
HTML5 Speedtest
by Federico Dossena

Version 4.2, April 26 2017
https://github.com/adolfintel/speedtest/

https://github.com/adolfintel/speedtest/

Introduction
In this document, we will introduce an XHR based HTML5 Speedtest and see how to use
it. This test measures download speed, upload speed, ping and jitter.

First of all, the requirements to run this test:

• Only modern browsers are supported: Internet Explorer 11, Microsoft Edge 12+,
Mozilla Firefox (last 2 versions), Google Chrome/Chromium (last 2 versions), Apple
Safari (last version). Javascript must be enabled. The test can run on any browser
that supports XHR Level 2 and Web Workers.

• Client side, the test can use up to 500 megabytes of RAM

• Server side, you'll need a fast connection (at least 100 Mbps recommended), and
your web server must accept large POST requests (up to 20 megabytes). Apache
and PHP are recommended, but not mandatory.

If this looks good, let's proceed and see how to use the test.

Installation
To install the test on your server, upload the following files:

• speedtest_worker.min.js

• garbage.php

• getIP.php

• empty.dat

You may also want to upload one of the examples to test it.

Later we'll see how to use the test without PHP.

Important: keep all the files together; all paths are relative to the js file

Usage
To run the test, you need to do 3 things:

• Create the worker

• Write some code that handles the responses coming from the worker

• Start the test

Creating the worker
var w=new Worker("speedtest_worker.min.js");

Important: use the minified version, it's smaller!

Response handler
First, we set up a timer that fetches the status of the worker continuously:
var timer=setInterval(function(){

w.postMessage("status");
}.bind(this),100);

Then we write a response handler that receives the status and updates the page. Later
we'll see the details of the format of the response.
w.onmessage=function(event){

var data=event.data.split(";");
var testState=data[0],

dlStatus=data[1],
ulStatus=data[2],
pingStatus=data[3],
jitterStatus=data[5],
clientIp=data[4];

if(testStatus>=4) clearInterval(timer); //test is finished or aborted

//update your page here

}.bind(this);

Response format
The response from the worker is composed of values separated by ; (semicolon) in this
format:

testState;dlStatus;ulStatus;pingStatus;clientIp;jitterStatus

• testState is an integer 0-5

◦ 0=Test starting

◦ 1=Download test in progress

◦ 2=Ping+Jitter test in progress

◦ 3=Upload test in progress

◦ 4=Test finished

◦ 5=Test aborted

• dlStatus is either

◦ Empty string (not started or aborted)

◦ Download speed in Megabit/s as a number with 2 digits

◦ The string "Fail" (test failed)

• ulStatus is either

◦ Empty string (not started or aborted)

◦ Upload speed in Megabit/s as a number with 2 digits

◦ The string "Fail" (test failed)

• pingStatus is either

◦ Empty string (not started or aborted)

◦ Estimated ping in milliseconds as a number with 2 digits

◦ The string "Fail" (test failed)

• clientIp is either

◦ Empty string (not fetched yet or failed)

◦ The client's IP address as a string

• jitterStatus is either

◦ Empty string (not started or aborted)

◦ Estimated jitter in milliseconds as a number with 2 digits (lower=stable
connection)

◦ The string "Fail" (test failed)

Starting the test
To start the test, send the start command to the worker:
w.postMessage('start');

This starts the test with the default settings, which is usually the best choice. If you want,
you can change these settings and pass them to the worker as JSON with like this:

w.postMessage('start {"param1":"value1", "param2":"value2", ...}');

Test parameters
• time_dl: How long the download test should be in seconds

Default: 15 Recommended >=5

• time_ul: How long the upload test should be in seconds

Default: 15 Recommended >=10

• count_ping: How many pings to perform in the ping test

Default: 35 Recommended >=20

• url_dl: path to garbage.php or a large file to use for the download test

Default: "garbage.php"
Important: path is relative to js file

• url_ul: path to ab empty file or empty.dat to use for the upload test

Default: "empty.dat"
Important: path is relative to js file

• url_ping: path to an empty file or empty.dat to use for the ping test

Default: "empty.dat"
Important: path is relative to js file

• url_getIp: path to getIP.php or replacement

Default: "getIP.php"
Important: path is relative to js file

• enable_quirks: enables browser-specific optimizations. These optimizations
override some of the default settings below. They do not override settings that are
explicitly set.

