268 lines
No EOL
9.4 KiB
Python
268 lines
No EOL
9.4 KiB
Python
import holoviews as hv
|
|
import pandas as pd
|
|
|
|
from django.utils import timezone
|
|
|
|
from math import pi
|
|
|
|
from bokeh.models import HoverTool
|
|
from bokeh.io import output_file, show
|
|
from bokeh.plotting import figure
|
|
from bokeh.transform import cumsum
|
|
from bokeh.layouts import row, column
|
|
from holoviews.operation import timeseries
|
|
from dateutil.relativedelta import relativedelta
|
|
|
|
from .models import Status, Mood, StatusActivity
|
|
|
|
def moodstats(user):
|
|
hv.extension('bokeh')
|
|
|
|
tooltips = [
|
|
('Date', '@date{%F %H:%M}'),
|
|
('Mood', '@name (@value)')
|
|
]
|
|
|
|
formatters = {
|
|
'@date': 'datetime'
|
|
}
|
|
|
|
hover = HoverTool(tooltips=tooltips, formatters=formatters)
|
|
|
|
pointdict = {"date": [], "value": [], "color": [], "name": []}
|
|
|
|
|
|
for status in Status.objects.filter(user=user):
|
|
if status.mood:
|
|
pointdict["date"].append(status.timestamp)
|
|
pointdict["value"].append(status.mood.value)
|
|
pointdict["color"].append(status.mood.color)
|
|
pointdict["name"].append(status.mood.name)
|
|
|
|
pointframe = pd.DataFrame.from_dict(pointdict)
|
|
|
|
points = hv.Points(pointframe)
|
|
|
|
points.opts(
|
|
tools=[hover], color='color', cmap='Category20',
|
|
line_color='black', size=25,
|
|
width=600, height=400, show_grid=True)
|
|
|
|
pointtuples = [(pointdict["date"][i], pointdict["value"][i]) for i in range(len(pointdict["date"]))]
|
|
|
|
line = hv.Curve(pointtuples)
|
|
|
|
maxval = Mood.objects.filter(user=user).latest("value").value
|
|
maxy = maxval + max(maxval * 0.1, 1)
|
|
|
|
maxx = timezone.now().timestamp() * 1000
|
|
minx = maxx - (60*60*24*7) * 1000
|
|
|
|
output = points * line * timeseries.rolling(line, rolling_window=7)
|
|
output.opts(ylim=(0, maxy), xlim=(minx, maxx))
|
|
|
|
return output
|
|
|
|
def activitystats(user):
|
|
output = {}
|
|
|
|
for status in Status.objects.filter(user=user):
|
|
for activity in status.activity_set:
|
|
if not activity in output.keys():
|
|
output[activity] = {
|
|
"alltime": 0,
|
|
"yearly": 0,
|
|
"monthly": 0,
|
|
"weekly": 0
|
|
}
|
|
|
|
output[activity]["alltime"] += 1
|
|
|
|
if status.timestamp > timezone.now() - relativedelta(years=1):
|
|
output[activity]["yearly"] += 1
|
|
|
|
if status.timestamp > timezone.now() - relativedelta(months=1):
|
|
output[activity]["monthly"] += 1
|
|
|
|
if status.timestamp > timezone.now() - relativedelta(weeks=1):
|
|
output[activity]["weekly"] += 1
|
|
|
|
return output
|
|
|
|
def moodpies(user):
|
|
hv.extension('bokeh')
|
|
|
|
maxdate = timezone.now()
|
|
|
|
weekly_moods = Status.objects.filter(user=user, timestamp__lte=maxdate, timestamp__gte=maxdate - relativedelta(weeks=1))
|
|
monthly_moods = Status.objects.filter(user=user, timestamp__lte=maxdate, timestamp__gte=maxdate - relativedelta(months=1))
|
|
yearly_moods = Status.objects.filter(user=user, timestamp__lte=maxdate, timestamp__gte=maxdate - relativedelta(years=1))
|
|
|
|
weekly = dict()
|
|
colors = []
|
|
|
|
for mood in Mood.objects.filter(user=user):
