2018-10-21 09:50:03 +00:00
|
|
|
import tempfile
|
|
|
|
import pathlib
|
|
|
|
import os
|
|
|
|
import subprocess
|
|
|
|
import PIL.Image
|
|
|
|
import math
|
|
|
|
|
|
|
|
def tiles_to_equirectangular_blender(back, right, front, left, top, bottom,
|
|
|
|
rx=0, ry=0, rz=0, tmp=None, height=1920, width=3840, keep=False):
|
|
|
|
|
|
|
|
'''
|
|
|
|
Use Blender to convert the images into an equirectangular format. This
|
|
|
|
requires both Blender and cube2sphere to be installed and in $PATH.
|
|
|
|
|
|
|
|
Will create a temporary directory to store files in if no working directory
|
|
|
|
is passed (tmp). The function will return a PIL.Image object containing the
|
|
|
|
final equirectangular image.
|
|
|
|
|
|
|
|
:param back: PIL.Image containing the "back" part of the cube map
|
|
|
|
:param right: PIL.Image containing the "right" part of the cube map
|
|
|
|
:param front: PIL.Image containing the "front" part of the cube map
|
|
|
|
:param left: PIL.Image containting the "left" part of the cube map
|
|
|
|
:param top: PIL.Image containing the "top" part of the cube map
|
|
|
|
:param bottom: PIL.Image containing the "bottom" part of the cube map
|
|
|
|
:param rx: Rotation in degrees (integer) to apply on the x axis
|
|
|
|
:param ry: Rotation in degrees (integer) to apply on the y axis
|
|
|
|
:param rz: Rotation in degrees (integer) to apply on the z axis
|
|
|
|
:param tmp: Temporary directory to use. Will create one if None is passed
|
|
|
|
:param height: Target height of the output image
|
|
|
|
:param width: Target width of the output image
|
|
|
|
:param keep: Will not clean up temporary directory if True
|
|
|
|
:return: PIL.Image object containing the equirectangular image
|
|
|
|
'''
|
|
|
|
|
|
|
|
tmpdir = tempfile.TemporaryDirectory()
|
|
|
|
|
|
|
|
if tmp and not keep:
|
|
|
|
tmpdir.name = tmp
|
|
|
|
if not tmp:
|
|
|
|
tmp = tmpdir.name
|
|
|
|
|
|
|
|
'''Blender needs actual files rather than PIL objects, so create a folder
|
|
|
|
for those.'''
|
|
|
|
|
|
|
|
try:
|
|
|
|
pathlib.Path(tmp).mkdir(parents=True, exist_ok=True)
|
|
|
|
except:
|
|
|
|
print("Failed to create temporary directory.")
|
2018-10-21 10:40:16 +00:00
|
|
|
print(tmp)
|
2018-10-21 09:50:03 +00:00
|
|
|
raise
|
|
|
|
|
|
|
|
'''If no resolution is passed, assume the original resolution for output.'''
|
|
|
|
|
|
|
|
if not height and not width:
|
|
|
|
height = height or left.size[0] * 2
|
|
|
|
width = width or left.size[0] * 4
|
|
|
|
|
|
|
|
'''Move to temporary directory and create files for Blender to work with.'''
|
|
|
|
|
|
|
|
pre = os.getcwd()
|
|
|
|
os.chdir(tmp)
|
|
|
|
|
|
|
|
left.save("left.png")
|
|
|
|
front.save("front.png")
|
|
|
|
right.save("right.png")
|
|
|
|
back.save("back.png")
|
|
|
|
bottom.save("bottom.png")
|
|
|
|
top.save("top.png")
|
|
|
|
|
|
|
|
try:
|
|
|
|
process = subprocess.Popen(
|
|
|
|
['cube2sphere',
|
|
|
|
'front.png',
|
|
|
|
'back.png',
|
|
|
|
'right.png',
|
|
|
|
'left.png',
|
|
|
|
'top.png',
|
|
|
|
'bottom.png',
|
|
|
|
'-R', str(rx), str(ry), str(rz), # rotation on x/y/z axes
|
|
|
|
'-o', 'out',
|
|
|
|
'-f', 'png',
|
|
|
|
"-r", str(width), str(height)]
|
|
|
|
)
|
|
|
|
|
|
|
|
process.wait()
|
|
|
|
|
|
|
|
outimg = PIL.Image.open("%s/out0001.png" % tmp) # Read new image to PIL
|
|
|
|
|
|
|
|
os.chdir(pre) # Move back to previous working directory
|
|
|
|
|
|
|
|
if not keep:
