Merge pull request #8 from nqrduck/limenqr_merge

Tested with the LimeSDR USB
This commit is contained in:
Julia Pfitzer 2024-02-07 14:12:08 +01:00 committed by GitHub
commit df82c4af62
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -13,7 +13,6 @@ $(h5c++ -show) limedriver.cpp -std=c++11 $(pkg-config --cflags --libs LimeSuite)
-o limedriver
*/
#include "H5Cpp.h"
#include "lime/LimeSuite.h"
#include <chrono>
@ -21,15 +20,17 @@ $(h5c++ -show) limedriver.cpp -std=c++11 $(pkg-config --cflags --libs LimeSuite)
#include <fstream>
#include <iomanip>
#include <iostream>
#include <list>
#include <math.h>
#include <sstream>
#include <stdio.h>
#include <string.h>
#include <errno.h> // errno, ENOENT, EEXIST
#include <errno.h> // errno, ENOENT, EEXIST
#include <string>
#include <sys/stat.h> // stat
#include <sys/types.h>
#include <vector>
#if defined(_WIN32)
#include <direct.h> // _mkdir
#endif
@ -50,6 +51,12 @@ struct LimeConfig_t {
int TX_gain;
int TX_IcorrDC;
int TX_QcorrDC;
int TX_IcorrGain;
int TX_QcorrGain;
int TX_IQcorrPhase;
int RX_IcorrGain;
int RX_QcorrGain;
int RX_IQcorrPhase;
int RX_gain_rback[4];
int TX_gain_rback[3];
@ -63,6 +70,16 @@ struct LimeConfig_t {
double *p_pha;
int *p_phacyc_N;
int *p_phacyc_lev;
double *am_frq;
double *am_pha;
double *am_depth;
int *am_mode;
double *am_frq_smp;
double *fm_frq;
double *fm_pha;
double *fm_width;
int *fm_mode;
double *fm_frq_smp;
int *p_c0_en;
int *p_c1_en;
@ -81,7 +98,7 @@ struct LimeConfig_t {
int averages;
int repetitions;
bool pcyc_bef_avg;
int pcyc_bef_avg;
double reptime_secs;
double rectime_secs;
int reptime_smps;
@ -92,6 +109,7 @@ struct LimeConfig_t {
string file_stamp;
string save_path;
int override_save;
int override_init;
string stamp_start;
string stamp_end;
@ -255,205 +273,8 @@ int GetGainRXTX(int *RXgain, int *TXgain) {
return 0;
}
void dumpConfig(Config2HDFattr_t *config, size_t size) {
/* Dump the configuration to stdout in JSON format
@param config: Array of Config2HDFattr_t
@param size: Size of the array
*/
int ii_oupargs = 0; // TODO: Better name
std::cout << "{" << std::endl;
for (size_t i = 0; i < size; ++i) {
// Handle the "///" arguments
string arg = config[i].arg;
if (strcmp(config[i].arg.c_str(), "///") == 0) {
arg = "//" + std::to_string(ii_oupargs);
ii_oupargs++;
}
// Turn arguments to JSON objects
std::cout << "\"" << arg << "\": {";
std::cout << "\"name\": \"" << config[i].Name << "\", ";
std::cout << "\"type\": \"" << typeid(config[i]).name() << "\", ";
std::cout << "\"value\": \"";
// Need to cast void* data pointer to the correct type
// TODO: Do we lose precision here?
if (config[i].dType == H5::PredType::NATIVE_INT) {
std::cout << *(static_cast<int *>(config[i].Value));
} else if (config[i].dType == H5::PredType::IEEE_F32LE) {
std::cout << *(static_cast<float *>(config[i].Value));
} else if (config[i].dType == H5::PredType::IEEE_F64LE) {
std::cout << *(static_cast<double *>(config[i].Value));
} else {
std::cout << static_cast<char *>(config[i].Value);
}
std::cout << "\", ";
std::cout << "\"dim\": " << config[i].dim;
std::cout << "}";
if (i < size - 1) {
std::cout << ",";
}
std::cout << std::endl;
}
std::cout << "}" << std::endl;
}
LimeConfig_t initializeLimeConfig(int Npulses, std::ostringstream &stringstream) {
/* Initialize the LimeConfig_t struct
@param Npulses: Number of pulses
@param stringstream: std::ostringstream object
@return LimeConfig_t: LimeConfig_t struct with default values
*/
LimeConfig_t LimeCfg;
LimeCfg.Npulses = Npulses;
// Set all the DEFAULT parameters. Command line arguments allow for
// modification!