|
|
weekly[mood.name] = 0
|
|
colors.append(mood.color)
|
|
|
|
monthly, yearly = weekly.copy(), weekly.copy()
|
|
|
|
for status in weekly_moods:
|
|
if status.mood:
|
|
weekly[status.mood.name] += 1
|
|
|
|
for status in monthly_moods:
|
|
if status.mood:
|
|
monthly[status.mood.name] += 1
|
|
|
|
for status in yearly_moods:
|
|
if status.mood:
|
|
yearly[status.mood.name] += 1
|
|
|
|
weekly_data = pd.Series(weekly).reset_index(name='value').rename(columns={'index':'mood'})
|
|
weekly_data['angle'] = weekly_data['value']/weekly_data['value'].sum() * 2*pi
|
|
weekly_data['color'] = colors
|
|
|
|
weekly_chart = figure(plot_height=350, title="Weekly", toolbar_location=None,
|
|
tools="hover", tooltips="@mood: @value")
|
|
weekly_chart.axis.visible = False
|
|
|
|
weekly_chart.wedge(x=0, y=1, radius=0.4,
|
|
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
|
|
line_color="white", fill_color='color', legend='mood', source=weekly_data)
|
|
|
|
monthly_data = pd.Series(monthly).reset_index(name='value').rename(columns={'index':'mood'})
|
|
monthly_data['angle'] = monthly_data['value']/monthly_data['value'].sum() * 2*pi
|
|
monthly_data['color'] = colors
|
|
|
|
monthly_chart = figure(plot_height=350, title="Monthly", toolbar_location=None,
|
|
tools="hover", tooltips="@mood: @value")
|
|
monthly_chart.axis.visible = False
|
|
|
|
monthly_chart.wedge(x=0, y=1, radius=0.4,
|
|
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
|
|
line_color="white", fill_color='color', legend='mood', source=monthly_data)
|
|
|
|
yearly_data = pd.Series(yearly).reset_index(name='value').rename(columns={'index':'mood'})
|
|
yearly_data['angle'] = yearly_data['value']/yearly_data['value'].sum() * 2*pi
|
|
yearly_data['color'] = colors
|
|
|
|
yearly_chart = figure(plot_height=350, title="Yearly", toolbar_location=None,
|
|
tools="hover", tooltips="@mood: @value")
|
|
yearly_chart.axis.visible = False
|
|
|
|
yearly_chart.wedge(x=0, y=1, radius=0.4,
|
|
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
|
|
line_color="white", fill_color='color', legend='mood', source=yearly_data)
|
|
|
|
return column(weekly_chart, monthly_chart, yearly_chart)
|
|
|
|
def activitymood(activity):
|
|
hv.extension('bokeh')
|
|
|
|
tooltips = [
|
|
('Date', '@date{%F %H:%M}'),
|
|
('Mood', '@name (@value)')
|
|
]
|
|
|
|
formatters = {
|
|
'@date': 'datetime'
|
|
}
|
|
|
|
hover = HoverTool(tooltips=tooltips, formatters=formatters)
|
|
|
|
pointdict = {"date": [], "value": [], "color": [], "name": []}
|
|
|
|
for statusactivity in StatusActivity.objects.filter(activity=activity):
|
|
if statusactivity.status.mood:
|
|
pointdict["date"].append(statusactivity.status.timestamp)
|
|
pointdict["value"].append(statusactivity.status.mood.value)
|
|
pointdict["color"].append(statusactivity.status.mood.color)
|
|
pointdict["name"].append(statusactivity.status.mood.name)
|
|
|
|
pointframe = pd.DataFrame.from_dict(pointdict)
|
|
|
|
points = hv.Points(pointframe)
|
|
|
|
points.opts(
|
|
tools=[hover], color='color', cmap='Category20',
|
|
line_color='black', size=25,