|
|
|
|
tmpdir.cleanup() # Delete temporary directory to free space
|
|
|
|
|
|
|
|
# Flip the output image as inputs seem to be flipped. Return the image.
|
|
|
|
return outimg.transpose(PIL.Image.FLIP_LEFT_RIGHT)
|
|
|
|
|
|
|
|
except:
|
|
|
|
os.chdir(pre)
|
|
|
|
print("Something went wrong trying to convert to equirectangular.")
|
|
|
|
raise
|
|
|
|
|
|
|
|
def tiles_to_equirectangular(back, right, front, left, top, bottom):
|
|
|
|
'''
|
|
|
|
Use Blender to convert the images into an equirectangular format. This does
|
|
|
|
not require Blender to be installed, instead using a custom algorithm. This
|
|
|
|
is not tested thoroughly and will probably not work at this point.
|
|
|
|
|
|
|
|
The function will return a PIL.Image object containing the final
|
|
|
|
equirectangular image.
|
|
|
|
|
|
|
|
:param back: PIL.Image containing the "back" part of the cube map
|
|
|
|
:param right: PIL.Image containing the "right" part of the cube map
|
|
|
|
:param front: PIL.Image containing the "front" part of the cube map
|
|
|
|
:param left: PIL.Image containting the "left" part of the cube map
|
|
|
|
:param top: PIL.Image containing the "top" part of the cube map
|
|
|
|
:param bottom: PIL.Image containing the "bottom" part of the cube map
|
|
|
|
:return: PIL.Image object containing the equirectangular image
|
|
|
|
'''
|
|
|
|
|
|
|
|
dim = left.size[0]
|
|
|
|
|
|
|
|
raw = []
|
|
|
|
|
|
|
|
t_width = dim * 4
|
|
|
|
t_height = dim * 2
|
|
|
|
|
|
|
|
for y in range(t_height):
|
|
|
|
v = 1.0 - (float(y) / t_height)
|
|
|
|
phi = v * math.pi
|
|
|
|
|
|
|
|
for x in range(t_width):
|
|
|
|
u = float(x) / t_width
|
|
|
|
theta = u * math.pi * 2
|
|
|
|
|
|
|
|
x = math.cos(theta) * math.sin(phi)
|
|
|
|
y = math.sin(theta) * math.sin(phi)
|
|
|
|
z = math.cos(phi)
|
|
|
|
|
|
|
|
a = max(abs(x), abs(y), abs(z))
|
|
|
|
|
|
|
|
xx = x / a
|
|
|
|
yy = y / a
|
|
|
|
zz = z / a
|
|
|
|
|
|
|
|
if yy == -1:
|
|
|
|
currx = int(((-1 * math.tan(math.atan(x / y)) + 1.0) / 2.0) * dim)
|
|
|
|
ystore = int(((-1 * math.tan(math.atan(z / y)) + 1.0) / 2.0) * (dim - 1))
|
|
|
|
part = left
|
|
|
|
|
|
|
|
elif xx == 1:
|
|
|
|
currx = int(((math.tan(math.atan(y / x)) + 1.0) / 2.0) * dim)
|
|
|
|
ystore = int(((math.tan(math.atan(z / x)) + 1.0) / 2.0) * dim)
|
|
|
|
part = front
|
|
|
|
|
|
|
|
elif yy == 1:
|
|
|
|
currx = int(((-1 * math.tan(math.atan(x / y)) + 1.0) / 2.0) * dim)
|
|
|
|
ystore = int(((math.tan(math.atan(z / y)) + 1.0) / 2.0) * (dim - 1))
|
|
|
|
part = right
|
|
|
|
|
|
|
|
elif xx == -1:
|
|
|
|
currx = int(((math.tan(math.atan(y / x)) + 1.0) / 2.0) * dim)
|
|
|
|
ystore = int(((-1 * math.tan(math.atan(z / x)) + 1.0) / 2.0) * (dim - 1))
|
|
|
|
part = back
|
|
|
|
|
|
|
|
elif zz == 1:
|
|
|
|
currx = int(((math.tan(math.atan(y / z)) + 1.0) / 2.0) * dim)
|
|
|
|
