danicoin/tests/UnitTests/TestBcS.cpp
2016-01-18 15:33:29 +00:00

1382 lines
38 KiB
C++

// Copyright (c) 2011-2016 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "gtest/gtest.h"
#include "Transfers/BlockchainSynchronizer.h"
#include "Transfers/TransfersConsumer.h"
#include "crypto/hash.h"
#include "CryptoNoteCore/TransactionApi.h"
#include "CryptoNoteCore/CryptoNoteFormatUtils.h"
#include "CryptoNoteCore/CryptoNoteTools.h"
#include "Logging/ConsoleLogger.h"
#include "INodeStubs.h"
#include "TestBlockchainGenerator.h"
#include "EventWaiter.h"
using namespace Crypto;
using namespace CryptoNote;
namespace {
Transaction createTx(ITransactionReader& tx) {
Transaction outTx;
fromBinaryArray(outTx, tx.getTransactionData());
return outTx;
}
}
class INodeNonTrivialRefreshStub : public INodeTrivialRefreshStub {
public:
INodeNonTrivialRefreshStub(TestBlockchainGenerator& generator) : INodeTrivialRefreshStub(generator), blocksWasQueried(false), poolWasQueried(false) {}
virtual void queryBlocks(std::vector<Hash>&& knownBlockIds, uint64_t timestamp, std::vector<BlockShortEntry>& newBlocks, uint32_t& startHeight, const Callback& callback) override {
blocksWasQueried = true;
INodeTrivialRefreshStub::queryBlocks(std::move(knownBlockIds), timestamp, newBlocks, startHeight, callback);
}
virtual void getPoolSymmetricDifference(std::vector<Hash>&& known_pool_tx_ids, Hash known_block_id, bool& is_bc_actual,
std::vector<std::unique_ptr<ITransactionReader>>& new_txs, std::vector<Hash>& deleted_tx_ids, const Callback& callback) override {
poolWasQueried = true;
INodeTrivialRefreshStub::getPoolSymmetricDifference(std::move(known_pool_tx_ids), known_block_id, is_bc_actual, new_txs, deleted_tx_ids, callback);
}
void notifyAboutPool() {
observerManager.notify(&INodeObserver::poolChanged);
}
bool blocksWasQueried;
bool poolWasQueried;
};
class INodeFunctorialStub : public INodeNonTrivialRefreshStub {
public:
INodeFunctorialStub(TestBlockchainGenerator& generator)
: INodeNonTrivialRefreshStub(generator)
, queryBlocksFunctor([](const std::vector<Hash>&, uint64_t, std::vector<BlockShortEntry>&, uint32_t&, const Callback&) -> bool { return true; })
, getPoolSymmetricDifferenceFunctor([](const std::vector<Hash>&, Hash, bool&, std::vector<std::unique_ptr<ITransactionReader>>&, std::vector<Hash>&, const Callback&)->bool {return true; }) {
}
virtual void queryBlocks(std::vector<Hash>&& knownBlockIds, uint64_t timestamp, std::vector<BlockShortEntry>& newBlocks,
uint32_t& startHeight, const Callback& callback) override {
if (queryBlocksFunctor(knownBlockIds, timestamp, newBlocks, startHeight, callback)) {
INodeNonTrivialRefreshStub::queryBlocks(std::move(knownBlockIds), timestamp, newBlocks, startHeight, callback);
}
}
virtual void getPoolSymmetricDifference(std::vector<Hash>&& known_pool_tx_ids, Hash known_block_id, bool& is_bc_actual,
std::vector<std::unique_ptr<ITransactionReader>>& new_txs, std::vector<Hash>& deleted_tx_ids, const Callback& callback) override {
if (getPoolSymmetricDifferenceFunctor(known_pool_tx_ids, known_block_id, is_bc_actual, new_txs, deleted_tx_ids, callback)) {
INodeNonTrivialRefreshStub::getPoolSymmetricDifference(std::move(known_pool_tx_ids), known_block_id, is_bc_actual, new_txs, deleted_tx_ids, callback);
}
}
std::function<bool(const std::vector<Hash>&, uint64_t, std::vector<BlockShortEntry>&, uint32_t&, const Callback&)> queryBlocksFunctor;
std::function<bool(const std::vector<Hash>&, Hash, bool&, std::vector<std::unique_ptr<ITransactionReader>>&, std::vector<Hash>&, const Callback&)> getPoolSymmetricDifferenceFunctor;
};
class IBlockchainSynchronizerTrivialObserver : public IBlockchainSynchronizerObserver {
public:
virtual void synchronizationProgressUpdated(uint32_t current, uint32_t total) override { m_current = current; m_total = total; }
virtual void synchronizationCompleted(std::error_code result) override { completionResult = result; }
std::error_code completionResult;
uint32_t m_current;
uint32_t m_total;
};
class IBlockchainSynchronizerFunctorialObserver : public IBlockchainSynchronizerObserver {
