danicoin/tests/System/TimerTests.cpp
2016-01-18 15:33:29 +00:00

268 lines
7.8 KiB
C++
Executable file

// Copyright (c) 2011-2016 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <thread>
#include <System/Context.h>
#include <System/Dispatcher.h>
#include <System/ContextGroup.h>
#include <System/Event.h>
#include <System/InterruptedException.h>
#include <System/Timer.h>
#include <gtest/gtest.h>
using namespace System;
class TimerTests : public testing::Test {
public:
TimerTests() : contextGroup(dispatcher) {
}
Dispatcher dispatcher;
ContextGroup contextGroup;
};
TEST_F(TimerTests, timerIsWorking) {
bool done = false;
contextGroup.spawn([&]() {
done = true;
});
ASSERT_FALSE(done);
Timer(dispatcher).sleep(std::chrono::milliseconds(10));
ASSERT_TRUE(done);
}
TEST_F(TimerTests, movedTimerIsWorking) {
Timer t{Timer{dispatcher}};
bool done = false;
contextGroup.spawn([&]() {
done = true;
});
ASSERT_FALSE(done);
t.sleep(std::chrono::milliseconds(10));
ASSERT_TRUE(done);
}
TEST_F(TimerTests, movedAndStoopedTimerIsWorking) {
contextGroup.spawn([&] {
Timer src(dispatcher);
contextGroup.interrupt();
Timer t(std::move(src));
ASSERT_ANY_THROW(t.sleep(std::chrono::milliseconds(1)));
});
}
TEST_F(TimerTests, doubleTimerTest) {
auto begin = std::chrono::high_resolution_clock::now();
Event first(dispatcher);
Event second(dispatcher);
Context<> context(dispatcher, [&] {
Timer(dispatcher).sleep(std::chrono::milliseconds(100));
first.set();
});
Context<> contextSecond(dispatcher, [&] {
Timer(dispatcher).sleep(std::chrono::milliseconds(200));
second.set();
});
first.wait();
second.wait();
ASSERT_GE(std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - begin).count(), 150);
ASSERT_TRUE((std::chrono::high_resolution_clock::now() - begin) < std::chrono::milliseconds(275));
}
TEST_F(TimerTests, doubleTimerTestGroup) {
auto begin = std::chrono::high_resolution_clock::now();
Event first(dispatcher);
Event second(dispatcher);
contextGroup.spawn([&] {
Timer(dispatcher).sleep(std::chrono::milliseconds(100));
first.set();
});
contextGroup.spawn([&] {
Timer(dispatcher).sleep(std::chrono::milliseconds(200));
second.set();
});
first.wait();
second.wait();
ASSERT_GE(std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - begin).count(), 150);
ASSERT_TRUE((std::chrono::high_resolution_clock::now() - begin) < std::chrono::milliseconds(250));
}
TEST_F(TimerTests, doubleTimerTestGroupWait) {
auto begin = std::chrono::high_resolution_clock::now();
contextGroup.spawn([&] {
Timer(dispatcher).sleep(std::chrono::milliseconds(100));
});
contextGroup.spawn([&] {
Timer(dispatcher).sleep(std::chrono::milliseconds(200));
});
contextGroup.wait();
ASSERT_GE(std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - begin).count(), 150);
ASSERT_TRUE((std::chrono::high_resolution_clock::now() - begin) < std::chrono::milliseconds(250));
}
TEST_F(TimerTests, doubleTimerTestTwoGroupsWait) {
auto begin = std::chrono::high_resolution_clock::now();
ContextGroup cg(dispatcher);
cg.spawn([&] {
Timer(dispatcher).sleep(std::chrono::milliseconds(100));
});
contextGroup.spawn([&] {
Timer(dispatcher).sleep(std::chrono::milliseconds(200));
});
contextGroup.wait();
ASSERT_GE(std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - begin).count(), 150);
ASSERT_TRUE((std::chrono::high_resolution_clock::now() - begin) < std::chrono::milliseconds(275));
}
TEST_F(TimerTests, movedTimerIsWorking2) {
bool done = false;
contextGroup.spawn([&] {
Timer t(dispatcher);
t = Timer{dispatcher};
//contextGroup.spawn([&]() { done = true; });
ASSERT_FALSE(done);
t.sleep(std::chrono::milliseconds(10));
ASSERT_TRUE(done);
});
contextGroup.spawn([&]() {