|
|
width=600, height=400, show_grid=True)
|
|
|
|
pointtuples = [(pointdict["date"][i], pointdict["value"][i]) for i in range(len(pointdict["date"]))]
|
|
|
|
line = hv.Curve(pointtuples)
|
|
|
|
maxval = Mood.objects.filter(user=activity.user).latest("value").value
|
|
maxy = maxval + max(maxval * 0.1, 1)
|
|
|
|
maxx = timezone.now().timestamp() * 1000
|
|
minx = maxx - (60*60*24*7) * 1000
|
|
|
|
output = points * line * timeseries.rolling(line, rolling_window=7)
|
|
output.opts(ylim=(0, maxy), xlim=(minx, maxx))
|
|
|
|
return output
|
|
|
|
def activitypies(activity):
|
|
hv.extension('bokeh')
|
|
|
|
maxdate = timezone.now()
|
|
|
|
sa = StatusActivity.objects.filter(activity=activity)
|
|
|
|
weekly = dict()
|
|
colors = []
|
|
|
|
for mood in Mood.objects.filter(user=activity.user):
|
|
weekly[mood.name] = 0
|
|
colors.append(mood.color)
|
|
|
|
monthly, yearly = weekly.copy(), weekly.copy()
|
|
|
|
for single in sa:
|
|
if single.status.mood:
|
|
if single.status.timestamp > timezone.now() - relativedelta(weeks=1):
|
|
weekly[single.status.mood.name] += 1
|
|
if single.status.timestamp > timezone.now() - relativedelta(months=1):
|
|
monthly[single.status.mood.name] += 1
|
|
if single.status.timestamp > timezone.now() - relativedelta(years=1):
|
|
yearly[single.status.mood.name] += 1
|
|
|
|
weekly_data = pd.Series(weekly).reset_index(name='value').rename(columns={'index':'mood'})
|
|
weekly_data['angle'] = weekly_data['value']/weekly_data['value'].sum() * 2*pi
|
|
weekly_data['color'] = colors
|
|
|
|
weekly_chart = figure(plot_height=350, title="Weekly", toolbar_location=None,
|
|
tools="hover", tooltips="@mood: @value")
|
|
weekly_chart.axis.visible = False
|
|
|
|
weekly_chart.wedge(x=0, y=1, radius=0.4,
|
|
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
|
|
line_color="white", fill_color='color', legend='mood', source=weekly_data)
|
|
|
|
monthly_data = pd.Series(monthly).reset_index(name='value').rename(columns={'index':'mood'})
|
|
monthly_data['angle'] = monthly_data['value']/monthly_data['value'].sum() * 2*pi
|
|
monthly_data['color'] = colors
|
|
|
|
monthly_chart = figure(plot_height=350, title="Monthly", toolbar_location=None,
|
|
tools="hover", tooltips="@mood: @value")
|
|
monthly_chart.axis.visible = False
|
|
|
|
monthly_chart.wedge(x=0, y=1, radius=0.4,
|
|
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
|
|
line_color="white", fill_color='color', legend='mood', source=monthly_data)
|
|
|
|
yearly_data = pd.Series(yearly).reset_index(name='value').rename(columns={'index':'mood'})
|
|
yearly_data['angle'] = yearly_data['value']/yearly_data['value'].sum() * 2*pi
|
|
yearly_data['color'] = colors
|
|
|
|
yearly_chart = figure(plot_height=350, title="Yearly", toolbar_location=None,
|
|
tools="hover", tooltips="@mood: @value")
|
|
yearly_chart.axis.visible = False
|
|
|
|
yearly_chart.wedge(x=0, y=1, radius=0.4,
|
|
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
|
|
line_color="white", fill_color='color', legend='mood', source=yearly_data)
|
|
|
|
return column(weekly_chart, monthly_chart, yearly_chart) |