danicoin/tests/core_tests/integer_overflow.cpp
2014-08-13 15:07:19 +01:00

195 lines
7.4 KiB
C++

// Copyright (c) 2012-2014, The CryptoNote developers, The Bytecoin developers
//
// This file is part of Bytecoin.
//
// Bytecoin is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Bytecoin is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with Bytecoin. If not, see <http://www.gnu.org/licenses/>.
#include "integer_overflow.h"
using namespace epee;
using namespace cryptonote;
namespace
{
void split_miner_tx_outs(Transaction& miner_tx, uint64_t amount_1)
{
uint64_t total_amount = get_outs_money_amount(miner_tx);
uint64_t amount_2 = total_amount - amount_1;
TransactionOutputTarget target = miner_tx.vout[0].target;
miner_tx.vout.clear();
TransactionOutput out1;
out1.amount = amount_1;
out1.target = target;
miner_tx.vout.push_back(out1);
TransactionOutput out2;
out2.amount = amount_2;
out2.target = target;
miner_tx.vout.push_back(out2);
}
void append_tx_source_entry(std::vector<cryptonote::tx_source_entry>& sources, const Transaction& tx, size_t out_idx)
{
cryptonote::tx_source_entry se;
se.amount = tx.vout[out_idx].amount;
se.outputs.push_back(std::make_pair(0, boost::get<cryptonote::TransactionOutputToKey>(tx.vout[out_idx].target).key));
se.real_output = 0;
se.real_out_tx_key = get_tx_pub_key_from_extra(tx);
se.real_output_in_tx_index = out_idx;
sources.push_back(se);
}
}
//======================================================================================================================
gen_uint_overflow_base::gen_uint_overflow_base()
: m_last_valid_block_event_idx(static_cast<size_t>(-1))
{
REGISTER_CALLBACK_METHOD(gen_uint_overflow_1, mark_last_valid_block);
}
bool gen_uint_overflow_base::check_tx_verification_context(const cryptonote::tx_verification_context& tvc, bool tx_added, size_t event_idx, const cryptonote::Transaction& /*tx*/)
{
return m_last_valid_block_event_idx < event_idx ? !tx_added && tvc.m_verifivation_failed : tx_added && !tvc.m_verifivation_failed;
}
bool gen_uint_overflow_base::check_block_verification_context(const cryptonote::block_verification_context& bvc, size_t event_idx, const cryptonote::Block& /*block*/)
{
return m_last_valid_block_event_idx < event_idx ? bvc.m_verifivation_failed | bvc.m_marked_as_orphaned : !bvc.m_verifivation_failed;
}
bool gen_uint_overflow_base::mark_last_valid_block(cryptonote::core& c, size_t ev_index, const std::vector<test_event_entry>& events)
{
m_last_valid_block_event_idx = ev_index - 1;
return true;
}
//======================================================================================================================
bool gen_uint_overflow_1::generate(std::vector<test_event_entry>& events) const
{
uint64_t ts_start = 1338224400;
GENERATE_ACCOUNT(miner_account);
MAKE_GENESIS_BLOCK(events, blk_0, miner_account, ts_start);
DO_CALLBACK(events, "mark_last_valid_block");
MAKE_ACCOUNT(events, bob_account);
MAKE_ACCOUNT(events, alice_account);
// Problem 1. Miner tx output overflow
MAKE_MINER_TX_MANUALLY(miner_tx_0, blk_0);
split_miner_tx_outs(miner_tx_0, m_currency.moneySupply());
Block blk_1;
if (!generator.constructBlockManually(blk_1, blk_0, miner_account, test_generator::bf_miner_tx, 0, 0, 0, crypto::hash(), 0, miner_tx_0))
return false;
events.push_back(blk_1);
// Problem 1. Miner tx outputs overflow
MAKE_MINER_TX_MANUALLY(miner_tx_1, blk_1);
split_miner_tx_outs(miner_tx_1, m_currency.moneySupply());
Block blk_2;