public:
IBlockchainSynchronizerFunctorialObserver() : updFunc([](uint32_t, uint32_t) {}), syncFunc([](std::error_code) {}) {
}
virtual void synchronizationProgressUpdated(uint32_t current, uint32_t total) override { updFunc(current, total); }
virtual void synchronizationCompleted(std::error_code result) override { syncFunc(result); }
std::function<void(uint32_t, uint32_t)> updFunc;
std::function<void(std::error_code)> syncFunc;
};
class ConsumerStub : public IBlockchainConsumer {
public:
ConsumerStub(const Hash& genesisBlockHash) {
m_blockchain.push_back(genesisBlockHash);
}
void addPoolTransaction(const Crypto::Hash& hash) {
m_pool.emplace(hash);
}
virtual SynchronizationStart getSyncStart() override {
SynchronizationStart start = { 0, 0 };
return start;
}
virtual void addObserver(IBlockchainConsumerObserver* observer) override {
}
virtual void removeObserver(IBlockchainConsumerObserver* observer) override {
}
virtual void onBlockchainDetach(uint32_t height) override {
assert(height < m_blockchain.size());
m_blockchain.resize(height);
}
virtual bool onNewBlocks(const CompleteBlock* blocks, uint32_t startHeight, uint32_t count) override {
//assert(m_blockchain.size() == startHeight);
while (count--) {
m_blockchain.push_back(blocks->blockHash);
++blocks;
}
return true;
}
const std::vector<Hash>& getBlockchain() const {
return m_blockchain;
}
virtual const std::unordered_set<Crypto::Hash>& getKnownPoolTxIds() const override {
return m_pool;
}
virtual std::error_code onPoolUpdated(const std::vector<std::unique_ptr<ITransactionReader>>& addedTransactions, const std::vector<Hash>& deletedTransactions) override {
for (const auto& tx: addedTransactions) {
m_pool.emplace(tx->getTransactionHash());
}
for (auto& hash : deletedTransactions) {
m_pool.erase(hash);
}
return std::error_code();
}
std::error_code addUnconfirmedTransaction(const ITransactionReader& /*transaction*/) override {
throw std::runtime_error("Not implemented");
}
void removeUnconfirmedTransaction(const Crypto::Hash& /*transactionHash*/) override {
throw std::runtime_error("Not implemented");
}
private:
std::unordered_set<Crypto::Hash> m_pool;
std::vector<Hash> m_blockchain;
};
class BcSTest : public ::testing::Test, public IBlockchainSynchronizerObserver {
public:
BcSTest() :
m_currency(CurrencyBuilder(m_logger).currency()),
generator(m_currency),
m_node(generator),
m_sync(m_node, m_currency.genesisBlockHash()) {
m_node.setGetNewBlocksLimit(5); // sync max 5 blocks per request
}
void addConsumers(size_t count = 1) {
while (count--) {
std::shared_ptr<ConsumerStub> stub(new ConsumerStub(m_currency.genesisBlockHash()));
m_sync.addConsumer(stub.get());
m_consumers.push_back(stub);
}
}
void checkSyncedBlockchains() {
std::vector<Hash> generatorBlockchain;
std::transform(
generator.getBlockchain().begin(),
generator.getBlockchain().end(),
std::back_inserter(generatorBlockchain),
[](const Block& b) { return get_block_hash(b); });
for (const auto& consumer : m_consumers) {
ASSERT_EQ(consumer->getBlockchain(), generatorBlockchain);
}
}
void startSync() {
syncCompleted = std::promise<std::error_code>();
syncCompletedFuture = syncCompleted.get_future();
m_sync.addObserver(this);
m_sync.start();
syncCompletedFuture.get();
m_sync.removeObserver(this);
}
void refreshSync() {
syncCompleted = std::promise<std::error_code>();
syncCompletedFuture = syncCompleted.get_future();
m_sync.addObserver(this);
m_node.updateObservers();
syncCompletedFuture.get();
m_sync.removeObserver(this);
}
void synchronizationCompleted(std::error_code result) override {
decltype(syncCompleted) detachedPromise = std::move(syncCompleted);
detachedPromise.set_value(result);
}
protected:
Logging::ConsoleLogger m_logger;
Currency m_currency;
TestBlockchainGenerator generator;
INodeFunctorialStub m_node;
BlockchainSynchronizer m_sync;
std::vector<std::shared_ptr<ConsumerStub>> m_consumers;
std::promise<std::error_code> syncCompleted;
std::future<std::error_code> syncCompletedFuture;
};
TEST_F(BcSTest, addConsumerStopped) {
ASSERT_NO_THROW(addConsumers());
}
