danicoin/external/google/sparsehash/sparsehashtable.h

1191 lines
49 KiB
C
Raw Normal View History

2014-08-13 10:51:37 +00:00
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Craig Silverstein
//
// A sparse hashtable is a particular implementation of
// a hashtable: one that is meant to minimize memory use.
// It does this by using a *sparse table* (cf sparsetable.h),
// which uses between 1 and 2 bits to store empty buckets
// (we may need another bit for hashtables that support deletion).
//
// When empty buckets are so cheap, an appealing hashtable
// implementation is internal probing, in which the hashtable
// is a single table, and collisions are resolved by trying
// to insert again in another bucket. The most cache-efficient
// internal probing schemes are linear probing (which suffers,
// alas, from clumping) and quadratic probing, which is what
// we implement by default.
//
// Deleted buckets are a bit of a pain. We have to somehow mark
// deleted buckets (the probing must distinguish them from empty
// buckets). The most principled way is to have another bitmap,
// but that's annoying and takes up space. Instead we let the
// user specify an "impossible" key. We set deleted buckets
// to have the impossible key.
//
// Note it is possible to change the value of the delete key
// on the fly; you can even remove it, though after that point
// the hashtable is insert_only until you set it again.
//
// You probably shouldn't use this code directly. Use
// <google/sparse_hash_table> or <google/sparse_hash_set> instead.
//
// You can modify the following, below:
// HT_OCCUPANCY_PCT -- how full before we double size
// HT_EMPTY_PCT -- how empty before we halve size
// HT_MIN_BUCKETS -- smallest bucket size
// HT_DEFAULT_STARTING_BUCKETS -- default bucket size at construct-time
//
// You can also change enlarge_factor (which defaults to
// HT_OCCUPANCY_PCT), and shrink_factor (which defaults to
// HT_EMPTY_PCT) with set_resizing_parameters().
//
// How to decide what values to use?
// shrink_factor's default of .4 * OCCUPANCY_PCT, is probably good.
// HT_MIN_BUCKETS is probably unnecessary since you can specify
// (indirectly) the starting number of buckets at construct-time.
// For enlarge_factor, you can use this chart to try to trade-off
// expected lookup time to the space taken up. By default, this
// code uses quadratic probing, though you can change it to linear
// via _JUMP below if you really want to.
//
// From http://www.augustana.ca/~mohrj/courses/1999.fall/csc210/lecture_notes/hashing.html
// NUMBER OF PROBES / LOOKUP Successful Unsuccessful
// Quadratic collision resolution 1 - ln(1-L) - L/2 1/(1-L) - L - ln(1-L)
// Linear collision resolution [1+1/(1-L)]/2 [1+1/(1-L)2]/2
//
// -- enlarge_factor -- 0.10 0.50 0.60 0.75 0.80 0.90 0.99
// QUADRATIC COLLISION RES.
// probes/successful lookup 1.05 1.44 1.62 2.01 2.21 2.85 5.11
// probes/unsuccessful lookup 1.11 2.19 2.82 4.64 5.81 11.4 103.6
// LINEAR COLLISION RES.
// probes/successful lookup 1.06 1.5 1.75 2.5 3.0 5.5 50.5
// probes/unsuccessful lookup 1.12 2.5 3.6 8.5 13.0 50.0 5000.0
//
// The value type is required to be copy constructible and default
// constructible, but it need not be (and commonly isn't) assignable.
