kumify/mood/statistics.py
2021-03-03 08:39:26 +01:00

268 lines
No EOL
9.4 KiB
Python

import holoviews as hv
import pandas as pd
from django.utils import timezone
from math import pi
from bokeh.models import HoverTool
from bokeh.io import output_file, show
from bokeh.plotting import figure
from bokeh.transform import cumsum
from bokeh.layouts import row, column
from holoviews.operation import timeseries
from dateutil.relativedelta import relativedelta
from .models import Status, Mood, StatusActivity
def moodstats(user):
hv.extension('bokeh')
tooltips = [
('Date', '@date{%F %H:%M}'),
('Mood', '@name (@value)')
]
formatters = {
'@date': 'datetime'
}
hover = HoverTool(tooltips=tooltips, formatters=formatters)
pointdict = {"date": [], "value": [], "color": [], "name": []}
for status in Status.objects.filter(user=user):
if status.mood:
pointdict["date"].append(status.timestamp)
pointdict["value"].append(status.mood.value)
pointdict["color"].append(status.mood.color)
pointdict["name"].append(status.mood.name)
pointframe = pd.DataFrame.from_dict(pointdict)
points = hv.Points(pointframe)
points.opts(
tools=[hover], color='color', cmap='Category20',
line_color='black', size=25,
width=600, height=400, show_grid=True)
pointtuples = [(pointdict["date"][i], pointdict["value"][i]) for i in range(len(pointdict["date"]))]
line = hv.Curve(pointtuples)
maxval = Mood.objects.filter(user=user).latest("value").value
maxy = maxval + max(maxval * 0.1, 1)
maxx = timezone.now().timestamp() * 1000
minx = maxx - (60*60*24*7) * 1000
output = points * line * timeseries.rolling(line, rolling_window=7)
output.opts(ylim=(0, maxy), xlim=(minx, maxx))
return output
def activitystats(user):
output = {}
for status in Status.objects.filter(user=user):
for activity in status.activity_set:
if not activity in output.keys():
output[activity] = {
"alltime": 0,
"yearly": 0,
"monthly": 0,
"weekly": 0
}
output[activity]["alltime"] += 1
if status.timestamp > timezone.now() - relativedelta(years=1):
output[activity]["yearly"] += 1
if status.timestamp > timezone.now() - relativedelta(months=1):
output[activity]["monthly"] += 1
if status.timestamp > timezone.now() - relativedelta(weeks=1):
output[activity]["weekly"] += 1
return output
def moodpies(user):
hv.extension('bokeh')
maxdate = timezone.now()
weekly_moods = Status.objects.filter(user=user, timestamp__lte=maxdate, timestamp__gte=maxdate - relativedelta(weeks=1))
monthly_moods = Status.objects.filter(user=user, timestamp__lte=maxdate, timestamp__gte=maxdate - relativedelta(months=1))
yearly_moods = Status.objects.filter(user=user, timestamp__lte=maxdate, timestamp__gte=maxdate - relativedelta(years=1))
weekly = dict()
colors = []
for mood in Mood.objects.filter(user=user):
weekly[mood.name] = 0
colors.append(mood.color)
monthly, yearly = weekly.copy(), weekly.copy()
for status in weekly_moods:
if status.mood:
weekly[status.mood.name] += 1
for status in monthly_moods:
if status.mood:
monthly[status.mood.name] += 1
for status in yearly_moods:
if status.mood:
yearly[status.mood.name] += 1
weekly_data = pd.Series(weekly).reset_index(name='value').rename(columns={'index':'mood'})
weekly_data['angle'] = weekly_data['value']/weekly_data['value'].sum() * 2*pi
weekly_data['color'] = colors
weekly_chart = figure(plot_height=350, title="Weekly", toolbar_location=None,
tools="hover", tooltips="@mood: @value")
weekly_chart.axis.visible = False
weekly_chart.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend='mood', source=weekly_data)
monthly_data = pd.Series(monthly).reset_index(name='value').rename(columns={'index':'mood'})
monthly_data['angle'] = monthly_data['value']/monthly_data['value'].sum() * 2*pi
monthly_data['color'] = colors
monthly_chart = figure(plot_height=350, title="Monthly", toolbar_location=None,
tools="hover", tooltips="@mood: @value")
monthly_chart.axis.visible = False
monthly_chart.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend='mood', source=monthly_data)