TEST_F(BcSTest, addConsumerStartStop) {
addConsumers();
m_sync.start();
m_sync.stop();
ASSERT_NO_THROW(addConsumers());
}
TEST_F(BcSTest, addConsumerStartThrow) {
addConsumers();
m_sync.start();
ASSERT_ANY_THROW(addConsumers());
m_sync.stop();
}
TEST_F(BcSTest, removeConsumerWhichIsNotExist) {
ConsumerStub c(m_currency.genesisBlockHash());
ASSERT_FALSE(m_sync.removeConsumer(&c));
}
TEST_F(BcSTest, removeConsumerStartThrow) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
m_sync.start();
ASSERT_ANY_THROW(m_sync.removeConsumer(&c));
m_sync.stop();
}
TEST_F(BcSTest, removeConsumerStopped) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
EXPECT_EQ(true, m_sync.removeConsumer(&c));
}
TEST_F(BcSTest, removeConsumerStartStop) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
m_sync.start();
m_sync.stop();
EXPECT_EQ(true, m_sync.removeConsumer(&c));
}
TEST_F(BcSTest, getConsumerStateWhichIsNotExist) {
ConsumerStub c(m_currency.genesisBlockHash());
EXPECT_EQ(nullptr, m_sync.getConsumerState(&c));
}
TEST_F(BcSTest, getConsumerStateStartThrow) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
m_sync.start();
ASSERT_ANY_THROW(m_sync.getConsumerState(&c));
m_sync.stop();
}
TEST_F(BcSTest, getConsumerStateStopped) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
EXPECT_NE(nullptr, m_sync.getConsumerState(&c));
}
TEST_F(BcSTest, getConsumerStateStartStop) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
m_sync.start();
m_sync.stop();
EXPECT_NE(nullptr, m_sync.getConsumerState(&c));
}
TEST_F(BcSTest, startWithoutConsumersThrow) {
ASSERT_ANY_THROW(m_sync.start());
}
TEST_F(BcSTest, doubleStart) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
m_sync.start();
ASSERT_ANY_THROW(m_sync.start());
m_sync.stop();
}
TEST_F(BcSTest, startAfterStop) {
addConsumers();
m_sync.start();
m_sync.stop();
ASSERT_NO_THROW(m_sync.start());
m_sync.stop();
}
TEST_F(BcSTest, startAndObserve) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
m_sync.start();
ASSERT_ANY_THROW(m_sync.start());
m_sync.stop();
}
TEST_F(BcSTest, noObservationsBeforeStart) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
m_node.updateObservers();
ASSERT_FALSE(m_node.blocksWasQueried);
}
TEST_F(BcSTest, noObservationsAfterStop) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
m_sync.start();
m_sync.stop();
m_node.blocksWasQueried = false;
m_node.updateObservers();
ASSERT_FALSE(m_node.blocksWasQueried);
}
TEST_F(BcSTest, stopOnCreation) {
ASSERT_NO_THROW(m_sync.stop());
}
TEST_F(BcSTest, doubleStopAfterStart) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
m_sync.start();
m_sync.stop();
ASSERT_NO_THROW(m_sync.stop());
}
TEST_F(BcSTest, stopIsWaiting) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
generator.generateEmptyBlocks(20);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
bool flag = false;
o1.updFunc = [&e, &flag](uint32_t, uint32_t) {
e.notify(); std::this_thread::sleep_for(std::chrono::milliseconds(1000)); flag = true;
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(flag, true);
}
TEST_F(BcSTest, syncCompletedError) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
generator.generateEmptyBlocks(20);
IBlockchainSynchronizerTrivialObserver o;
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.updFunc = [&e](uint32_t curr, uint32_t total) {
e.notify(); std::this_thread::sleep_for(std::chrono::milliseconds(200));
};
m_sync.addObserver(&o);
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(std::errc::interrupted, o.completionResult);
}
TEST_F(BcSTest, onLastKnownBlockHeightUpdated) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
generator.generateEmptyBlocks(20);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
m_node.blocksWasQueried = false;
m_node.poolWasQueried = false;
m_node.updateObservers();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(true, m_node.blocksWasQueried);
EXPECT_EQ(true, m_node.poolWasQueried);
}
TEST_F(BcSTest, onPoolChanged) {
ConsumerStub c(m_currency.genesisBlockHash());
m_sync.addConsumer(&c);
generator.generateEmptyBlocks(20);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