done = true;
});
contextGroup.wait();
}
TEST_F(TimerTests, movedAndStoopedTimerIsWorking2) {
contextGroup.spawn([&] {
Timer src(dispatcher);
contextGroup.interrupt();
Timer t(dispatcher);
t = std::move(src);
ASSERT_ANY_THROW(t.sleep(std::chrono::milliseconds(1)));
});
}
TEST_F(TimerTests, movedTimerIsTheSame) {
contextGroup.spawn([&] {
Timer timer(dispatcher);
auto timerPtr1 = &timer;
Timer srcEvent(dispatcher);
timer = std::move(srcEvent);
auto timerPtr2 = &timer;
ASSERT_EQ(timerPtr1, timerPtr2);
});
}
TEST_F(TimerTests, timerStartIsWorking) {
contextGroup.spawn([&] {
Timer t(dispatcher);
contextGroup.interrupt();
ASSERT_ANY_THROW(t.sleep(std::chrono::milliseconds(1)));
ASSERT_NO_THROW(t.sleep(std::chrono::milliseconds(1)));
});
}
TEST_F(TimerTests, timerStopBeforeSleep) {
contextGroup.spawn([&] {
Timer t(dispatcher);
contextGroup.interrupt();
ASSERT_THROW(t.sleep(std::chrono::milliseconds(1)), InterruptedException);
contextGroup.interrupt();
ASSERT_THROW(t.sleep(std::chrono::milliseconds(1)), InterruptedException);
});
}
TEST_F(TimerTests, timerIsCancelable) {
contextGroup.spawn([&] {
Timer t(dispatcher);
ASSERT_THROW(t.sleep(std::chrono::milliseconds(100)), InterruptedException);
});
contextGroup.spawn([&]() {
contextGroup.interrupt();
});
}
// Disabled, because on OS X it is currently impossible to distinguish timer timeout and interrupt
TEST_F(TimerTests, DISABLED_sleepThrowsOnlyIfTimerIsStoppedBeforeTime1) {
contextGroup.spawn([&] {
Timer t(dispatcher);
ASSERT_NO_THROW(t.sleep(std::chrono::milliseconds(1)));
ASSERT_THROW(t.sleep(std::chrono::milliseconds(1)), InterruptedException);
});
contextGroup.spawn([&]() {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
contextGroup.interrupt();
});
}
TEST_F(TimerTests, sleepIsSleepingAtLeastTakenTime) {
auto timepoint1 = std::chrono::high_resolution_clock::now();
contextGroup.spawn([&] {
Timer(dispatcher).sleep(std::chrono::milliseconds(100));
});
contextGroup.wait();
auto timepoint2 = std::chrono::high_resolution_clock::now();
ASSERT_LE(95, std::chrono::duration_cast<std::chrono::milliseconds>(timepoint2 - timepoint1).count());
}
TEST_F(TimerTests, timerIsReusable) {
Timer t(dispatcher);
auto timepoint1 = std::chrono::high_resolution_clock::now();
contextGroup.spawn([&] {
ASSERT_NO_THROW(t.sleep(std::chrono::seconds(1)));
});
contextGroup.wait();
auto timepoint2 = std::chrono::high_resolution_clock::now();
contextGroup.spawn([&] {
ASSERT_NO_THROW(t.sleep(std::chrono::seconds(1)));
});
contextGroup.wait();
auto timepoint3 = std::chrono::high_resolution_clock::now();
ASSERT_LE(950, std::chrono::duration_cast<std::chrono::milliseconds>(timepoint2 - timepoint1).count());
ASSERT_LE(950, std::chrono::duration_cast<std::chrono::milliseconds>(timepoint3 - timepoint2).count());
}
TEST_F(TimerTests, timerIsReusableAfterInterrupt) {
contextGroup.spawn([&] {
Timer t(dispatcher);
contextGroup.interrupt();
auto timepoint1 = std::chrono::high_resolution_clock::now();
ASSERT_THROW(t.sleep(std::chrono::seconds(1)), InterruptedException);
auto timepoint2 = std::chrono::high_resolution_clock::now();
ASSERT_NO_THROW(t.sleep(std::chrono::seconds(1)));
auto timepoint3 = std::chrono::high_resolution_clock::now();
ASSERT_LE(0, std::chrono::duration_cast<std::chrono::milliseconds>(timepoint2 - timepoint1).count());
ASSERT_LE(950, std::chrono::duration_cast<std::chrono::milliseconds>(timepoint3 - timepoint2).count());
});
}
TEST_F(TimerTests, timerWithZeroTimeIsYielding) {
bool done = false;
contextGroup.spawn([&]() {
done = true;
});
ASSERT_FALSE(done);
Timer(dispatcher).sleep(std::chrono::milliseconds(0));
ASSERT_TRUE(done);
}