#ifndef _SPARSEHASHTABLE_H_
#define _SPARSEHASHTABLE_H_
#ifndef SPARSEHASH_STAT_UPDATE
#define SPARSEHASH_STAT_UPDATE(x) ((void) 0)
#endif
// The probing method
// Linear probing
// #define JUMP_(key, num_probes) ( 1 )
// Quadratic probing
#define JUMP_(key, num_probes) ( num_probes )
#include <google/sparsehash/sparseconfig.h>
#include <assert.h>
#include <algorithm> // For swap(), eg
#include <stdexcept> // For length_error
#include <iterator> // for facts about iterator tags
#include <limits> // for numeric_limits<>
#include <utility> // for pair<>
#include <google/sparsehash/hashtable-common.h>
#include <google/sparsetable> // Since that's basically what we are
_START_GOOGLE_NAMESPACE_
using STL_NAMESPACE::pair;
// The smaller this is, the faster lookup is (because the group bitmap is
// smaller) and the faster insert is, because there's less to move.
// On the other hand, there are more groups. Since group::size_type is
// a short, this number should be of the form 32*x + 16 to avoid waste.
static const u_int16_t DEFAULT_GROUP_SIZE = 48; // fits in 1.5 words
// Hashtable class, used to implement the hashed associative containers
// hash_set and hash_map.
//
// Value: what is stored in the table (each bucket is a Value).
// Key: something in a 1-to-1 correspondence to a Value, that can be used
// to search for a Value in the table (find() takes a Key).
// HashFcn: Takes a Key and returns an integer, the more unique the better.
// ExtractKey: given a Value, returns the unique Key associated with it.
// Must inherit from unary_function, or at least have a
// result_type enum indicating the return type of operator().
// SetKey: given a Value* and a Key, modifies the value such that
// ExtractKey(value) == key. We guarantee this is only called
// with key == deleted_key.
// EqualKey: Given two Keys, says whether they are the same (that is,
// if they are both associated with the same Value).
// Alloc: STL allocator to use to allocate memory.
template <class Value, class Key, class HashFcn,
class ExtractKey, class SetKey, class EqualKey, class Alloc>
class sparse_hashtable;
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_iterator;
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_const_iterator;
// As far as iterating, we're basically just a sparsetable
// that skips over deleted elements.
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_iterator {
private:
typedef typename A::template rebind<V>::other value_alloc_type;
public:
typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,A>::nonempty_iterator
st_iterator;
typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
typedef V value_type;
typedef typename value_alloc_type::difference_type difference_type;
typedef typename value_alloc_type::size_type size_type;
typedef typename value_alloc_type::reference reference;
typedef typename value_alloc_type::pointer pointer;
// "Real" constructor and default constructor
sparse_hashtable_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
st_iterator it, st_iterator it_end)
: ht(h), pos(it), end(it_end) { advance_past_deleted(); }
sparse_hashtable_iterator() { } // not ever used internally
// The default destructor is fine; we don't define one
// The default operator= is fine; we don't define one
// Happy dereferencer
reference operator*() const { return *pos; }
pointer operator->() const { return &(operator*()); }
// Arithmetic. The only hard part is making sure that
// we're not on a marked-deleted array element
void advance_past_deleted() {
while ( pos != end && ht->test_deleted(*this) )
++pos;
}
iterator& operator++() {
assert(pos != end); ++pos; advance_past_deleted(); return *this;
}
iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
// Comparison.
bool operator==(const iterator& it) const { return pos == it.pos; }
bool operator!=(const iterator& it) const { return pos != it.pos; }
// The actual data
const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
st_iterator pos, end;
};
// Now do it all again, but with const-ness!
