danicoin/src/crypto/slow-hash.inl
2016-01-18 15:33:29 +00:00

189 lines
7.2 KiB
C++

// Copyright (c) 2011-2016 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
static void
#if defined(AESNI)
cn_slow_hash_aesni
#else
cn_slow_hash_noaesni
#endif
(void *restrict context, const void *restrict data, size_t length, void *restrict hash)
{
#define ctx ((struct cn_ctx *) context)
ALIGNED_DECL(uint8_t ExpandedKey[256], 16);
size_t i;
__m128i *longoutput, *expkey, *xmminput, b_x;
ALIGNED_DECL(uint64_t a[2], 16);
hash_process(&ctx->state.hs, (const uint8_t*) data, length);
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
#if defined(AESNI)
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
#else
ctx->aes_ctx = oaes_alloc();
oaes_key_import_data(ctx->aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
memcpy(ExpandedKey, ctx->aes_ctx->key->exp_data, ctx->aes_ctx->key->exp_data_len);
#endif
longoutput = (__m128i *) ctx->long_state;
expkey = (__m128i *) ExpandedKey;
xmminput = (__m128i *) ctx->text;
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_noxor(&ctx->long_state[i], ctx->text, ExpandedKey);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
{
#if defined(AESNI)
for(size_t j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
#else
aesb_pseudo_round((uint8_t *) &xmminput[0], (uint8_t *) &xmminput[0], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[1], (uint8_t *) &xmminput[1], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[2], (uint8_t *) &xmminput[2], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[3], (uint8_t *) &xmminput[3], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[4], (uint8_t *) &xmminput[4], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[5], (uint8_t *) &xmminput[5], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[6], (uint8_t *) &xmminput[6], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[7], (uint8_t *) &xmminput[7], (uint8_t *) expkey);
#endif
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
for (i = 0; i < 2; i++)
{
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
}
b_x = _mm_load_si128((__m128i *)ctx->b);
a[0] = ctx->a[0];
a[1] = ctx->a[1];
for(i = 0; likely(i < 0x80000); i++)
{
__m128i c_x = _mm_load_si128((__m128i *)&ctx->long_state[a[0] & 0x1FFFF0]);
__m128i a_x = _mm_load_si128((__m128i *)a);
ALIGNED_DECL(uint64_t c[2], 16);
ALIGNED_DECL(uint64_t b[2], 16);
uint64_t *nextblock, *dst;
#if defined(AESNI)
c_x = _mm_aesenc_si128(c_x, a_x);
#else
aesb_single_round((uint8_t *) &c_x, (uint8_t *) &c_x, (uint8_t *) &a_x);
#endif
_mm_store_si128((__m128i *)c, c_x);
//__builtin_prefetch(&ctx->long_state[c[0] & 0x1FFFF0], 0, 1);
b_x = _mm_xor_si128(b_x, c_x);
_mm_store_si128((__m128i *)&ctx->long_state[a[0] & 0x1FFFF0], b_x);
nextblock = (uint64_t *)&ctx->long_state[c[0] & 0x1FFFF0];
b[0] = nextblock[0];
b[1] = nextblock[1];
{
uint64_t hi, lo;
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
#if defined(__GNUC__) && defined(__x86_64__)
__asm__("mulq %3\n\t"
: "=d" (hi),
"=a" (lo)
: "%a" (c[0]),
"rm" (b[0])
: "cc" );
#else
lo = mul128(c[0], b[0], &hi);
#endif
a[0] += hi;
a[1] += lo;
}
dst = (uint64_t *) &ctx->long_state[c[0] & 0x1FFFF0];
dst[0] = a[0];
dst[1] = a[1];
a[0] ^= b[0];
a[1] ^= b[1];
b_x = c_x;
//__builtin_prefetch(&ctx->long_state[a[0] & 0x1FFFF0], 0, 3);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
#if defined(AESNI)
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
#else
oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
memcpy(ExpandedKey, ctx->aes_ctx->key->exp_data, ctx->aes_ctx->key->exp_data_len);
#endif
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_xor(&ctx->text, ExpandedKey, &ctx->long_state[i]);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
{
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
#if defined(AESNI)
for(size_t j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
#else
aesb_pseudo_round((uint8_t *) &xmminput[0], (uint8_t *) &xmminput[0], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[1], (uint8_t *) &xmminput[1], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[2], (uint8_t *) &xmminput[2], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[3], (uint8_t *) &xmminput[3], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[4], (uint8_t *) &xmminput[4], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[5], (uint8_t *) &xmminput[5], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[6], (uint8_t *) &xmminput[6], (uint8_t *) expkey);
aesb_pseudo_round((uint8_t *) &xmminput[7], (uint8_t *) &xmminput[7], (uint8_t *) expkey);
#endif
}
#if !defined(AESNI)
oaes_free((OAES_CTX **) &ctx->aes_ctx);
#endif
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
hash_permutation(&ctx->state.hs);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, hash);
}