m_node.poolWasQueried = false;
m_node.notifyAboutPool();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(true, m_node.poolWasQueried);
}
TEST_F(BcSTest, serializationCheck) {
addConsumers(2);
std::stringstream memstream;
m_sync.save(memstream);
ASSERT_GT(memstream.str().size(), 0);
std::string first = memstream.str();
BlockchainSynchronizer sync2(m_node, m_currency.genesisBlockHash());
ASSERT_NO_THROW(sync2.load(memstream));
std::stringstream memstream2;
m_sync.save(memstream2);
EXPECT_EQ(memstream2.str(), first);
}
class FunctorialPoolConsumerStub : public ConsumerStub {
public:
FunctorialPoolConsumerStub(const Hash& genesisBlockHash) : ConsumerStub(genesisBlockHash) {}
virtual std::error_code onPoolUpdated(const std::vector<std::unique_ptr<ITransactionReader>>& addedTransactions, const std::vector<Hash>& deletedTransactions) override {
return onPoolUpdatedFunctor(addedTransactions, deletedTransactions);
}
std::function<std::error_code(const std::vector<std::unique_ptr<ITransactionReader>>&, const std::vector<Hash>&)> onPoolUpdatedFunctor;
};
TEST_F(BcSTest, firstPoolSynchronizationCheck) {
auto tx1ptr = createTransaction();
auto tx2ptr = createTransaction();
auto tx3ptr = createTransaction();
auto tx1 = ::createTx(*tx1ptr.get());
auto tx2 = ::createTx(*tx2ptr.get());
auto tx3 = ::createTx(*tx3ptr.get());
auto tx1hash = getObjectHash(tx1);
auto tx2hash = getObjectHash(tx2);
auto tx3hash = getObjectHash(tx3);
std::unordered_set<Hash> firstExpectedPool = { tx1hash, tx2hash, tx3hash };
std::unordered_set<Hash> secondExpectedPool = { tx2hash };
std::vector<Hash> expectedDeletedPoolAnswer = { tx3hash };
std::vector<Transaction> expectedNewPoolAnswer = { tx1 };
std::vector<Hash> expectedNewPoolAnswerHashes = { tx1hash };
FunctorialPoolConsumerStub c1(m_currency.genesisBlockHash());
FunctorialPoolConsumerStub c2(m_currency.genesisBlockHash());
c1.addPoolTransaction(tx1hash);
c1.addPoolTransaction(tx2hash);
c2.addPoolTransaction(tx2hash);
c2.addPoolTransaction(tx3hash);
std::vector<Hash> c1ResponseDeletedPool;
std::vector<Hash> c2ResponseDeletedPool;
std::vector<Hash> c1ResponseNewPool;
std::vector<Hash> c2ResponseNewPool;
c1.onPoolUpdatedFunctor = [&](const std::vector<std::unique_ptr<ITransactionReader>>& new_txs, const std::vector<Hash>& deleted)->std::error_code {
c1ResponseDeletedPool.assign(deleted.begin(), deleted.end());
for (const auto& tx: new_txs) {
Hash hash = tx->getTransactionHash();
c1ResponseNewPool.push_back(reinterpret_cast<const Hash&>(hash));
}
return std::error_code();
};
c2.onPoolUpdatedFunctor = [&](const std::vector<std::unique_ptr<ITransactionReader>>& new_txs, const std::vector<Hash>& deleted)->std::error_code {
c2ResponseDeletedPool.assign(deleted.begin(), deleted.end());
for (const auto& tx: new_txs) {
Hash hash = tx->getTransactionHash();
c2ResponseNewPool.push_back(reinterpret_cast<const Hash&>(hash));
}
return std::error_code();
};
m_sync.addConsumer(&c1);
m_sync.addConsumer(&c2);
int requestsCount = 0;
std::unordered_set<Hash> firstKnownPool;
std::unordered_set<Hash> secondKnownPool;
m_node.getPoolSymmetricDifferenceFunctor = [&](const std::vector<Hash>& known, Hash last, bool& is_actual,
std::vector<std::unique_ptr<ITransactionReader>>& new_txs, std::vector<Hash>& deleted, const INode::Callback& callback) {
is_actual = true;
requestsCount++;
new_txs.clear();
for (const auto& tx: expectedNewPoolAnswer) {
new_txs.push_back(createTransactionPrefix(tx));
}
deleted.assign(expectedDeletedPoolAnswer.begin(), expectedDeletedPoolAnswer.end());
if (requestsCount == 1) {
firstKnownPool.insert(known.begin(), known.end());
}
if (requestsCount == 2) {
secondKnownPool.insert(known.begin(), known.end());
}
callback(std::error_code());
return false;
};
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(2, requestsCount);
EXPECT_EQ(firstExpectedPool, firstKnownPool);
EXPECT_EQ(secondExpectedPool, secondKnownPool);
EXPECT_EQ(expectedDeletedPoolAnswer, c1ResponseDeletedPool);
EXPECT_EQ(expectedDeletedPoolAnswer, c2ResponseDeletedPool);
