) for n in range(Nu): # time loop Mrot = np.zeros((3, Nx)) Mrot[0,:] = Bd1.T[:,n]*Mt[0,:] + Bd2.T[:,n]*Mt[1,:] + Bd3.T[:,n]*Mt[2,:] Mrot[1,:] = Bd4.T[:,n]*Mt[0,:] + Bd5.T[:,n]*Mt[1,:] + Bd6.T[:,n]*Mt[2,:] Mrot[2,:] = Bd7.T[:,n]*Mt[0,:] + Bd8.T[:,n]*Mt[1,:] + Bd9.T[:,n]*Mt[2,:] Mt = np.dot(D, Mrot) + np.tile(b, (Nx, 1)).T Mrot[0,:] = Bd1.T[:,n]*Mt[0,:] + Bd2.T[:,n]*Mt[1,:] + Bd3.T[:,n]*Mt[2,:] Mrot[1,:] = Bd4.T[:,n]*Mt[0,:] + Bd5.T[:,n]*Mt[1,:] + Bd6.T[:,n]*Mt[2,:] Mrot[2,:] = Bd7.T[:,n]*Mt[0,:] + Bd8.T[:,n]*Mt[1,:] + Bd9.T[:,n]*Mt[2,:] Mt = Mrot M[:, :,n+1] = Mrot return M def calc_B1(self) -> float: """This method calculates the B1 field of our solenoid coil based on the coil parameters and the power amplifier power. Returns ------- B1 : float The B1 field of the solenoid coil in T.""" B1 = np.sqrt(2 * self.power_amplifier_power / 50) * np.pi * 4e-7 * self.number_turns / self.length_coil return B1 def calc_xdis(self) -> np.array: """ Calculates the x distribution of the isochromats. Returns ------- xdis : np.array The x distribution of the isochromats. """ # Df is the Full Width at Half Maximum (FWHM) of Lorentzian in Hz Df = 1 / np.pi / self.sample.T2_star logger.debug("Df: %s", Df) # Randomly generating frequency offset using Cauchy distribution uu = np.random.rand(self.number_isochromats, 1) - 0.5 foffr = Df / 2 * np.tan(np.pi * uu) # xdis is a spatial function, but it is being repurposed here to convert through the gradient to a phase difference per time -> T2 dispersion of the isochromats xdis = np.linspace(-1, 1, self.number_isochromats) logger.debug(self.sample.gamma) xdis = (foffr.T * 1e-6) / (self.sample.gamma / 2 / np.pi) / (self.gradient * 1e-3) return xdis @property def sample(self) -> Sample: """Sample that is used for the simulation.""" return self._sample @sample.setter def sample(self, sample): self._sample = sample @property def number_isochromats(self) -> int: """Number of isochromats used for the simulation.""" return self._number_isochromats @number_isochromats.setter def number_isochromats(self, number_isochromats): self._number_isochromats = number_isochromats @property def initial_magnetization(self) -> float: """Initial magnetization of the sample.""" return self._initial_magnetization @initial_magnetization.setter def initial_magnetization(self, initial_magnetization): self._initial_magnetization = initial_magnetization @property def gradient(self) -> float: """Gradient of the magnetic field in mt/M.""" return self._gradient @gradient.setter def gradient(self, gradient): self._gradient = gradient @property def noise(self) -> float: """ RMS Noise of the measurement setup in Volts""" return self._noise @noise.setter def noise(self, noise): self._noise = noise @property def length_coil(self) -> float: """Length of the coil in meters.""" return self._length_coil @length_coil.setter def length_coil(self, length_coil): self._length_coil = length_coil @property def diameter_coil(self) -> float: """Diameter of the coil in meters.""" return self._diameter_coil @diameter_coil.setter def diameter_coil(self, diameter_coil): self._diameter_coil = diameter_coil @property def number_turns(self) -> float: """Number of turns of the coil.""" return self._number_turns @number_turns.setter def number_turns(self, number_turns): self._number_turns = number_turns @property def power_amplifier_power(self) -> float: """Power of the power amplifier in Watts.""" return self._power_amplifier_power @power_amplifier_power.setter def power_amplifier_power(self, power_amplifier_power): self._power_amplifier_power = power_amplifier_power @property def pulse(self) -> PulseArray: """Pulse that is used for the simulation.""" return self._pulse @pulse.setter def pulse(self, pulse): self._pulse = pulse @property def averages(self) -> int: """Number of averages that are used for the simulation.""" return self._averages @averages.setter def averages(self, averages): self._averages = averages @property def gain(self) -> float: """Gain of the amplifier.""" return self._gain @gain.setter def gain(self, gain): self._gain = gain