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_const_iterator {
private:
typedef typename A::template rebind<V>::other value_alloc_type;
public:
typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,A>::const_nonempty_iterator
st_iterator;
typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
typedef V value_type;
typedef typename value_alloc_type::difference_type difference_type;
typedef typename value_alloc_type::size_type size_type;
typedef typename value_alloc_type::const_reference reference;
typedef typename value_alloc_type::const_pointer pointer;
// "Real" constructor and default constructor
sparse_hashtable_const_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
st_iterator it, st_iterator it_end)
: ht(h), pos(it), end(it_end) { advance_past_deleted(); }
// This lets us convert regular iterators to const iterators
sparse_hashtable_const_iterator() { } // never used internally
sparse_hashtable_const_iterator(const iterator &it)
: ht(it.ht), pos(it.pos), end(it.end) { }
// The default destructor is fine; we don't define one
// The default operator= is fine; we don't define one
// Happy dereferencer
reference operator*() const { return *pos; }
pointer operator->() const { return &(operator*()); }
// Arithmetic. The only hard part is making sure that
// we're not on a marked-deleted array element
void advance_past_deleted() {
while ( pos != end && ht->test_deleted(*this) )
++pos;
}
const_iterator& operator++() {
assert(pos != end); ++pos; advance_past_deleted(); return *this;
}
const_iterator operator++(int) { const_iterator tmp(*this); ++*this; return tmp; }
// Comparison.
bool operator==(const const_iterator& it) const { return pos == it.pos; }
bool operator!=(const const_iterator& it) const { return pos != it.pos; }
// The actual data
const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
st_iterator pos, end;
};
// And once again, but this time freeing up memory as we iterate
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct sparse_hashtable_destructive_iterator {
private:
typedef typename A::template rebind<V>::other value_alloc_type;
public:
typedef sparse_hashtable_destructive_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,A>::destructive_iterator
st_iterator;
typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
typedef V value_type;
typedef typename value_alloc_type::difference_type difference_type;
typedef typename value_alloc_type::size_type size_type;
typedef typename value_alloc_type::reference reference;
typedef typename value_alloc_type::pointer pointer;
// "Real" constructor and default constructor
sparse_hashtable_destructive_iterator(const
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
st_iterator it, st_iterator it_end)
: ht(h), pos(it), end(it_end) { advance_past_deleted(); }
sparse_hashtable_destructive_iterator() { } // never used internally
// The default destructor is fine; we don't define one
// The default operator= is fine; we don't define one
// Happy dereferencer
reference operator*() const { return *pos; }
pointer operator->() const { return &(operator*()); }
// Arithmetic. The only hard part is making sure that
// we're not on a marked-deleted array element
void advance_past_deleted() {
while ( pos != end && ht->test_deleted(*this) )
++pos;
}
iterator& operator++() {
assert(pos != end); ++pos; advance_past_deleted(); return *this;
}
iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
// Comparison.
bool operator==(const iterator& it) const { return pos == it.pos; }
bool operator!=(const iterator& it) const { return pos != it.pos; }
// The actual data
const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
st_iterator pos, end;
};
template <class Value, class Key, class HashFcn,
class ExtractKey, class SetKey, class EqualKey, class Alloc>
class sparse_hashtable {
private:
typedef typename Alloc::template rebind<Value>::other value_alloc_type;
public:
typedef Key key_type;
typedef Value value_type;
typedef HashFcn hasher;
typedef EqualKey key_equal;
typedef Alloc allocator_type;
typedef typename value_alloc_type::size_type size_type;
typedef typename value_alloc_type::difference_type difference_type;
typedef typename value_alloc_type::reference reference;
typedef typename value_alloc_type::const_reference const_reference;
typedef typename value_alloc_type::pointer pointer;
typedef typename value_alloc_type::const_pointer const_pointer;
typedef sparse_hashtable_iterator<Value, Key, HashFcn, ExtractKey,
SetKey, EqualKey, Alloc>
iterator;
typedef sparse_hashtable_const_iterator<Value, Key, HashFcn, ExtractKey,
SetKey, EqualKey, Alloc>
const_iterator;
typedef sparse_hashtable_destructive_iterator<Value, Key, HashFcn, ExtractKey,
SetKey, EqualKey, Alloc>
destructive_iterator;
// These come from tr1. For us they're the same as regular iterators.
typedef iterator local_iterator;
typedef const_iterator const_local_iterator;
// How full we let the table get before we resize, by default.