EXPECT_EQ(expectedNewPoolAnswerHashes, c1ResponseNewPool);
EXPECT_EQ(expectedNewPoolAnswerHashes, c2ResponseNewPool);
}
TEST_F(BcSTest, firstPoolSynchronizationCheckNonActual) {
addConsumers(2);
m_consumers.front()->addPoolTransaction(Crypto::rand<Crypto::Hash>());
int requestsCount = 0;
m_node.getPoolSymmetricDifferenceFunctor = [&](const std::vector<Hash>& known, Hash last, bool& is_actual,
std::vector<std::unique_ptr<ITransactionReader>>& new_txs, std::vector<Hash>& deleted, const INode::Callback& callback) {
is_actual = true;
requestsCount++;
if (requestsCount == 2) {
is_actual = false;
}
callback(std::error_code());
return false;
};
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(4, requestsCount);
}
TEST_F(BcSTest, firstPoolSynchronizationCheckGetPoolErr) {
addConsumers(2);
m_consumers.front()->addPoolTransaction(Crypto::rand<Crypto::Hash>());
int requestsCount = 0;
m_node.getPoolSymmetricDifferenceFunctor = [&](const std::vector<Hash>& known, Hash last, bool& is_actual,
std::vector<std::unique_ptr<ITransactionReader>>& new_txs, std::vector<Hash>& deleted, const INode::Callback& callback) {
is_actual = true;
requestsCount++;
if (requestsCount == 2) {
callback(std::make_error_code(std::errc::invalid_argument));
} else {
callback(std::error_code());
}
return false;
};
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
m_node.notifyAboutPool();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(4, requestsCount);
}
TEST_F(BcSTest, poolSynchronizationCheckActual) {
addConsumers(1);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
int requestsCount = 0;
m_node.getPoolSymmetricDifferenceFunctor = [&](const std::vector<Hash>& known, Hash last, bool& is_actual,
std::vector<std::unique_ptr<ITransactionReader>>& new_txs, std::vector<Hash>& deleted, const INode::Callback& callback) {
is_actual = true;
requestsCount++;
if (requestsCount == 1) {
is_actual = false;
}
callback(std::error_code());
return false;
};
m_node.notifyAboutPool();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(2, requestsCount);
}
TEST_F(BcSTest, poolSynchronizationCheckError) {
addConsumers(1);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
int requestsCount = 0;
m_node.getPoolSymmetricDifferenceFunctor = [&](const std::vector<Hash>& known, Hash last, bool& is_actual,
std::vector<std::unique_ptr<ITransactionReader>>& new_txs, std::vector<Hash>& deleted, const INode::Callback& callback) {
is_actual = true;
requestsCount++;
if (requestsCount == 1) {
callback(std::make_error_code(std::errc::invalid_argument));
} else {
callback(std::error_code());
}
return false;
};
m_node.notifyAboutPool();
e.wait();
EXPECT_NE(0, errc.value());
m_node.notifyAboutPool(); //error, notify again
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(2, requestsCount);
}
TEST_F(BcSTest, poolSynchronizationCheckTxAdded) {
auto tx1ptr = createTransaction();
auto tx1 = ::createTx(*tx1ptr.get());
auto tx1hash = getObjectHash(tx1);
std::vector<Transaction> newPoolAnswer = { tx1 };
std::vector<Hash> expectedKnownPoolHashes = { tx1hash };
addConsumers(1);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
int requestsCount = 0;
std::vector<Hash> knownPool;
m_node.getPoolSymmetricDifferenceFunctor = [&](const std::vector<Hash>& known, Hash last, bool& is_actual,
std::vector<std::unique_ptr<ITransactionReader>>& new_txs, std::vector<Hash>& deleted, const INode::Callback& callback) {
is_actual = true;
requestsCount++;
if (requestsCount == 1) {
new_txs.clear();
for (const auto& tx: newPoolAnswer) {
new_txs.push_back(createTransactionPrefix(tx));
}
}
if (requestsCount == 2) {
knownPool.assign(known.begin(), known.end());
}
callback(std::error_code());
return false;
};
m_node.notifyAboutPool();
e.wait();
m_node.notifyAboutPool();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(2, requestsCount);
EXPECT_EQ(expectedKnownPoolHashes, knownPool);
}
TEST_F(BcSTest, poolSynchronizationCheckTxDeleted) {
auto tx1ptr = createTransaction();
auto tx1 = ::createTx(*tx1ptr.get());
auto tx1hash = getObjectHash(tx1);
std::vector<Transaction> newPoolAnswer = { tx1 };