LimeCfg.srate = 30.72e6; // sample rate of the IF DAC/ADC
LimeCfg.frq = 50e6; // LO carrier frequency
LimeCfg.RX_gain = 20; // total gain of the receiver
LimeCfg.TX_gain = 30; // total gain of the transmitter
LimeCfg.RX_LPF = 5e6; // IF lowpass of the receiver
LimeCfg.TX_LPF = 130e6; // IF lowpass of the transmitter
LimeCfg.TX_IcorrDC =
-32; // DC corr to TX mixer at IF (evaluate with LimeSuiteGUI)
LimeCfg.TX_QcorrDC = 50; // DC corr to TX mixer at IF
// Allocate the arrays with pulse parametes
LimeCfg.p_dur = new double[LimeCfg.Npulses]; // pulse duration (secs)
LimeCfg.p_offs = new int[LimeCfg.Npulses]; // pulse time offset
LimeCfg.p_amp = new double[LimeCfg.Npulses]; // pulse digital IF amplitude
LimeCfg.p_frq =
new double[LimeCfg.Npulses]; // pulse digital IF frequency (unit: Hz)
LimeCfg.p_pha = new double[LimeCfg.Npulses]; // pulse digital IF phase
LimeCfg.p_phacyc_N =
new int[LimeCfg.Npulses]; // number of pulse phases (cycled within 2*pi,
// must be at least 1)
LimeCfg.p_phacyc_lev =
new int[LimeCfg.Npulses]; // stacking level of phase cycle (for eventual
// coupling)
LimeCfg.p_c0_en = new int[LimeCfg.Npulses]; // pulse-wise enable of marker c0
LimeCfg.p_c1_en = new int[LimeCfg.Npulses]; // pulse-wise enable of marker c1
LimeCfg.p_c2_en = new int[LimeCfg.Npulses]; // pulse-wise enable of marker c2
LimeCfg.p_c3_en = new int[LimeCfg.Npulses]; // pulse-wise enable of marker c3
// and set standard values
for (int ii = 0; ii < LimeCfg.Npulses; ii++) {
LimeCfg.p_dur[ii] = 2e-6;
LimeCfg.p_offs[ii] =
(4080 * 3) /
(LimeCfg.Npulses + 1); // distribute them evenly within the buffer...
LimeCfg.p_amp[ii] = 1.0;
LimeCfg.p_frq[ii] = 4.0 / LimeCfg.p_dur[0];
LimeCfg.p_pha[ii] = 0.0;
LimeCfg.p_phacyc_N[ii] = 1;
LimeCfg.p_phacyc_lev[ii] = 0;
LimeCfg.p_c0_en[ii] = 1;
LimeCfg.p_c1_en[ii] = 1;
LimeCfg.p_c2_en[ii] = 1;
LimeCfg.p_c3_en[ii] = 1;
}
// Timing of TTL controls: [enabled? , pre, offs, post]
int c0_tim[4] = {0, 70, 56, -5};
int c1_tim[4] = {0, 70, 56, -5};
int c2_tim[4] = {0, 70, 56, -5};
int c3_tim[4] = {0, 70, 56, -5};
// Use TTL channel as synth: [enabled? , half-period, strt, PSK shift, PSK
// adv]
int c0_synth[5] = {0, 500, 0, 0, 0};
int c1_synth[5] = {0, 500, 0, 0, 0};
int c2_synth[5] = {0, 500, 0, 0, 0};
int c3_synth[5] = {0, 500, 0, 0, 0};
LimeCfg.averages = 6; // number of averages
LimeCfg.repetitions = 4; // number of repetions
LimeCfg.reptime_secs = 4e-3; // repetition time
LimeCfg.rectime_secs = 0.2e-3; // duration of acquisition window
LimeCfg.buffersize = 4080 * 3; // number of samples in buffer
LimeCfg.pcyc_bef_avg = 0; // phase cycle before average
LimeCfg.file_pattern = "test"; // identifier when saving the file
LimeCfg.save_path = "./data/"; // path to save the file to
LimeCfg.override_save = 0; // default: save data
// that's it for the parameters
// ----------------------------------------------------------------------------------
// .. copy here those arrays ...
