danicoin/src/ringct/rctOps.cpp
2016-10-15 11:58:29 +01:00

462 lines
15 KiB
C++

// Copyright (c) 2016, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "misc_log_ex.h"
#include "rctOps.h"
using namespace crypto;
using namespace std;
namespace rct {
//Various key initialization functions
//Creates a zero scalar
void zero(key &zero) {
memset(&zero, 0, 32);
}
//Creates a zero scalar
key zero() {
static const key z = { {0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
return z;
}
//Creates a zero elliptic curve point
void identity(key &Id) {
Id[0] = (unsigned char)(0x01);
memset(Id.bytes+1, 0, 31);
}
//Creates a zero elliptic curve point
key identity() {
key Id;
Id[0] = (unsigned char)(0x01);
memset(Id.bytes+1, 0, 31);
return Id;
}
//copies a scalar or point
void copy(key &AA, const key &A) {
memcpy(&AA, &A, 32);
}
//copies a scalar or point
key copy(const key &A) {
key AA;
memcpy(&AA, &A, 32);
return AA;
}
//initializes a key matrix;
//first parameter is rows,
//second is columns
keyM keyMInit(int rows, int cols) {
keyM rv(cols);
int i = 0;
for (i = 0 ; i < cols ; i++) {
rv[i] = keyV(rows);
}
return rv;
}
//Various key generation functions
//generates a random scalar which can be used as a secret key or mask
void skGen(key &sk) {
sk = crypto::rand<key>();
sc_reduce32(sk.bytes);
}
//generates a random scalar which can be used as a secret key or mask
key skGen() {
key sk = crypto::rand<key>();
sc_reduce32(sk.bytes);
return sk;
}
//Generates a vector of secret key
//Mainly used in testing
keyV skvGen(int rows ) {
keyV rv(rows);
int i = 0;
for (i = 0 ; i < rows ; i++) {
skGen(rv[i]);
}
return rv;
}
//generates a random curve point (for testing)
key pkGen() {
key sk = skGen();
key pk = scalarmultBase(sk);
return pk;
}
//generates a random secret and corresponding public key
void skpkGen(key &sk, key &pk) {
skGen(sk);
scalarmultBase(pk, sk);
}
//generates a random secret and corresponding public key
tuple<key, key> skpkGen() {
key sk = skGen();
key pk = scalarmultBase(sk);
return make_tuple(sk, pk);
}
//generates C =aG + bH from b, a is given..
void genC(key & C, const key & a, xmr_amount amount) {
key bH = scalarmultH(d2h(amount));
addKeys1(C, a, bH);
}
//generates a <secret , public> / Pedersen commitment to the amount
tuple<ctkey, ctkey> ctskpkGen(xmr_amount amount) {
ctkey sk, pk;
skpkGen(sk.dest, pk.dest);
skpkGen(sk.mask, pk.mask);
key am = d2h(amount);
key bH = scalarmultH(am);
addKeys(pk.mask, pk.mask, bH);
return make_tuple(sk, pk);
}
//generates a <secret , public> / Pedersen commitment but takes bH as input
tuple<ctkey, ctkey> ctskpkGen(key bH) {
ctkey sk, pk;
skpkGen(sk.dest, pk.dest);
skpkGen(sk.mask, pk.mask);
addKeys(pk.mask, pk.mask, bH);
return make_tuple(sk, pk);
}
key zeroCommit(xmr_amount amount) {
key mask = identity();
mask = scalarmultBase(mask);
key am = d2h(amount);
key bH = scalarmultH(am);
addKeys(mask, mask, bH);
return mask;
}
key commit(xmr_amount amount, key mask) {
mask = scalarmultBase(mask);
key am = d2h(amount);
key bH = scalarmultH(am);
addKeys(mask, mask, bH);
return mask;
}
//generates a random uint long long (for testing)
xmr_amount randXmrAmount(xmr_amount upperlimit) {
return h2d(skGen()) % (upperlimit);
}
//Scalar multiplications of curve points
//does a * G where a is a scalar and G is the curve basepoint
void scalarmultBase(key &aG,const key &a) {
ge_p3 point;
sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand!