// Knuth says .8 is good -- higher causes us to probe too much,
// though it saves memory.
static const int HT_OCCUPANCY_PCT; // = 80 (out of 100);
// How empty we let the table get before we resize lower, by default.
// (0.0 means never resize lower.)
// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
static const int HT_EMPTY_PCT; // = 0.4 * HT_OCCUPANCY_PCT;
// Minimum size we're willing to let hashtables be.
// Must be a power of two, and at least 4.
// Note, however, that for a given hashtable, the initial size is a
// function of the first constructor arg, and may be >HT_MIN_BUCKETS.
static const size_type HT_MIN_BUCKETS = 4;
// By default, if you don't specify a hashtable size at
// construction-time, we use this size. Must be a power of two, and
// at least HT_MIN_BUCKETS.
static const size_type HT_DEFAULT_STARTING_BUCKETS = 32;
// ITERATOR FUNCTIONS
iterator begin() { return iterator(this, table.nonempty_begin(),
table.nonempty_end()); }
iterator end() { return iterator(this, table.nonempty_end(),
table.nonempty_end()); }
const_iterator begin() const { return const_iterator(this,
table.nonempty_begin(),
table.nonempty_end()); }
const_iterator end() const { return const_iterator(this,
table.nonempty_end(),
table.nonempty_end()); }
// These come from tr1 unordered_map. They iterate over 'bucket' n.
// For sparsehashtable, we could consider each 'group' to be a bucket,
// I guess, but I don't really see the point. We'll just consider
// bucket n to be the n-th element of the sparsetable, if it's occupied,
// or some empty element, otherwise.
local_iterator begin(size_type i) {
if (table.test(i))
return local_iterator(this, table.get_iter(i), table.nonempty_end());
else
return local_iterator(this, table.nonempty_end(), table.nonempty_end());
}
local_iterator end(size_type i) {
local_iterator it = begin(i);
if (table.test(i) && !test_deleted(i))
++it;
return it;
}
const_local_iterator begin(size_type i) const {
if (table.test(i))
return const_local_iterator(this, table.get_iter(i),
table.nonempty_end());
else
return const_local_iterator(this, table.nonempty_end(),
table.nonempty_end());
}
const_local_iterator end(size_type i) const {
const_local_iterator it = begin(i);
if (table.test(i) && !test_deleted(i))
++it;
return it;
}
// This is used when resizing
destructive_iterator destructive_begin() {
return destructive_iterator(this, table.destructive_begin(),
table.destructive_end());
}
destructive_iterator destructive_end() {
return destructive_iterator(this, table.destructive_end(),
table.destructive_end());
}
// ACCESSOR FUNCTIONS for the things we templatize on, basically
hasher hash_funct() const { return settings; }
key_equal key_eq() const { return key_info; }
allocator_type get_allocator() const { return table.get_allocator(); }
// Accessor function for statistics gathering.
int num_table_copies() const { return settings.num_ht_copies(); }
private:
// We need to copy values when we set the special marker for deleted
// elements, but, annoyingly, we can't just use the copy assignment
// operator because value_type might not be assignable (it's often
// pair<const X, Y>). We use explicit destructor invocation and
// placement new to get around this. Arg.
void set_value(pointer dst, const_reference src) {
dst->~value_type(); // delete the old value, if any
new(dst) value_type(src);
}
// This is used as a tag for the copy constructor, saying to destroy its
// arg We have two ways of destructively copying: with potentially growing
// the hashtable as we copy, and without. To make sure the outside world
// can't do a destructive copy, we make the typename private.
enum MoveDontCopyT {MoveDontCopy, MoveDontGrow};
// DELETE HELPER FUNCTIONS
// This lets the user describe a key that will indicate deleted
// table entries. This key should be an "impossible" entry --
// if you try to insert it for real, you won't be able to retrieve it!
