danicoin/tests/System/DispatcherTests.cpp
2015-07-30 16:22:07 +01:00

389 lines
9.8 KiB
C++
Executable file

// Copyright (c) 2012-2015, The CryptoNote developers, The Bytecoin developers
//
// This file is part of Bytecoin.
//
// Bytecoin is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Bytecoin is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with Bytecoin. If not, see <http://www.gnu.org/licenses/>.
#include <future>
#include <System/Context.h>
#include <System/Dispatcher.h>
#include <System/Event.h>
#include <System/Timer.h>
#include <gtest/gtest.h>
using namespace System;
class DispatcherTests : public testing::Test {
public:
Dispatcher dispatcher;
};
TEST_F(DispatcherTests, clearRemainsDispatcherWorkable) {
dispatcher.clear();
bool spawnDone = false;
Context<> context(dispatcher, [&]() {
spawnDone = true;
});
dispatcher.yield();
ASSERT_TRUE(spawnDone);
}
TEST_F(DispatcherTests, clearRemainsDispatcherWorkableAfterAsyncOperation) {
bool spawn1Done = false;
bool spawn2Done = false;
Context<> context(dispatcher, [&]() {
spawn1Done = true;
});
dispatcher.yield();
ASSERT_TRUE(spawn1Done);
dispatcher.clear();
Context<> contextSecond(dispatcher, [&]() {
spawn2Done = true;
});
dispatcher.yield();
ASSERT_TRUE(spawn2Done);
}
TEST_F(DispatcherTests, clearCalledFromSpawnRemainsDispatcherWorkable) {
bool spawn1Done = false;
bool spawn2Done = false;
Context<> context(dispatcher, [&]() {
dispatcher.clear();
spawn1Done = true;
});
dispatcher.yield();
ASSERT_TRUE(spawn1Done);
Context<> contextSecond(dispatcher, [&]() {
spawn2Done = true;
});
dispatcher.yield();
ASSERT_TRUE(spawn2Done);
}
TEST_F(DispatcherTests, timerIsHandledOnlyAfterAllSpawnedTasksAreHandled) {
Event event1(dispatcher);
Event event2(dispatcher);
Context<> context(dispatcher, [&]() {
event1.set();
Timer(dispatcher).sleep(std::chrono::milliseconds(1));
event2.set();
});
dispatcher.yield();
ASSERT_TRUE(event1.get());
ASSERT_FALSE(event2.get());
std::this_thread::sleep_for(std::chrono::milliseconds(20));
dispatcher.pushContext(dispatcher.getCurrentContext());
dispatcher.dispatch();
ASSERT_FALSE(event2.get());
dispatcher.yield();
ASSERT_TRUE(event2.get());
}
TEST_F(DispatcherTests, dispatchKeepsSpawnOrder) {
std::deque<size_t> executionOrder;
std::deque<size_t> expectedOrder = { 1, 2 };
Context<> context(dispatcher, [&]() {
executionOrder.push_back(1);
});
Context<> contextSecond(dispatcher, [&]() {
executionOrder.push_back(2);
});
dispatcher.pushContext(dispatcher.getCurrentContext());
dispatcher.dispatch();
ASSERT_EQ(executionOrder, expectedOrder);
}
TEST_F(DispatcherTests, dispatchKeepsSpawnOrderWithNesting) {
std::deque<size_t> executionOrder;
std::deque<size_t> expectedOrder = { 1, 2, 3, 4 };
auto mainContext = dispatcher.getCurrentContext();
Context<> context(dispatcher, [&]() {
executionOrder.push_back(1);
Context<> context(dispatcher, [&]() {
executionOrder.push_back(3);
});
});
Context<> contextSecond(dispatcher, [&]() {
executionOrder.push_back(2);