memcpy(LimeCfg.c0_tim, c0_tim, 4 * sizeof *LimeCfg.c0_tim);
memcpy(LimeCfg.c1_tim, c1_tim, 4 * sizeof *LimeCfg.c1_tim);
memcpy(LimeCfg.c2_tim, c2_tim, 4 * sizeof *LimeCfg.c2_tim);
memcpy(LimeCfg.c3_tim, c3_tim, 4 * sizeof *LimeCfg.c3_tim);
memcpy(LimeCfg.c0_synth, c0_synth, 5 * sizeof *LimeCfg.c0_synth);
memcpy(LimeCfg.c1_synth, c1_synth, 5 * sizeof *LimeCfg.c1_synth);
memcpy(LimeCfg.c2_synth, c2_synth, 5 * sizeof *LimeCfg.c2_synth);
memcpy(LimeCfg.c3_synth, c3_synth, 5 * sizeof *LimeCfg.c3_synth);
// and add the timestamp for the file
auto now = std::chrono::system_clock::now();
auto itt = std::chrono::system_clock::to_time_t(now);
stringstream << std::put_time(localtime(&itt), "%G%m%d_%H%M%S");
LimeCfg.file_stamp = stringstream.str();
LimeCfg.stamp_start = stringstream.str();
LimeCfg.stamp_end =
stringstream.str(); // will be overwritten just before data is written
// allocate other variables that depend on Npulses
LimeCfg.p_dur_smp = new int[LimeCfg.Npulses];
LimeCfg.p_frq_smp = new double[LimeCfg.Npulses];
return LimeCfg;
}
int main(int argc, char **argv) {
const double pi = acos(-1);
std::ostringstream stringstream;
int Npulses = 2; // default number of pulses
// check if nPulses has been given as argument, so that all the arrays are
// initialized with proper size
for (int ii_arg = 1; ii_arg < argc; ii_arg++) {
if (strcmp(argv[ii_arg], "-npu") == 0 && ii_arg + 1 < argc) {
Npulses = atoi(argv[ii_arg + 1]);
break;
}
}
// Initialize the LimeConfig_t struct
LimeConfig_t LimeCfg = initializeLimeConfig(Npulses, stringstream);
// LimeCfg as attributes for writing to HDF and for parsing command line input
// This is all done 'manually', since there is no reflection in cpp.. at least
// not by default
struct Config2HDFattr_t HDFattr[] = {
std::vector<Config2HDFattr_t> getHDFAttributes(LimeConfig_t& LimeCfg) {
std::vector<Config2HDFattr_t> HDFattr = {
{"sra", "SampleRate [Hz]", H5::PredType::IEEE_F32LE, &LimeCfg.srate, 1},
{"lof", "LO Frequency [Hz]", H5::PredType::IEEE_F32LE, &LimeCfg.frq, 1},
{"rlp", "RX LowPass BW [Hz]", H5::PredType::IEEE_F32LE, &LimeCfg.RX_LPF,
@ -546,7 +367,244 @@ int main(int argc, char **argv) {
{"///", "Exp End Timestamp",
H5::StrType(H5::PredType::C_S1, LimeCfg.stamp_end.length() + 1),
(void *)LimeCfg.stamp_end.c_str(), 1}};
int no_of_attr = sizeof(HDFattr) / sizeof(Config2HDFattr_t);
return HDFattr;
}
void dumpConfig(Config2HDFattr_t *config, size_t size) {
/* Dump the configuration to stdout in JSON format
@param config: Array of Config2HDFattr_t
@param size: Size of the array
*/
int ii_oupargs = 0; // TODO: Better name
std::cout << "{" << std::endl;
for (size_t i = 0; i < size; ++i) {
// Handle the "///" arguments
string arg = config[i].arg;
if (strcmp(config[i].arg.c_str(), "///") == 0) {
arg = "//" + std::to_string(ii_oupargs);
ii_oupargs++;
}
// Turn arguments to JSON objects
std::cout << "\"" << arg << "\": {";
std::cout << "\"name\": \"" << config[i].Name << "\", ";
std::cout << "\"type\": \"" << typeid(config[i]).name() << "\", ";
std::cout << "\"value\": \"";
// Need to cast void* data pointer to the correct type
// TODO: Do we lose precision here?