// (NB: while you pass in an entire value, only the key part is looked
// at. This is just because I don't know how to assign just a key.)
private:
void squash_deleted() { // gets rid of any deleted entries we have
if ( num_deleted ) { // get rid of deleted before writing
sparse_hashtable tmp(MoveDontGrow, *this);
swap(tmp); // now we are tmp
}
assert(num_deleted == 0);
}
bool test_deleted_key(const key_type& key) const {
// The num_deleted test is crucial for read(): after read(), the ht values
// are garbage, and we don't want to think some of them are deleted.
// Invariant: !use_deleted implies num_deleted is 0.
assert(settings.use_deleted() || num_deleted == 0);
return num_deleted > 0 && equals(key_info.delkey, key);
}
public:
void set_deleted_key(const key_type &key) {
// It's only safe to change what "deleted" means if we purge deleted guys
squash_deleted();
settings.set_use_deleted(true);
key_info.delkey = key;
}
void clear_deleted_key() {
squash_deleted();
settings.set_use_deleted(false);
}
key_type deleted_key() const {
assert(settings.use_deleted()
&& "Must set deleted key before calling deleted_key");
return key_info.delkey;
}
// These are public so the iterators can use them
// True if the item at position bucknum is "deleted" marker
bool test_deleted(size_type bucknum) const {
if (num_deleted == 0 || !table.test(bucknum)) return false;
return test_deleted_key(get_key(table.unsafe_get(bucknum)));
}
bool test_deleted(const iterator &it) const {
if (!settings.use_deleted()) return false;
return test_deleted_key(get_key(*it));
}
bool test_deleted(const const_iterator &it) const {
if (!settings.use_deleted()) return false;
return test_deleted_key(get_key(*it));
}
bool test_deleted(const destructive_iterator &it) const {
if (!settings.use_deleted()) return false;
return test_deleted_key(get_key(*it));
}
private:
// Set it so test_deleted is true. true if object didn't used to be deleted.
// TODO(csilvers): make these private (also in densehashtable.h)
bool set_deleted(iterator &it) {
assert(settings.use_deleted());
bool retval = !test_deleted(it);
// &* converts from iterator to value-type.
set_key(&(*it), key_info.delkey);
return retval;
}
// Set it so test_deleted is false. true if object used to be deleted.
bool clear_deleted(iterator &it) {
assert(settings.use_deleted());
// Happens automatically when we assign something else in its place.
return test_deleted(it);
}
// We also allow to set/clear the deleted bit on a const iterator.
// We allow a const_iterator for the same reason you can delete a
// const pointer: it's convenient, and semantically you can't use
// 'it' after it's been deleted anyway, so its const-ness doesn't
// really matter.
bool set_deleted(const_iterator &it) {
assert(settings.use_deleted()); // bad if set_deleted_key() wasn't called
bool retval = !test_deleted(it);
set_key(const_cast<pointer>(&(*it)), key_info.delkey);
return retval;
}
// Set it so test_deleted is false. true if object used to be deleted.
bool clear_deleted(const_iterator &it) {
assert(settings.use_deleted()); // bad if set_deleted_key() wasn't called
return test_deleted(it);
}
// FUNCTIONS CONCERNING SIZE
public:
size_type size() const { return table.num_nonempty() - num_deleted; }
size_type max_size() const { return table.max_size(); }
bool empty() const { return size() == 0; }
size_type bucket_count() const { return table.size(); }
size_type max_bucket_count() const { return max_size(); }
// These are tr1 methods. Their idea of 'bucket' doesn't map well to
// what we do. We just say every bucket has 0 or 1 items in it.
size_type bucket_size(size_type i) const {
return begin(i) == end(i) ? 0 : 1;
}
private:
// Because of the above, size_type(-1) is never legal; use it for errors
static const size_type ILLEGAL_BUCKET = size_type(-1);
// Used after a string of deletes. Returns true if we actually shrunk.