Context<> context(dispatcher, [&]() {
executionOrder.push_back(4);
dispatcher.pushContext(mainContext);
});
});
dispatcher.dispatch();
ASSERT_EQ(executionOrder, expectedOrder);
}
TEST_F(DispatcherTests, dispatchKeepsSpawnResumingOrder) {
std::deque<size_t> executionOrder;
std::deque<size_t> expectedOrder = { 1, 2, 3, 4 };
std::vector<NativeContext*> contexts;
Context<> context(dispatcher, [&]() {
executionOrder.push_back(1);
contexts.push_back(dispatcher.getCurrentContext());
dispatcher.dispatch();
executionOrder.push_back(3);
});
Context<> contextSecond(dispatcher, [&]() {
executionOrder.push_back(2);
contexts.push_back(dispatcher.getCurrentContext());
dispatcher.dispatch();
executionOrder.push_back(4);
});
dispatcher.pushContext(dispatcher.getCurrentContext());
dispatcher.dispatch();
for (auto& ctx : contexts) {
dispatcher.pushContext(ctx);
}
dispatcher.pushContext(dispatcher.getCurrentContext());
dispatcher.dispatch();
ASSERT_EQ(executionOrder, expectedOrder);
}
TEST_F(DispatcherTests, getCurrentContextDiffersForParallelSpawn) {
void* ctx1 = nullptr;
void* ctx2 = nullptr;
Context<> context(dispatcher, [&]() {
ctx1 = dispatcher.getCurrentContext();
});
Context<> contextSecond(dispatcher, [&]() {
ctx2 = dispatcher.getCurrentContext();
});
dispatcher.yield();
ASSERT_NE(ctx1, nullptr);
ASSERT_NE(ctx2, nullptr);
ASSERT_NE(ctx1, ctx2);
}
TEST_F(DispatcherTests, getCurrentContextSameForSequentialSpawn) {
void* ctx1 = nullptr;
void* ctx2 = nullptr;
Context<> context(dispatcher, [&]() {
ctx1 = dispatcher.getCurrentContext();
dispatcher.yield();
ctx2 = dispatcher.getCurrentContext();
});
dispatcher.yield();
dispatcher.yield();
ASSERT_NE(ctx1, nullptr);
ASSERT_EQ(ctx1, ctx2);
}
TEST_F(DispatcherTests, pushedContextMustGoOn) {
bool spawnDone = false;
Context<> context(dispatcher, [&]() {
spawnDone = true;
});
dispatcher.pushContext(dispatcher.getCurrentContext());
dispatcher.dispatch();
ASSERT_TRUE(spawnDone);
}
TEST_F(DispatcherTests, pushedContextMustGoOnFromNestedSpawns) {
bool spawnDone = false;
auto mainContext = dispatcher.getCurrentContext();
Context<> context(dispatcher, [&]() {
spawnDone = true;
dispatcher.pushContext(mainContext);
});
dispatcher.dispatch();
ASSERT_TRUE(spawnDone);
}
TEST_F(DispatcherTests, remoteSpawnActuallySpawns) {
Event remoteSpawnDone(dispatcher);
auto remoteSpawnThread = std::thread([&] {
dispatcher.remoteSpawn([&]() {
remoteSpawnDone.set();
});
});
if (remoteSpawnThread.joinable()) {
remoteSpawnThread.join();
}
dispatcher.yield();
ASSERT_TRUE(remoteSpawnDone.get());
}
TEST_F(DispatcherTests, remoteSpawnActuallySpawns2) {
Event remoteSpawnDone(dispatcher);
auto remoteSpawnThread = std::thread([&] {
dispatcher.remoteSpawn([&]() {
remoteSpawnDone.set();
});
});
if (remoteSpawnThread.joinable()) {
remoteSpawnThread.join();
}
Timer(dispatcher).sleep(std::chrono::milliseconds(3));
ASSERT_TRUE(remoteSpawnDone.get());
}
TEST_F(DispatcherTests, remoteSpawnActuallySpawns3) {
Event remoteSpawnDone(dispatcher);