yearly_data = pd.Series(yearly).reset_index(name='value').rename(columns={'index':'mood'})
yearly_data['angle'] = yearly_data['value']/yearly_data['value'].sum() * 2*pi
yearly_data['color'] = colors
yearly_chart = figure(plot_height=350, title="Yearly", toolbar_location=None,
tools="hover", tooltips="@mood: @value")
yearly_chart.axis.visible = False
yearly_chart.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend='mood', source=yearly_data)
return column(weekly_chart, monthly_chart, yearly_chart)
def activitymood(activity):
hv.extension('bokeh')
tooltips = [
('Date', '@date{%F %H:%M}'),
('Mood', '@name (@value)')
]
formatters = {
'@date': 'datetime'
}
hover = HoverTool(tooltips=tooltips, formatters=formatters)
pointdict = {"date": [], "value": [], "color": [], "name": []}
for statusactivity in StatusActivity.objects.filter(activity=activity):
if statusactivity.status.mood:
pointdict["date"].append(statusactivity.status.timestamp)
pointdict["value"].append(statusactivity.status.mood.value)
pointdict["color"].append(statusactivity.status.mood.color)
pointdict["name"].append(statusactivity.status.mood.name)
pointframe = pd.DataFrame.from_dict(pointdict)
points = hv.Points(pointframe)
points.opts(
tools=[hover], color='color', cmap='Category20',
line_color='black', size=25,
width=600, height=400, show_grid=True)
pointtuples = [(pointdict["date"][i], pointdict["value"][i]) for i in range(len(pointdict["date"]))]
line = hv.Curve(pointtuples)
maxval = Mood.objects.filter(user=activity.user).latest("value").value
maxy = maxval + max(maxval * 0.1, 1)
maxx = timezone.now().timestamp() * 1000
minx = maxx - (60*60*24*7) * 1000
output = points * line * timeseries.rolling(line, rolling_window=7)
output.opts(ylim=(0, maxy), xlim=(minx, maxx))
return output
def activitypies(activity):
hv.extension('bokeh')
maxdate = timezone.now()
sa = StatusActivity.objects.filter(activity=activity)
weekly = dict()
colors = []
for mood in Mood.objects.filter(user=activity.user):
weekly[mood.name] = 0
colors.append(mood.color)
monthly, yearly = weekly.copy(), weekly.copy()
for single in sa:
if single.status.mood:
if single.status.timestamp > timezone.now() - relativedelta(weeks=1):
weekly[single.status.mood.name] += 1
if single.status.timestamp > timezone.now() - relativedelta(months=1):
monthly[single.status.mood.name] += 1
if single.status.timestamp > timezone.now() - relativedelta(years=1):
yearly[single.status.mood.name] += 1
weekly_data = pd.Series(weekly).reset_index(name='value').rename(columns={'index':'mood'})
weekly_data['angle'] = weekly_data['value']/weekly_data['value'].sum() * 2*pi
weekly_data['color'] = colors
weekly_chart = figure(plot_height=350, title="Weekly", toolbar_location=None,
tools="hover", tooltips="@mood: @value")
weekly_chart.axis.visible = False
weekly_chart.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend='mood', source=weekly_data)
monthly_data = pd.Series(monthly).reset_index(name='value').rename(columns={'index':'mood'})
monthly_data['angle'] = monthly_data['value']/monthly_data['value'].sum() * 2*pi
monthly_data['color'] = colors
monthly_chart = figure(plot_height=350, title="Monthly", toolbar_location=None,
tools="hover", tooltips="@mood: @value")
monthly_chart.axis.visible = False
monthly_chart.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend='mood', source=monthly_data)
yearly_data = pd.Series(yearly).reset_index(name='value').rename(columns={'index':'mood'})
yearly_data['angle'] = yearly_data['value']/yearly_data['value'].sum() * 2*pi
yearly_data['color'] = colors
yearly_chart = figure(plot_height=350, title="Yearly", toolbar_location=None,
tools="hover", tooltips="@mood: @value")
yearly_chart.axis.visible = False
yearly_chart.wedge(x=0, y=1, radius=0.4,
start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
line_color="white", fill_color='color', legend='mood', source=yearly_data)
return column(weekly_chart, monthly_chart, yearly_chart)