Kumi
ae97cfa30e
Removed unnecessary imports across various modules to streamline the application's dependencies and improve loading times. Specific changes include the removal of unused Django model and admin imports in several apps, simplifying view imports by eliminating unutilized components, and cleaning up static CSS for better maintainability. Corrections were made to conditional expressions for clearer logic. The removal of the django.test.TestCase import in test files reflects a shift towards a different testing strategy or the current lack of tests. Exception handling has been made more explicit to avoid catching unintended exceptions, paving the way for more robust error handling and logging in the future. Additionally, a new CSS file was added for frontend enhancements, indicating ongoing UI/UX improvements. These changes collectively aim to make the codebase more maintainable and efficient, reducing clutter and focusing on used functionalities. It's a step towards optimizing the application's performance and ensuring a clean, manageable codebase for future development.
379 lines
10 KiB
Python
379 lines
10 KiB
Python
import holoviews as hv
|
|
import pandas as pd
|
|
|
|
from django.utils import timezone
|
|
|
|
from math import pi
|
|
|
|
from bokeh.models import HoverTool
|
|
from bokeh.plotting import figure
|
|
from bokeh.transform import cumsum
|
|
from bokeh.layouts import column
|
|
from holoviews.operation import timeseries
|
|
from dateutil.relativedelta import relativedelta
|
|
|
|
from .models import Status, Mood, StatusActivity
|
|
|
|
|
|
def moodstats(user):
|
|
hv.extension("bokeh")
|
|
|
|
tooltips = [("Date", "@date{%F %H:%M}"), ("Mood", "@name (@value)")]
|
|
|
|
formatters = {"@date": "datetime"}
|
|
|
|
hover = HoverTool(tooltips=tooltips, formatters=formatters)
|
|
|
|
pointdict = {"date": [], "value": [], "color": [], "name": []}
|
|
|
|
for status in Status.objects.filter(user=user):
|
|
if status.mood:
|
|
pointdict["date"].append(status.timestamp)
|
|
pointdict["value"].append(status.mood.value)
|
|
pointdict["color"].append(status.mood.color)
|
|
pointdict["name"].append(status.mood.name)
|
|
|
|
pointframe = pd.DataFrame.from_dict(pointdict)
|
|
|
|
points = hv.Points(pointframe)
|
|
|
|
points.opts(
|
|
tools=[hover],
|
|
color="color",
|
|
cmap="Category20",
|
|
line_color="black",
|
|
size=25,
|
|
width=600,
|
|
height=400,
|
|
show_grid=True,
|
|
)
|
|
|
|
pointtuples = [
|
|
(pointdict["date"][i], pointdict["value"][i])
|
|
for i in range(len(pointdict["date"]))
|
|
]
|
|
|
|
line = hv.Curve(pointtuples)
|
|
|
|
maxval = Mood.objects.filter(user=user).latest("value").value
|
|
maxy = maxval + max(maxval * 0.1, 1)
|
|
|
|
maxx = timezone.now().timestamp() * 1000
|
|
minx = maxx - (60 * 60 * 24 * 7) * 1000
|
|
|
|
output = points * line * timeseries.rolling(line, rolling_window=7)
|
|
output.opts(ylim=(0, maxy), xlim=(minx, maxx))
|
|
|
|
return output
|
|
|
|
|
|
def activitystats(user):
|
|
output = {}
|
|
|
|
for status in Status.objects.filter(user=user):
|
|
for activity in status.activity_set:
|
|
if activity not in output.keys():
|
|
output[activity] = {
|
|
"alltime": 0,
|
|
"yearly": 0,
|
|
"monthly": 0,
|
|
"weekly": 0,
|
|
}
|
|
|
|
output[activity]["alltime"] += 1
|
|
|
|
if status.timestamp > timezone.now() - relativedelta(years=1):
|
|
output[activity]["yearly"] += 1
|
|
|
|
if status.timestamp > timezone.now() - relativedelta(months=1):
|
|
output[activity]["monthly"] += 1
|
|
|
|
if status.timestamp > timezone.now() - relativedelta(weeks=1):
|
|
output[activity]["weekly"] += 1
|
|
|
|
return output
|
|
|
|
|
|
def moodpies(user):
|
|