ge_scalarmult_base(&point, aG.bytes);
ge_p3_tobytes(aG.bytes, &point);
}
//does a * G where a is a scalar and G is the curve basepoint
key scalarmultBase(const key & a) {
ge_p3 point;
key aG;
sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand
ge_scalarmult_base(&point, aG.bytes);
ge_p3_tobytes(aG.bytes, &point);
return aG;
}
//does a * P where a is a scalar and P is an arbitrary point
void scalarmultKey(key & aP, const key &P, const key &a) {
ge_p3 A;
ge_p2 R;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&A, P.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_scalarmult(&R, a.bytes, &A);
ge_tobytes(aP.bytes, &R);
}
//does a * P where a is a scalar and P is an arbitrary point
key scalarmultKey(const key & P, const key & a) {
ge_p3 A;
ge_p2 R;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&A, P.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_scalarmult(&R, a.bytes, &A);
key aP;
ge_tobytes(aP.bytes, &R);
return aP;
}
//Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint
key scalarmultH(const key & a) {
ge_p3 A;
ge_p2 R;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&A, H.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_scalarmult(&R, a.bytes, &A);
key aP;
ge_tobytes(aP.bytes, &R);
return aP;
}
//Curve addition / subtractions
//for curve points: AB = A + B
void addKeys(key &AB, const key &A, const key &B) {
ge_p3 B2, A2;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&A2, A.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_cached tmp2;
ge_p3_to_cached(&tmp2, &B2);
ge_p1p1 tmp3;
ge_add(&tmp3, &A2, &tmp2);
ge_p1p1_to_p3(&A2, &tmp3);
ge_p3_tobytes(AB.bytes, &A2);
}
//addKeys1
//aGB = aG + B where a is a scalar, G is the basepoint, and B is a point
void addKeys1(key &aGB, const key &a, const key & B) {
key aG = scalarmultBase(a);
addKeys(aGB, aG, B);
}
//addKeys2
//aGbB = aG + bB where a, b are scalars, G is the basepoint and B is a point
void addKeys2(key &aGbB, const key &a, const key &b, const key & B) {
ge_p2 rv;
ge_p3 B2;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_double_scalarmult_base_vartime(&rv, b.bytes, &B2, a.bytes);
ge_tobytes(aGbB.bytes, &rv);
}
//Does some precomputation to make addKeys3 more efficient
// input B a curve point and output a ge_dsmp which has precomputation applied
void precomp(ge_dsmp rv, const key & B) {
ge_p3 B2;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_dsm_precomp(rv, &B2);
}
//addKeys3
//aAbB = a*A + b*B where a, b are scalars, A, B are curve points
//B must be input after applying "precomp"
void addKeys3(key &aAbB, const key &a, const key &A, const key &b, const ge_dsmp B) {
ge_p2 rv;
ge_p3 A2;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&A2, A.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_double_scalarmult_precomp_vartime(&rv, a.bytes, &A2, b.bytes, B);
ge_tobytes(aAbB.bytes, &rv);
}
//subtract Keys (subtracts curve points)
//AB = A - B where A, B are curve points
void subKeys(key & AB, const key &A, const key &B) {
ge_p3 B2, A2;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&B2, B.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&A2, A.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_cached tmp2;
ge_p3_to_cached(&tmp2, &B2);
ge_p1p1 tmp3;
ge_sub(&tmp3, &A2, &tmp2);
ge_p1p1_to_p3(&A2, &tmp3);
ge_p3_tobytes(AB.bytes, &A2);
}
//checks if A, B are equal as curve points
//without doing curve operations
bool equalKeys(const key & a, const key & b) {
bool rv = true;
for (int i = 0; i < 32; ++i) {
if (a.bytes[i] != b.bytes[i]) {
rv = false;
}
}
return rv;
}
//Hashing - cn_fast_hash