Default: true

• garbagePhp_chunkSize: size of chunks sent by garbage.php in megabytes

Default: 20 Recommended >=10
Default override: 5 on Safari if enable_quirks is true

• xhr_dlMultistream: how many streams should be opened for the download test

Default: 10 Recommended >=3
Default override: 3 on Edge if enable_quirks is true
Default override: 5 on Chromium-based if enable_quirks is true

• xhr_ulMultistream: how many streams should be opened for the upload test

Default: 3 Recommended >=1
Default override: 1 on Firefox if enable_quirks is true
Default override: 10 on Safari if enable_quirks is true

• allow_fetchAPI: allow the use of Fetch API for the download test instead of regular
XHR. Experimental, not recommended.

Default: false

• force_fetchAPI: forces the use of Fetch API on all browsers that support it

Default:false

Fetch API are used if the following conditions are met:

◦ allow_fetchAPI is true

◦ Chromium-based browser with support for Fetch API and enable_quirks is true
OR force_fetchAPI is true and the browser supports Fetch API

Aborting the test prematurely
The test can be aborted at any time by sending an abort command to the worker:
w.postMessage('abort');

This will terminate all network activity and stop the worker.

Important: do not simply kill the worker while it's running, as it will leave pending XHR
requests!

Using the test without PHP
If your server does not support PHP, or you're using something newer like Node.js, you
can still use this test by replacing garbage.php and getIP.php.

Replacements

Replacement for garbage.php
A replacement for garbage.php must generate incompressible garbage data.

A large file (10-100 Mbytes) is a possible replacement. You can get one here:
http://downloads.fdossena.com/geth.php?r=speedtest-bigfile

If you're using Node.js or some other server, your replacement should accept the ckSize
parameter (via GET) which tells it how many megabytes of garbage to generate. It is
important here to turn off compression, and generate incompressible data.

A symlink to /dev/urandom is also ok.

Replacement for getIP.php
Your replacement must simply respond with the client's IP as plaintext. Nothing fancy.

JS
You need to start the test with your replacements like this:
w.postMessage('start {"url_dl":"newGarbageURL", "url_getIp":"newIpURL"}

http://downloads.fdossena.com/geth.php?r=speedtest-bigfile

Known bugs and limitations
• Chrome: high CPU usage from XHR requests with very fast connections (like

gigabit). For this reason, the test may report inaccurate results if your CPU is too
slow. (Does not affect most computers)

• IE11: the upload test is not precise on very fast connections

• Safari: works, but needs more testing and tweaking for very fast connections

Making changes
Since this is an open source project, you can modify it.

To make changes to the speedtest itself, edit speedtest_worker.js

To create the minified version, use UglifyJS like this:
uglifyjs -c --screw-ie8 speedtest_worker.js > speedtest_worker.min.js

Pull requests are much appreciated. If you don't use github (or git), simply contact me.

Important: please add your name to modified versions to distinguish them from the main
project.

License
This software is under the GNU LGPL license, Version 3 or newer.

To put it short: you are free to use, study, modify, and redistribute this software and
modified versions of it, for free or for money. You can also use it in proprietary software
but all changes to this software must remain under the same GNU LGPL license.

https://github.com/mishoo/UglifyJS2

	Introduction
	Installation
	Usage
	Creating the worker
	Response handler
	Response format

	Starting the test
	Test parameters

	Aborting the test prematurely

	Using the test without PHP
	Replacements
	Replacement for garbage.php
	Replacement for getIP.php

	JS

	Known bugs and limitations
	Making changes
	License