std::vector<Hash> deletedPoolAnswer = { tx1hash };
std::vector<Hash> expectedKnownPoolHashes = {};
addConsumers(1);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
int requestsCount = 0;
std::vector<Hash> knownPool;
m_node.getPoolSymmetricDifferenceFunctor = [&](const std::vector<Hash>& known, Hash last, bool& is_actual,
std::vector<std::unique_ptr<ITransactionReader>>& new_txs, std::vector<Hash>& deleted, const INode::Callback& callback) {
is_actual = true;
requestsCount++;
if (requestsCount == 1) {
new_txs.clear();
for (const auto& tx: newPoolAnswer) {
new_txs.push_back(createTransactionPrefix(tx));
}
}
if (requestsCount == 2) {
deleted.assign(deletedPoolAnswer.begin(), deletedPoolAnswer.end());
}
if (requestsCount == 3) {
knownPool.assign(known.begin(), known.end());
}
callback(std::error_code());
return false;
};
m_node.notifyAboutPool(); // add
e.wait();
m_node.notifyAboutPool(); // delete
e.wait();
m_node.notifyAboutPool(); //getknown
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(3, requestsCount);
EXPECT_EQ(expectedKnownPoolHashes, knownPool);
}
TEST_F(BcSTest, poolSynchronizationCheckNotification) {
addConsumers(1);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.start();
EXPECT_EQ(true, e.wait_for(std::chrono::milliseconds(1000)));
m_sync.stop();
}
TEST_F(BcSTest, poolSynchronizationCheckConsumersNotififcation) {
FunctorialPoolConsumerStub c1(m_currency.genesisBlockHash());
FunctorialPoolConsumerStub c2(m_currency.genesisBlockHash());
bool c1Notified = false;
bool c2Notified = false;
c1.onPoolUpdatedFunctor = [&](const std::vector<std::unique_ptr<ITransactionReader>>& new_txs, const std::vector<Hash>& deleted)->std::error_code {
c1Notified = true;
return std::error_code();
};
c2.onPoolUpdatedFunctor = [&](const std::vector<std::unique_ptr<ITransactionReader>>& new_txs, const std::vector<Hash>& deleted)->std::error_code {
c2Notified = true;
return std::error_code();
};
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
o1.syncFunc = [&e](std::error_code) {
e.notify();
};
m_sync.addObserver(&o1);
m_sync.addConsumer(&c1);
m_sync.addConsumer(&c2);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
ASSERT_TRUE(c1Notified);
ASSERT_TRUE(c2Notified);
}
TEST_F(BcSTest, poolSynchronizationCheckConsumerReturnError) {
FunctorialPoolConsumerStub c1(m_currency.genesisBlockHash());
FunctorialPoolConsumerStub c2(m_currency.genesisBlockHash());
bool c1Notified = false;
bool c2Notified = false;
c1.onPoolUpdatedFunctor = [&](const std::vector<std::unique_ptr<ITransactionReader>>& new_txs, const std::vector<Hash>& deleted)->std::error_code {
c1Notified = true;
return std::make_error_code(std::errc::invalid_argument);
};
c2.onPoolUpdatedFunctor = [&](const std::vector<std::unique_ptr<ITransactionReader>>& new_txs, const std::vector<Hash>& deleted)->std::error_code {
c2Notified = true;
return std::make_error_code(std::errc::invalid_argument);
};
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
m_sync.addObserver(&o1);
m_sync.addConsumer(&c1);
m_sync.addConsumer(&c2);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
ASSERT_TRUE(c1Notified != c2Notified);
EXPECT_NE(0, errc.value());
}
class FunctorialBlockhainConsumerStub : public ConsumerStub {
public:
FunctorialBlockhainConsumerStub(const Hash& genesisBlockHash) : ConsumerStub(genesisBlockHash), onBlockchainDetachFunctor([](uint32_t) {}) {}
virtual bool onNewBlocks(const CompleteBlock* blocks, uint32_t startHeight, uint32_t count) override {
return onNewBlocksFunctor(blocks, startHeight, count);
}
virtual void onBlockchainDetach(uint32_t height) override {
onBlockchainDetachFunctor(height);
}
std::function<bool(const CompleteBlock*, uint32_t, size_t)> onNewBlocksFunctor;
std::function<void(uint32_t)> onBlockchainDetachFunctor;
};
TEST_F(BcSTest, checkINodeError) {
addConsumers(1);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
m_node.queryBlocksFunctor = [](const std::vector<Hash>& knownBlockIds, uint64_t timestamp, std::vector<BlockShortEntry>& newBlocks, uint32_t& startHeight, const INode::Callback& callback) -> bool {