//be careful these are also in crypto namespace
//cn_fast_hash for arbitrary multiples of 32 bytes
void cn_fast_hash(key &hash, const void * data, const std::size_t l) {
keccak((const uint8_t *)data, l, hash.bytes, 32);
}
void hash_to_scalar(key &hash, const void * data, const std::size_t l) {
cn_fast_hash(hash, data, l);
sc_reduce32(hash.bytes);
}
//cn_fast_hash for a 32 byte key
void cn_fast_hash(key & hash, const key & in) {
keccak((const uint8_t *)in.bytes, 32, hash.bytes, 32);
}
void hash_to_scalar(key & hash, const key & in) {
cn_fast_hash(hash, in);
sc_reduce32(hash.bytes);
}
//cn_fast_hash for a 32 byte key
key cn_fast_hash(const key & in) {
key hash;
keccak((const uint8_t *)in.bytes, 32, hash.bytes, 32);
return hash;
}
key hash_to_scalar(const key & in) {
key hash = cn_fast_hash(in);
sc_reduce32(hash.bytes);
return hash;
}
//cn_fast_hash for a 128 byte unsigned char
key cn_fast_hash128(const void * in) {
key hash;
keccak((const uint8_t *)in, 128, hash.bytes, 32);
return hash;
}
key hash_to_scalar128(const void * in) {
key hash = cn_fast_hash128(in);
sc_reduce32(hash.bytes);
return hash;
}
//cn_fast_hash for multisig purpose
//This takes the outputs and commitments
//and hashes them into a 32 byte sized key
key cn_fast_hash(const ctkeyV &PC) {
key rv;
cn_fast_hash(rv, &PC[0], 64*PC.size());
return rv;
}
key hash_to_scalar(const ctkeyV &PC) {
key rv = cn_fast_hash(PC);
sc_reduce32(rv.bytes);
return rv;
}
//cn_fast_hash for a key-vector of arbitrary length
//this is useful since you take a number of keys
//put them in the key vector and it concatenates them
//and then hashes them
key cn_fast_hash(const keyV &keys) {
key rv;
cn_fast_hash(rv, &keys[0], keys.size() * sizeof(keys[0]));
//dp(rv);
return rv;
}
key hash_to_scalar(const keyV &keys) {
key rv = cn_fast_hash(keys);
sc_reduce32(rv.bytes);
return rv;
}
key hashToPointSimple(const key & hh) {
key pointk;
ge_p1p1 point2;
ge_p2 point;
ge_p3 res;
key h = cn_fast_hash(hh);
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&res, h.bytes) == 0, "ge_frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_p3_to_p2(&point, &res);
ge_mul8(&point2, &point);
ge_p1p1_to_p3(&res, &point2);
ge_p3_tobytes(pointk.bytes, &res);
return pointk;
}
key hashToPoint(const key & hh) {
key pointk;
ge_p2 point;
ge_p1p1 point2;
ge_p3 res;
key h = cn_fast_hash(hh);
ge_fromfe_frombytes_vartime(&point, h.bytes);
ge_mul8(&point2, &point);
ge_p1p1_to_p3(&res, &point2);
ge_p3_tobytes(pointk.bytes, &res);
return pointk;
}
void hashToPoint(key & pointk, const key & hh) {
ge_p2 point;
ge_p1p1 point2;
ge_p3 res;
key h = cn_fast_hash(hh);
ge_fromfe_frombytes_vartime(&point, h.bytes);
ge_mul8(&point2, &point);
ge_p1p1_to_p3(&res, &point2);
ge_p3_tobytes(pointk.bytes, &res);
}
//sums a vector of curve points (for scalars use sc_add)
void sumKeys(key & Csum, const keyV & Cis) {
identity(Csum);
size_t i = 0;
for (i = 0; i < Cis.size(); i++) {
addKeys(Csum, Csum, Cis[i]);
}
}
//Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a
// where C= aG + bH
void ecdhEncode(ecdhTuple & unmasked, const key & sharedSec) {
key sharedSec1 = hash_to_scalar(sharedSec);
key sharedSec2 = hash_to_scalar(sharedSec1);
//encode
sc_add(unmasked.mask.bytes, unmasked.mask.bytes, sharedSec1.bytes);
sc_add(unmasked.amount.bytes, unmasked.amount.bytes, sharedSec2.bytes);
}
void ecdhDecode(ecdhTuple & masked, const key & sharedSec) {
key sharedSec1 = hash_to_scalar(sharedSec);
key sharedSec2 = hash_to_scalar(sharedSec1);
//decode
sc_sub(masked.mask.bytes, masked.mask.bytes, sharedSec1.bytes);
sc_sub(masked.amount.bytes, masked.amount.bytes, sharedSec2.bytes);
}
}