if (config[i].dType == H5::PredType::NATIVE_INT) {
std::cout << *(static_cast<int *>(config[i].Value));
} else if (config[i].dType == H5::PredType::IEEE_F32LE) {
std::cout << *(static_cast<float *>(config[i].Value));
} else if (config[i].dType == H5::PredType::IEEE_F64LE) {
std::cout << *(static_cast<double *>(config[i].Value));
} else {
std::cout << static_cast<char *>(config[i].Value);
}
std::cout << "\", ";
std::cout << "\"dim\": " << config[i].dim;
std::cout << "}";
if (i < size - 1) {
std::cout << ",";
}
std::cout << std::endl;
}
std::cout << "}" << std::endl;
}
LimeConfig_t initializeLimeConfig(int Npulses,
std::ostringstream &stringstream) {
/* Initialize the LimeConfig_t struct
@param Npulses: Number of pulses
@param stringstream: std::ostringstream object
@return LimeConfig_t: LimeConfig_t struct with default values
*/
LimeConfig_t LimeCfg{};
LimeCfg.Npulses = Npulses;
// Set all the DEFAULT parameters. Command line arguments allow for
// modification!
LimeCfg.srate = 30.72e6; // sample rate of the IF DAC/ADC
LimeCfg.frq = 50e6; // LO carrier frequency
LimeCfg.RX_gain = 20; // total gain of the receiver
LimeCfg.TX_gain = 30; // total gain of the transmitter
LimeCfg.RX_LPF = 5e6; // IF lowpass of the receiver
LimeCfg.TX_LPF = 130e6; // IF lowpass of the transmitter
LimeCfg.TX_IcorrDC =
-32; // DC corr to TX mixer at IF (evaluate with LimeSuiteGUI)
LimeCfg.TX_QcorrDC = 50; // DC corr to TX mixer at IF
// Allocate the arrays with pulse parametes
LimeCfg.p_dur = new double[LimeCfg.Npulses]; // pulse duration (secs)
LimeCfg.p_offs = new int[LimeCfg.Npulses]; // pulse time offset
LimeCfg.p_amp = new double[LimeCfg.Npulses]; // pulse digital IF amplitude
LimeCfg.p_frq =
new double[LimeCfg.Npulses]; // pulse digital IF frequency (unit: Hz)
LimeCfg.p_pha = new double[LimeCfg.Npulses]; // pulse digital IF phase
LimeCfg.p_phacyc_N =
new int[LimeCfg.Npulses]; // number of pulse phases (cycled within 2*pi,
// must be at least 1)
LimeCfg.p_phacyc_lev =
new int[LimeCfg.Npulses]; // stacking level of phase cycle (for eventual
// coupling)
LimeCfg.p_c0_en = new int[LimeCfg.Npulses]; // pulse-wise enable of marker c0
LimeCfg.p_c1_en = new int[LimeCfg.Npulses]; // pulse-wise enable of marker c1
LimeCfg.p_c2_en = new int[LimeCfg.Npulses]; // pulse-wise enable of marker c2
LimeCfg.p_c3_en = new int[LimeCfg.Npulses]; // pulse-wise enable of marker c3
// and set standard values
for (int ii = 0; ii < LimeCfg.Npulses; ii++) {
LimeCfg.p_dur[ii] = 2e-6;
LimeCfg.p_offs[ii] =
(4080 * 3) /
(LimeCfg.Npulses + 1); // distribute them evenly within the buffer...
LimeCfg.p_amp[ii] = 1.0;
LimeCfg.p_frq[ii] = 4.0 / LimeCfg.p_dur[0];
LimeCfg.p_pha[ii] = 0.0;
LimeCfg.p_phacyc_N[ii] = 1;
LimeCfg.p_phacyc_lev[ii] = 0;
LimeCfg.p_c0_en[ii] = 1;
LimeCfg.p_c1_en[ii] = 1;
LimeCfg.p_c2_en[ii] = 1;
LimeCfg.p_c3_en[ii] = 1;
}
// Timing of TTL controls: [enabled? , pre, offs, post]
int c0_tim[4] = {0, 70, 56, -5};
int c1_tim[4] = {0, 70, 56, -5};
int c2_tim[4] = {0, 70, 56, -5};
int c3_tim[4] = {0, 70, 56, -5};
// Use TTL channel as synth: [enabled? , half-period, strt, PSK shift, PSK
// adv]
int c0_synth[5] = {0, 500, 0, 0, 0};
int c1_synth[5] = {0, 500, 0, 0, 0};
int c2_synth[5] = {0, 500, 0, 0, 0};
int c3_synth[5] = {0, 500, 0, 0, 0};
LimeCfg.averages = 6; // number of averages
LimeCfg.repetitions = 4; // number of repetions
LimeCfg.reptime_secs = 4e-3; // repetition time
LimeCfg.rectime_secs = 0.2e-3; // duration of acquisition window
LimeCfg.buffersize = 4080 * 3; // number of samples in buffer
LimeCfg.pcyc_bef_avg = 0; // phase cycle before average
LimeCfg.file_pattern = "test"; // identifier when saving the file
LimeCfg.save_path = "./data/"; // path to save the file to
LimeCfg.override_save = 0; // default: save data
// that's it for the parameters
// ----------------------------------------------------------------------------------
// .. copy here those arrays ...