callback(std::make_error_code(std::errc::invalid_argument));
return false;
};
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(std::make_error_code(std::errc::invalid_argument), errc);
}
TEST_F(BcSTest, checkConsumerError) {
FunctorialBlockhainConsumerStub c(m_currency.genesisBlockHash());
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
generator.generateEmptyBlocks(10);
c.onNewBlocksFunctor = [](const CompleteBlock*, uint32_t, size_t) -> bool {
return false;
};
m_sync.addObserver(&o1);
m_sync.addConsumer(&c);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(std::make_error_code(std::errc::invalid_argument), errc);
}
TEST_F(BcSTest, checkBlocksRequesting) {
FunctorialBlockhainConsumerStub c(m_currency.genesisBlockHash());
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
size_t blocksExpected = 20;
generator.generateEmptyBlocks(blocksExpected - 1); //-1 for genesis
m_node.setGetNewBlocksLimit(3);
size_t blocksRequested = 0;
c.onNewBlocksFunctor = [&](const CompleteBlock*, uint32_t, size_t count) -> bool {
blocksRequested += count;
return true;
};
m_sync.addObserver(&o1);
m_sync.addConsumer(&c);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(blocksExpected, blocksRequested);
}
TEST_F(BcSTest, checkConsumerHeightReceived) {
FunctorialBlockhainConsumerStub c(m_currency.genesisBlockHash());
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
uint32_t firstlySnchronizedHeight = 20;
generator.generateEmptyBlocks(static_cast<size_t>(firstlySnchronizedHeight - 1));//-1 for genesis
m_node.setGetNewBlocksLimit(50);
c.onNewBlocksFunctor = [&](const CompleteBlock*, uint32_t startHeight, size_t) -> bool {
return true;
};
m_sync.addObserver(&o1);
m_sync.addConsumer(&c);
m_sync.start();
e.wait();
m_sync.stop();
generator.generateEmptyBlocks(20);
ConsumerStub fake_c(m_currency.genesisBlockHash());
m_sync.addConsumer(&fake_c);
uint32_t receivedStartHeight = 0;
c.onNewBlocksFunctor = [&](const CompleteBlock*, uint32_t startHeight, size_t) -> bool {
receivedStartHeight = startHeight;
return true;
};
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(firstlySnchronizedHeight + 1, receivedStartHeight);
}
TEST_F(BcSTest, checkConsumerOldBlocksNotIvoked) {
FunctorialBlockhainConsumerStub c(m_currency.genesisBlockHash());
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
generator.generateEmptyBlocks(20);
m_node.setGetNewBlocksLimit(50);
c.onNewBlocksFunctor = [&](const CompleteBlock*, uint32_t startHeight, size_t) -> bool {
return true;
};
m_sync.addObserver(&o1);
m_sync.addConsumer(&c);
m_sync.start();
e.wait();
m_sync.stop();
ConsumerStub fake_c(m_currency.genesisBlockHash());
m_sync.addConsumer(&fake_c);
bool onNewBlocksInvoked = false;
c.onNewBlocksFunctor = [&](const CompleteBlock*, uint64_t startHeight, size_t) -> bool {
onNewBlocksInvoked = true;
return true;
};
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
ASSERT_FALSE(onNewBlocksInvoked);
}
TEST_F(BcSTest, checkConsumerHeightReceivedOnDetach) {
FunctorialBlockhainConsumerStub c(m_currency.genesisBlockHash());
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
generator.generateEmptyBlocks(20);
m_node.setGetNewBlocksLimit(50);
c.onNewBlocksFunctor = [&](const CompleteBlock*, uint32_t startHeight, size_t) -> bool {
return true;
};
m_sync.addObserver(&o1);
m_sync.addConsumer(&c);
m_sync.start();
e.wait();
m_sync.stop();
uint32_t alternativeHeight = 10;
m_node.startAlternativeChain(alternativeHeight);
generator.generateEmptyBlocks(20);
uint32_t receivedStartHeight = 0;
c.onNewBlocksFunctor = [&](const CompleteBlock*, uint32_t startHeight, size_t) -> bool {
receivedStartHeight = startHeight;
return true;
};
uint32_t receivedetachHeight = 0;
c.onBlockchainDetachFunctor = [&](uint32_t detachHeight) {
receivedetachHeight = detachHeight;
};
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(alternativeHeight, receivedetachHeight);
EXPECT_EQ(alternativeHeight, receivedStartHeight);
}
TEST_F(BcSTest, checkStatePreservingBetweenSynchronizations) {
addConsumers(1);
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