ystore = int(((-1 * math.tan(math.atan(x / z)) + 1.0) / 2.0) * (dim - 1))
|
|
|
|
part = bottom
|
|
|
|
|
|
|
|
else:
|
|
|
|
currx = int(((-1 * math.tan(math.atan(y / z)) + 1.0) / 2.0) * dim)
|
|
|
|
ystore = int(((-1 * math.tan(math.atan(x / z)) + 1.0) / 2.0) * (dim - 1))
|
|
|
|
part = top
|
|
|
|
|
|
|
|
curry = (dim - 1) if ystore > (dim - 1) else ystore
|
|
|
|
|
|
|
|
if curry > (dim - 1):
|
|
|
|
curry = dim - 1
|
|
|
|
|
|
|
|
if currx > (dim - 1):
|
|
|
|
currx = dim - 1
|
|
|
|
|
|
|
|
raw.append(part.getpixel((currx, curry)))
|
|
|
|
|
|
|
|
output = PIL.Image.new("RGB", (t_width, t_height))
|
|
|
|
output.putdata(raw)
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
2018-10-21 10:40:16 +00:00
|
|
|
def multistitch(tiles):
|
|
|
|
'''
|
|
|
|
Takes a list of lists of lists containing PIL Image objects and stitches
|
|
|
|
them into one. Each box tile (first-order lists), line (second-order) and
|
|
|
|
column (third-order) must be equal in height and width.
|
|
|
|
|
|
|
|
:param faces: list of lists of lists containing PIL.Image objects
|
|
|
|
:return: list of stitched PIL.Image objects
|
|
|
|
'''
|
|
|
|
|
|
|
|
output = []
|
|
|
|
|
|
|
|
for tile in tiles:
|
|
|
|
output.append(stitch(tile))
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
2018-10-21 09:50:03 +00:00
|
|
|
def stitch(images):
|
|
|
|
'''
|
|
|
|
Takes a list of lists containing PIL Image objects and stitches them into
|
|
|
|
one. Each line (first-order lists) and column (second-order) must be equal
|
|
|
|
in height and width.
|
|
|
|
|
|
|
|
:param images: list of lists containing PIL.Image objects
|
|
|
|
:return: stitched PIL.Image object
|
|
|
|
'''
|
|
|
|
|
|
|
|
t_height = 0 # Total height of resulting image
|
|
|
|
t_width = 0 # Total width of resulting image
|
|
|
|
|
|
|
|
'''Calculate height of final image by adding up heights of the first images
|
|
|
|
of each row.'''
|
|
|
|
|
|
|
|
for row in images:
|
|
|
|
w, h = row[0].size
|
|
|
|
t_height += h
|
|
|
|
|
|
|
|
'''Calculate width of final image by adding up widths of the images in the
|
|
|
|
first row.'''
|
|
|
|
|
|
|
|
for image in images[0]:
|
|
|
|
w, h = image.size
|
|
|
|
t_width += w
|
|
|
|
|
|
|
|
'''Generate output Image object using calculated height and width.'''
|
|
|
|
|
|
|
|
output = PIL.Image.new("RGB", (t_width, t_height))
|
|
|
|
|
|
|
|
curry = 0 # Current y position (top = 0)
|
|
|
|
|
|
|
|
for row in images:
|
|
|
|
currx = 0 # Current x position (left = 0)
|
|
|
|
y_offset = 0 # How far down we have to go for the next line
|
|
|
|
|
|
|
|
for image in row:
|
|
|
|
|
|
|
|
'''Paste line of images into the output image.'''
|
|
|
|
|
|
|
|
output.paste(im=image, box=(currx, curry))
|
|
|
|
w, h = image.size
|
|
|
|
currx += w
|
|
|
|
|
|
|
|
if not y_offset:
|
|
|
|
y_offset = h
|
|
|
|
|
|
|
|
curry += y_offset
|
|
|
|
|
|
|
|
return output
|