memcpy(LimeCfg.c0_tim, c0_tim, 4 * sizeof *LimeCfg.c0_tim);
memcpy(LimeCfg.c1_tim, c1_tim, 4 * sizeof *LimeCfg.c1_tim);
memcpy(LimeCfg.c2_tim, c2_tim, 4 * sizeof *LimeCfg.c2_tim);
memcpy(LimeCfg.c3_tim, c3_tim, 4 * sizeof *LimeCfg.c3_tim);
memcpy(LimeCfg.c0_synth, c0_synth, 5 * sizeof *LimeCfg.c0_synth);
memcpy(LimeCfg.c1_synth, c1_synth, 5 * sizeof *LimeCfg.c1_synth);
memcpy(LimeCfg.c2_synth, c2_synth, 5 * sizeof *LimeCfg.c2_synth);
memcpy(LimeCfg.c3_synth, c3_synth, 5 * sizeof *LimeCfg.c3_synth);
// and add the timestamp for the file
auto now = std::chrono::system_clock::now();
auto itt = std::chrono::system_clock::to_time_t(now);
stringstream << std::put_time(localtime(&itt), "%G%m%d_%H%M%S");
LimeCfg.file_stamp = stringstream.str();
LimeCfg.stamp_start = stringstream.str();
LimeCfg.stamp_end =
stringstream.str(); // will be overwritten just before data is written
// allocate other variables that depend on Npulses
LimeCfg.p_dur_smp = new int[LimeCfg.Npulses]{};
LimeCfg.p_frq_smp = new double[LimeCfg.Npulses]{};
return LimeCfg;
}
// Modulation function for AM/FM using different modes, i.e. sinusoidal (mode =
// 0), triangular (mode = 1), square (mode = 2)
double Modfunction(double argument, int mode) {
const double pi = acos(-1);
double P;
double retval;
switch (mode) {
case 0: { // sinusoidal
retval = cos(argument);
break;
}
case 1: { // triangular
// A = 2.0; P = np.pi
// y = (A/P) * (P - abs(np.mod(x+np.pi/2,2*P)-P)) - A/2
P = pi / 2;
retval = (2.0 / P) * (P - fabs(fmod(argument + pi / 2, 2 * P) - P)) - 1.0;
break;
}
case 2: { // square
retval = (fmod(argument, 2 * pi) < pi) ? 1.0 : -1.0;
break;
}
default: {
retval = 1.0;
break;
}
}
return retval;
}
int main(int argc, char **argv) {
const double pi = acos(-1);
std::ostringstream stringstream;
int Npulses = 2; // default number of pulses
// check if nPulses has been given as argument, so that all the arrays are
// initialized with proper size
for (int ii_arg = 1; ii_arg < argc; ii_arg++) {
if (strcmp(argv[ii_arg], "-npu") == 0 && ii_arg + 1 < argc) {
Npulses = atoi(argv[ii_arg + 1]);
break;
}
}
// Initialize the LimeConfig_t struct
LimeConfig_t LimeCfg = initializeLimeConfig(Npulses, stringstream);
// Getting HDF Attributes from dedicated function
std::vector<Config2HDFattr_t> HDFattrVector = getHDFAttributes(LimeCfg);
size_t no_of_attr = HDFattrVector.size();
// Converting to array to maintain compatibility with older code
Config2HDFattr_t HDFattr[no_of_attr];
std::copy(HDFattrVector.begin(), HDFattrVector.end(), HDFattr);
bool dumpFlag = false;
@ -873,13 +931,13 @@ int main(int argc, char **argv) {
error();
/*
// read back DC offset in TxTSP
if (LMS_ReadParam(device, LMS7_DCCORRI_TXTSP, &DC_I) != 0) error();
if (LMS_ReadParam(device, LMS7_DCCORRQ_TXTSP, &DC_Q) != 0) error();
if (LMS_ReadParam(device, LMS7_DC_BYP_TXTSP, &DC_EN) != 0) error();