hv.extension("bokeh")
|
|
|
|
maxdate = timezone.now()
|
|
|
|
weekly_moods = Status.objects.filter(
|
|
user=user,
|
|
timestamp__lte=maxdate,
|
|
timestamp__gte=maxdate - relativedelta(weeks=1),
|
|
)
|
|
monthly_moods = Status.objects.filter(
|
|
user=user,
|
|
timestamp__lte=maxdate,
|
|
timestamp__gte=maxdate - relativedelta(months=1),
|
|
)
|
|
yearly_moods = Status.objects.filter(
|
|
user=user,
|
|
timestamp__lte=maxdate,
|
|
timestamp__gte=maxdate - relativedelta(years=1),
|
|
)
|
|
|
|
weekly = dict()
|
|
colors = []
|
|
|
|
for mood in Mood.objects.filter(user=user):
|
|
weekly[mood.name] = 0
|
|
colors.append(mood.color)
|
|
|
|
monthly, yearly = weekly.copy(), weekly.copy()
|
|
|
|
for status in weekly_moods:
|
|
if status.mood:
|
|
weekly[status.mood.name] += 1
|
|
|
|
for status in monthly_moods:
|
|
if status.mood:
|
|
monthly[status.mood.name] += 1
|
|
|
|
for status in yearly_moods:
|
|
if status.mood:
|
|
yearly[status.mood.name] += 1
|
|
|
|
weekly_data = (
|
|
pd.Series(weekly).reset_index(name="value").rename(columns={"index": "mood"})
|
|
)
|
|
weekly_data["angle"] = weekly_data["value"] / weekly_data["value"].sum() * 2 * pi
|
|
weekly_data["color"] = colors
|
|
|
|
weekly_chart = figure(
|
|
height=350,
|
|
title="Weekly",
|
|
toolbar_location=None,
|
|
tools="hover",
|
|
tooltips="@mood: @value",
|
|
)
|
|
weekly_chart.axis.visible = False
|
|
|
|
weekly_chart.wedge(
|
|
x=0,
|
|
y=1,
|
|
radius=0.4,
|
|
start_angle=cumsum("angle", include_zero=True),
|
|
end_angle=cumsum("angle"),
|
|
line_color="white",
|
|
fill_color="color",
|
|
legend_label="mood",
|
|
source=weekly_data,
|
|
)
|
|
|
|
monthly_data = (
|
|
pd.Series(monthly).reset_index(name="value").rename(columns={"index": "mood"})
|
|
)
|
|
monthly_data["angle"] = monthly_data["value"] / monthly_data["value"].sum() * 2 * pi
|
|
monthly_data["color"] = colors
|
|
|
|
monthly_chart = figure(
|
|
height=350,
|
|
title="Monthly",
|
|
toolbar_location=None,
|
|
tools="hover",
|
|
tooltips="@mood: @value",
|
|
)
|
|
monthly_chart.axis.visible = False
|
|
|
|
monthly_chart.wedge(
|
|
x=0,
|
|
y=1,
|
|
radius=0.4,
|
|
start_angle=cumsum("angle", include_zero=True),
|
|
end_angle=cumsum("angle"),
|
|
line_color="white",
|
|
fill_color="color",
|
|
legend_label="mood",
|
|
source=monthly_data,
|
|
)
|
|
|
|
yearly_data = (
|
|
pd.Series(yearly).reset_index(name="value").rename(columns={"index": "mood"})
|
|
)
|
|
yearly_data["angle"] = yearly_data["value"] / yearly_data["value"].sum() * 2 * pi
|
|
yearly_data["color"] = colors
|
|
|
|
yearly_chart = figure(
|
|
height=350,
|
|
title="Yearly",
|
|
toolbar_location=None,
|
|
tools="hover",
|
|
tooltips="@mood: @value",
|
|
)
|
|
yearly_chart.axis.visible = False
|
|
|
|
yearly_chart.wedge(
|
|
x=0,
|
|
y=1,
|
|
radius=0.4,
|
|
start_angle=cumsum("angle", include_zero=True),
|
|
end_angle=cumsum("angle"),
|
|
line_color="white",
|
|
fill_color="color",
|
|
legend_label="mood",
|
|
source=yearly_data,
|
|
)
|
|
|
|
return column(weekly_chart, monthly_chart, yearly_chart)
|
|
|
|
|
|
def activitymood(activity):
|
|
hv.extension("bokeh")
|
|
|
|
tooltips = [("Date", "@date{%F %H:%M}"), ("Mood", "@name (@value)")]
|
|
|
|
formatters = {"@date": "datetime"}
|
|
|
|
hover = HoverTool(tooltips=tooltips, formatters=formatters)
|
|
|
|
pointdict = {"date": [], "value": [], "color": [], "name": []}
|
|
|
|
for statusactivity in StatusActivity.objects.filter(activity=activity):
|
|
if statusactivity.status.mood:
|
|
pointdict["date"].append(statusactivity.status.timestamp)
|
|
pointdict["value"].append(statusactivity.status.mood.value)
|
|
pointdict["color"].append(statusactivity.status.mood.color)
|
|