generator.generateEmptyBlocks(20);
Hash lastBlockHash = get_block_hash(generator.getBlockchain().back());
m_sync.addObserver(&o1);
m_sync.start();
e.wait();
m_sync.stop();
Hash receivedLastBlockHash;
m_node.queryBlocksFunctor = [&receivedLastBlockHash](const std::vector<Hash>& knownBlockIds, uint64_t timestamp, std::vector<BlockShortEntry>& newBlocks, uint32_t& startHeight, const INode::Callback& callback) -> bool {
receivedLastBlockHash = knownBlockIds.front();
startHeight = 1;
callback(std::make_error_code(std::errc::interrupted));
return false;
};
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(lastBlockHash, receivedLastBlockHash);
}
TEST_F(BcSTest, checkBlocksRerequestingOnError) {
FunctorialBlockhainConsumerStub c(m_currency.genesisBlockHash());
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
generator.generateEmptyBlocks(20);
m_node.setGetNewBlocksLimit(10);
int requestsCount = 0;
std::list<Hash> firstlyKnownBlockIdsTaken;
std::list<Hash> secondlyKnownBlockIdsTaken;
std::vector<Hash> firstlyReceivedBlocks;
std::vector<Hash> secondlyReceivedBlocks;
c.onNewBlocksFunctor = [&](const CompleteBlock* blocks, uint32_t, size_t count) -> bool {
if (requestsCount == 2) {
for (size_t i = 0; i < count; ++i) {
firstlyReceivedBlocks.push_back(blocks[i].blockHash);
}
return false;
}
if (requestsCount == 3) {
for (size_t i = 0; i < count; ++i) {
secondlyReceivedBlocks.push_back(blocks[i].blockHash);
}
}
return true;
};
m_node.queryBlocksFunctor = [&](const std::vector<Hash>& knownBlockIds, uint64_t timestamp, std::vector<BlockShortEntry>& newBlocks, uint32_t& startHeight, const INode::Callback& callback) -> bool {
if (requestsCount == 1) {
firstlyKnownBlockIdsTaken.assign(knownBlockIds.begin(), knownBlockIds.end());
}
if (requestsCount == 2) {
secondlyKnownBlockIdsTaken.assign(knownBlockIds.begin(), knownBlockIds.end());
}
++requestsCount;
return true;
};
m_sync.addObserver(&o1);
m_sync.addConsumer(&c);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(firstlyKnownBlockIdsTaken, secondlyKnownBlockIdsTaken);
EXPECT_EQ(firstlyReceivedBlocks, secondlyReceivedBlocks);
}
TEST_F(BcSTest, checkTxOrder) {
FunctorialBlockhainConsumerStub c(m_currency.genesisBlockHash());
IBlockchainSynchronizerFunctorialObserver o1;
EventWaiter e;
std::error_code errc;
o1.syncFunc = [&](std::error_code ec) {
e.notify();
errc = ec;
};
auto tx1ptr = createTransaction();
auto tx2ptr = createTransaction();
auto tx3ptr = createTransaction();
auto tx1 = ::createTx(*tx1ptr.get());
auto tx2 = ::createTx(*tx2ptr.get());
auto tx3 = ::createTx(*tx3ptr.get());
auto tx1hash = getObjectHash(tx1);
auto tx2hash = getObjectHash(tx2);
auto tx3hash = getObjectHash(tx3);
generator.generateEmptyBlocks(2);
auto last_block = generator.getBlockchain().back();
BlockShortEntry bse;
bse.hasBlock = true;
bse.blockHash = get_block_hash(last_block);;
bse.block = last_block;
bse.txsShortInfo.push_back({tx1hash, tx1});
bse.txsShortInfo.push_back({tx2hash, tx2});
bse.txsShortInfo.push_back({tx3hash, tx3});
std::vector<Hash> expectedTxHashes = { getObjectHash(last_block.baseTransaction), tx1hash, tx2hash, tx3hash };
int requestNumber = 0;
m_node.queryBlocksFunctor = [&bse, &requestNumber](const std::vector<Hash>& knownBlockIds, uint64_t timestamp, std::vector<BlockShortEntry>& newBlocks, uint32_t& startHeight, const INode::Callback& callback) -> bool {
startHeight = 1;
newBlocks.push_back(bse);
if (requestNumber > 0) {
callback(std::make_error_code(std::errc::interrupted));
} else {
callback(std::error_code());
}
requestNumber++;
return false;
};
std::vector<Hash> receivedTxHashes = {};
c.onNewBlocksFunctor = [&](const CompleteBlock* blocks, uint32_t, size_t count) -> bool {
for (auto& tx : blocks[count - 1].transactions) {
auto hash = tx->getTransactionHash();
receivedTxHashes.push_back(*reinterpret_cast<Hash*>(&hash));
}
return true;
};
m_sync.addObserver(&o1);
m_sync.addConsumer(&c);
m_sync.start();
e.wait();
m_sync.stop();
m_sync.removeObserver(&o1);
o1.syncFunc = [](std::error_code) {};
EXPECT_EQ(expectedTxHashes, receivedTxHashes);
}