if (!generator.constructBlockManually(blk_2, blk_1, miner_account, test_generator::bf_miner_tx, 0, 0, 0, crypto::hash(), 0, miner_tx_1))
return false;
events.push_back(blk_2);
REWIND_BLOCKS(events, blk_2r, blk_2, miner_account);
MAKE_TX_LIST_START(events, txs_0, miner_account, bob_account, m_currency.moneySupply(), blk_2);
MAKE_TX_LIST(events, txs_0, miner_account, bob_account, m_currency.moneySupply(), blk_2);
MAKE_NEXT_BLOCK_TX_LIST(events, blk_3, blk_2r, miner_account, txs_0);
REWIND_BLOCKS(events, blk_3r, blk_3, miner_account);
// Problem 2. total_fee overflow, block_reward overflow
std::list<cryptonote::Transaction> txs_1;
// Create txs with huge fee
txs_1.push_back(construct_tx_with_fee(events, blk_3, bob_account, alice_account, MK_COINS(1), m_currency.moneySupply() - MK_COINS(1)));
txs_1.push_back(construct_tx_with_fee(events, blk_3, bob_account, alice_account, MK_COINS(1), m_currency.moneySupply() - MK_COINS(1)));
MAKE_NEXT_BLOCK_TX_LIST(events, blk_4, blk_3r, miner_account, txs_1);
return true;
}
//======================================================================================================================
bool gen_uint_overflow_2::generate(std::vector<test_event_entry>& events) const
{
uint64_t ts_start = 1338224400;
GENERATE_ACCOUNT(miner_account);
MAKE_GENESIS_BLOCK(events, blk_0, miner_account, ts_start);
MAKE_ACCOUNT(events, bob_account);
MAKE_ACCOUNT(events, alice_account);
REWIND_BLOCKS(events, blk_0r, blk_0, miner_account);
DO_CALLBACK(events, "mark_last_valid_block");
// Problem 1. Regular tx outputs overflow
std::vector<cryptonote::tx_source_entry> sources;
for (size_t i = 0; i < blk_0.minerTx.vout.size(); ++i)
{
if (m_currency.minimumFee() < blk_0.minerTx.vout[i].amount)
{
append_tx_source_entry(sources, blk_0.minerTx, i);
break;
}
}
if (sources.empty())
{
return false;
}
std::vector<cryptonote::tx_destination_entry> destinations;
const AccountPublicAddress& bob_addr = bob_account.get_keys().m_account_address;
destinations.push_back(tx_destination_entry(m_currency.moneySupply(), bob_addr));
destinations.push_back(tx_destination_entry(m_currency.moneySupply() - 1, bob_addr));
// sources.front().amount = destinations[0].amount + destinations[2].amount + destinations[3].amount + m_currency.minimumFee()
destinations.push_back(tx_destination_entry(sources.front().amount - m_currency.moneySupply() - m_currency.moneySupply() + 1 - m_currency.minimumFee(), bob_addr));
cryptonote::Transaction tx_1;
if (!construct_tx(miner_account.get_keys(), sources, destinations, std::vector<uint8_t>(), tx_1, 0))
return false;
events.push_back(tx_1);
MAKE_NEXT_BLOCK_TX1(events, blk_1, blk_0r, miner_account, tx_1);
REWIND_BLOCKS(events, blk_1r, blk_1, miner_account);
// Problem 2. Regular tx inputs overflow
sources.clear();
for (size_t i = 0; i < tx_1.vout.size(); ++i)
{
auto& tx_1_out = tx_1.vout[i];
if (tx_1_out.amount < m_currency.moneySupply() - 1)
continue;
append_tx_source_entry(sources, tx_1, i);
}
destinations.clear();
cryptonote::tx_destination_entry de;
de.addr = alice_account.get_keys().m_account_address;
de.amount = m_currency.moneySupply() - m_currency.minimumFee();
destinations.push_back(de);
destinations.push_back(de);
cryptonote::Transaction tx_2;
if (!construct_tx(bob_account.get_keys(), sources, destinations, std::vector<uint8_t>(), tx_2, 0))
return false;
events.push_back(tx_2);
MAKE_NEXT_BLOCK_TX1(events, blk_2, blk_1r, miner_account, tx_2);
return true;
}