pointdict["name"].append(statusactivity.status.mood.name)
|
|
|
|
pointframe = pd.DataFrame.from_dict(pointdict)
|
|
|
|
points = hv.Points(pointframe)
|
|
|
|
points.opts(
|
|
tools=[hover],
|
|
color="color",
|
|
cmap="Category20",
|
|
line_color="black",
|
|
size=25,
|
|
width=600,
|
|
height=400,
|
|
show_grid=True,
|
|
)
|
|
|
|
pointtuples = [
|
|
(pointdict["date"][i], pointdict["value"][i])
|
|
for i in range(len(pointdict["date"]))
|
|
]
|
|
|
|
line = hv.Curve(pointtuples)
|
|
|
|
maxval = Mood.objects.filter(user=activity.user).latest("value").value
|
|
maxy = maxval + max(maxval * 0.1, 1)
|
|
|
|
maxx = timezone.now().timestamp() * 1000
|
|
minx = maxx - (60 * 60 * 24 * 7) * 1000
|
|
|
|
output = points * line * timeseries.rolling(line, rolling_window=7)
|
|
output.opts(ylim=(0, maxy), xlim=(minx, maxx))
|
|
|
|
return output
|
|
|
|
|
|
def activitypies(activity):
|
|
hv.extension("bokeh")
|
|
|
|
sa = StatusActivity.objects.filter(activity=activity)
|
|
|
|
weekly = dict()
|
|
colors = []
|
|
|
|
for mood in Mood.objects.filter(user=activity.user):
|
|
weekly[mood.name] = 0
|
|
colors.append(mood.color)
|
|
|
|
monthly, yearly = weekly.copy(), weekly.copy()
|
|
|
|
for single in sa:
|
|
if single.status.mood:
|
|
if single.status.timestamp > timezone.now() - relativedelta(weeks=1):
|
|
weekly[single.status.mood.name] += 1
|
|
if single.status.timestamp > timezone.now() - relativedelta(months=1):
|
|
monthly[single.status.mood.name] += 1
|
|
if single.status.timestamp > timezone.now() - relativedelta(years=1):
|
|
yearly[single.status.mood.name] += 1
|
|
|
|
weekly_data = (
|
|
pd.Series(weekly).reset_index(name="value").rename(columns={"index": "mood"})
|
|
)
|
|
weekly_data["angle"] = weekly_data["value"] / weekly_data["value"].sum() * 2 * pi
|
|
weekly_data["color"] = colors
|
|
|
|
weekly_chart = figure(
|
|
height=350,
|
|
title="Weekly",
|
|
toolbar_location=None,
|
|
tools="hover",
|
|
tooltips="@mood: @value",
|
|
)
|
|
weekly_chart.axis.visible = False
|
|
|
|
weekly_chart.wedge(
|
|
x=0,
|
|
y=1,
|
|
radius=0.4,
|
|
start_angle=cumsum("angle", include_zero=True),
|
|
end_angle=cumsum("angle"),
|
|
line_color="white",
|
|
fill_color="color",
|
|
legend_label="mood",
|
|
source=weekly_data,
|
|
)
|
|
|
|
monthly_data = (
|
|
pd.Series(monthly).reset_index(name="value").rename(columns={"index": "mood"})
|
|
)
|
|
monthly_data["angle"] = monthly_data["value"] / monthly_data["value"].sum() * 2 * pi
|
|
monthly_data["color"] = colors
|
|
|
|
monthly_chart = figure(
|
|
height=350,
|
|
title="Monthly",
|
|
toolbar_location=None,
|
|
tools="hover",
|
|
tooltips="@mood: @value",
|
|
)
|
|
monthly_chart.axis.visible = False
|
|
|
|
monthly_chart.wedge(
|
|
x=0,
|
|
y=1,
|
|
radius=0.4,
|
|
start_angle=cumsum("angle", include_zero=True),
|
|
end_angle=cumsum("angle"),
|
|
line_color="white",
|
|
fill_color="color",
|
|
legend_label="mood",
|
|
source=monthly_data,
|
|
)
|
|
|
|
yearly_data = (
|
|
pd.Series(yearly).reset_index(name="value").rename(columns={"index": "mood"})
|
|
)
|
|
yearly_data["angle"] = yearly_data["value"] / yearly_data["value"].sum() * 2 * pi
|
|
yearly_data["color"] = colors
|
|
|
|
yearly_chart = figure(
|
|
height=350,
|
|
title="Yearly",
|
|
toolbar_location=None,
|
|
tools="hover",
|
|
tooltips="@mood: @value",
|
|
)
|
|
yearly_chart.axis.visible = False
|
|
|
|
yearly_chart.wedge(
|
|
x=0,
|
|
y=1,
|
|
radius=0.4,
|
|
start_angle=cumsum("angle", include_zero=True),
|
|
end_angle=cumsum("angle"),
|
|
line_color="white",
|
|
fill_color="color",
|
|
legend_label="mood",
|
|
source=yearly_data,
|
|
)
|
|
|
|
return column(weekly_chart, monthly_chart, yearly_chart)
|