cout << "TxTSP DC corr (EN, I, Q): " << DC_EN << ", " << DC_I << ", " <<
DC_Q << endl;
*/
// read back DC offset in TxTSP
if (LMS_ReadParam(device, LMS7_DCCORRI_TXTSP, &DC_I) != 0) error();
if (LMS_ReadParam(device, LMS7_DCCORRQ_TXTSP, &DC_Q) != 0) error();
if (LMS_ReadParam(device, LMS7_DC_BYP_TXTSP, &DC_EN) != 0) error();
cout << "TxTSP DC corr (EN, I, Q): " << DC_EN << ", " << DC_I << ", " <<
DC_Q << endl;
*/
// print available antennae names
// select antenna port
@ -1590,9 +1648,9 @@ int main(int argc, char **argv) {
}
/*
// Check for the TX buffer and keep it filled
LMS_GetStreamStatus(tx_streams, &status); //Obtain TX stream stats
if (status.fifoFilledCount != 0) cout << TXFIFO_slots <<" TXFIFO slots
// Check for the TX buffer and keep it filled
LMS_GetStreamStatus(tx_streams, &status); //Obtain TX stream stats
if (status.fifoFilledCount != 0) cout << TXFIFO_slots <<" TXFIFO slots
free before start: " << status.fifoFilledCount << " samples of " <<
status.fifoSize << " with HW stamp " << status.timestamp <<" at RX
timestamp" << rx_metadata.timestamp << endl;
@ -1627,34 +1685,34 @@ int main(int argc, char **argv) {
// in the case of gap-free acquisition, that has usually a timestamp
// offset)
if (acquiring == false) {
acqbuf_pos = acqbuf[ii_rep * num_phavar + ii_pcyc];
samples2Acquire = rec_len;
acqbuf_pos = acqbuf[ii_rep * num_phavar + ii_pcyc];
samples2Acquire = rec_len;
} else {
delayedacqbuf_pos = acqbuf[ii_rep * num_phavar + ii_pcyc];
delayedAcqbufFwd = true;
}
acquiring = true;
// advance counters
if (LimeCfg.pcyc_bef_avg > 0) {
ii_pcyc++;
if (ii_pcyc == num_phavar) {
ii_pcyc = 0;
ii_avg++;
if (ii_avg == LimeCfg.averages) {
ii_avg = 0;
ii_rep++;
}
}
} else {
ii_avg++;
if (ii_avg == LimeCfg.averages) {
ii_avg = 0;
// advance counters
if (LimeCfg.pcyc_bef_avg > 0) {
ii_pcyc++;
if (ii_pcyc == num_phavar) {
ii_pcyc = 0;
ii_rep++;
ii_avg++;
if (ii_avg == LimeCfg.averages) {
ii_avg = 0;
ii_rep++;
}
}
} else {
ii_avg++;
if (ii_avg == LimeCfg.averages) {
ii_avg = 0;
ii_pcyc++;
if (ii_pcyc == num_phavar) {
ii_pcyc = 0;
ii_rep++;
}
}
}
@ -1668,7 +1726,7 @@ int main(int argc, char **argv) {
// small rectime_secs)
if (timestampOffset < 0) {
cout << "Next acq: rep " << ii_rep << ", avg " << ii_avg << ", pcyc "
<< ii_pcyc << " : sched/act tstamp: " << next_RXtimestamp << ", "
<< ii_pcyc << " : sched/act tstamp: " << next_RXtimestamp << ", "
<< rx_metadata.timestamp
<< " Diff to last: " << next_RXtimestamp - last_RXtimestamp
<< " Offset: "
@ -1684,7 +1742,7 @@ int main(int argc, char **argv) {
}
acquire = true;
// copy RX data into acquisition buffer
// copy RX data into acquisition buffer
if (acquiring) {
// standard case: copy everything, without offset
@ -1774,8 +1832,8 @@ int main(int argc, char **argv) {
ii_TXrep++;
// in case the experiment is finished
if (ii_TXrep == LimeCfg.repetitions)
;
TXFIFO_slots = 0;
;
TXFIFO_slots = 0;
}
}
} else {