auto mainCtx = dispatcher.getCurrentContext();
auto remoteSpawnThread = std::thread([&, this] {
std::this_thread::sleep_for(std::chrono::seconds(1));
dispatcher.remoteSpawn([&, this]() {
remoteSpawnDone.set();
dispatcher.pushContext(mainCtx);
});
});
dispatcher.dispatch();
ASSERT_TRUE(remoteSpawnDone.get());
if (remoteSpawnThread.joinable()) {
remoteSpawnThread.join();
}
}
TEST_F(DispatcherTests, remoteSpawnSpawnsProcedureInDispatcherThread) {
Event remoteSpawnDone(dispatcher);
auto mainSpawnThrId = std::this_thread::get_id();
decltype(mainSpawnThrId) remoteSpawnThrId;
auto remoteSpawnThread = std::thread([&] {
dispatcher.remoteSpawn([&]() {
remoteSpawnThrId = std::this_thread::get_id();
remoteSpawnDone.set();
});
});
remoteSpawnDone.wait();
if (remoteSpawnThread.joinable()) {
remoteSpawnThread.join();
}
ASSERT_EQ(mainSpawnThrId, remoteSpawnThrId);
}
TEST_F(DispatcherTests, remoteSpawnSpawnsProcedureAndKeepsOrder) {
Event remoteSpawnDone(dispatcher);
std::deque<size_t> executionOrder;
std::deque<size_t> expectedOrder = { 1, 2 };
auto remoteSpawnThread = std::thread([&] {
dispatcher.remoteSpawn([&]() {
executionOrder.push_back(1);
});
dispatcher.remoteSpawn([&]() {
executionOrder.push_back(2);
remoteSpawnDone.set();
});
});
if (remoteSpawnThread.joinable()) {
remoteSpawnThread.join();
}
remoteSpawnDone.wait();
ASSERT_EQ(executionOrder, expectedOrder);
}
TEST_F(DispatcherTests, remoteSpawnActuallyWorksParallel) {
Event remoteSpawnDone(dispatcher);
auto remoteSpawnThread = std::thread([&] {
dispatcher.remoteSpawn([&]() {
remoteSpawnDone.set();
});
});
Timer(dispatcher).sleep(std::chrono::milliseconds(100));
ASSERT_TRUE(remoteSpawnDone.get());
if (remoteSpawnThread.joinable()) {
remoteSpawnThread.join();
}
}
TEST_F(DispatcherTests, spawnActuallySpawns) {
bool spawnDone = false;
Context<> context(dispatcher, [&]() {
spawnDone = true;
});
dispatcher.yield();
ASSERT_TRUE(spawnDone);
}
TEST_F(DispatcherTests, spawnJustSpawns) {
bool spawnDone = false;
Context<> context(dispatcher, [&]() {
spawnDone = true;
});
ASSERT_FALSE(spawnDone);
dispatcher.yield();
ASSERT_TRUE(spawnDone);
}
TEST_F(DispatcherTests, yieldReturnsIfNothingToSpawn) {
dispatcher.yield();
}
TEST_F(DispatcherTests, yieldReturnsAfterExecutionOfSpawnedProcedures) {
bool spawnDone = false;
Context<> context(dispatcher, [&]() {
spawnDone = true;
});
dispatcher.yield();
ASSERT_TRUE(spawnDone);
}
TEST_F(DispatcherTests, yieldReturnsAfterExecutionOfIO) {
Context<> context(dispatcher, [&]() {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
dispatcher.yield();
});
Timer(dispatcher).sleep(std::chrono::milliseconds(1));
dispatcher.yield();
SUCCEED();
}
TEST_F(DispatcherTests, yieldExecutesIoOnItsFront) {
bool spawnDone = false;
Context<> context(dispatcher, [&]() {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
dispatcher.yield();
spawnDone = true;
});
Timer(dispatcher).sleep(std::chrono::milliseconds(1));
ASSERT_FALSE(spawnDone);
dispatcher.yield();
ASSERT_TRUE(spawnDone);
}