// TODO(csilvers): take a delta so we can take into account inserts
// done after shrinking. Maybe make part of the Settings class?
bool maybe_shrink() {
assert(table.num_nonempty() >= num_deleted);
assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
assert(bucket_count() >= HT_MIN_BUCKETS);
bool retval = false;
// If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
// we'll never shrink until you get relatively big, and we'll never
// shrink below HT_DEFAULT_STARTING_BUCKETS. Otherwise, something
// like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
// shrink us down to HT_MIN_BUCKETS buckets, which is too small.
const size_type num_remain = table.num_nonempty() - num_deleted;
const size_type shrink_threshold = settings.shrink_threshold();
if (shrink_threshold > 0 && num_remain < shrink_threshold &&
bucket_count() > HT_DEFAULT_STARTING_BUCKETS) {
const float shrink_factor = settings.shrink_factor();
size_type sz = bucket_count() / 2; // find how much we should shrink
while (sz > HT_DEFAULT_STARTING_BUCKETS &&
num_remain < static_cast<size_type>(sz * shrink_factor)) {
sz /= 2; // stay a power of 2
}
sparse_hashtable tmp(MoveDontCopy, *this, sz);
swap(tmp); // now we are tmp
retval = true;
}
settings.set_consider_shrink(false); // because we just considered it
return retval;
}
// We'll let you resize a hashtable -- though this makes us copy all!
// When you resize, you say, "make it big enough for this many more elements"
// Returns true if we actually resized, false if size was already ok.
bool resize_delta(size_type delta) {
bool did_resize = false;
if ( settings.consider_shrink() ) { // see if lots of deletes happened
if ( maybe_shrink() )
did_resize = true;
}
if (table.num_nonempty() >=
(STL_NAMESPACE::numeric_limits<size_type>::max)() - delta)
throw std::length_error("resize overflow");
if ( bucket_count() >= HT_MIN_BUCKETS &&
(table.num_nonempty() + delta) <= settings.enlarge_threshold() )
return did_resize; // we're ok as we are
// Sometimes, we need to resize just to get rid of all the
// "deleted" buckets that are clogging up the hashtable. So when
// deciding whether to resize, count the deleted buckets (which
// are currently taking up room). But later, when we decide what
// size to resize to, *don't* count deleted buckets, since they
// get discarded during the resize.
const size_type needed_size =
settings.min_buckets(table.num_nonempty() + delta, 0);
if ( needed_size <= bucket_count() ) // we have enough buckets
return did_resize;
size_type resize_to =
settings.min_buckets(table.num_nonempty() - num_deleted + delta,
bucket_count());
if (resize_to < needed_size && // may double resize_to
resize_to < (STL_NAMESPACE::numeric_limits<size_type>::max)() / 2) {
// This situation means that we have enough deleted elements,
// that once we purge them, we won't actually have needed to
// grow. But we may want to grow anyway: if we just purge one
// element, say, we'll have to grow anyway next time we
// insert. Might as well grow now, since we're already going
// through the trouble of copying (in order to purge the
// deleted elements).
const size_type target =
static_cast<size_type>(settings.shrink_size(resize_to*2));
if (table.num_nonempty() - num_deleted + delta >= target) {
// Good, we won't be below the shrink threshhold even if we double.
resize_to *= 2;
}
}
sparse_hashtable tmp(MoveDontCopy, *this, resize_to);
swap(tmp); // now we are tmp
return true;
}
// Used to actually do the rehashing when we grow/shrink a hashtable
void copy_from(const sparse_hashtable &ht, size_type min_buckets_wanted) {
clear(); // clear table, set num_deleted to 0
// If we need to change the size of our table, do it now
const size_type resize_to =
settings.min_buckets(ht.size(), min_buckets_wanted);
if ( resize_to > bucket_count() ) { // we don't have enough buckets
table.resize(resize_to); // sets the number of buckets
settings.reset_thresholds(bucket_count());
}
// We use a normal iterator to get non-deleted bcks from ht
// We could use insert() here, but since we know there are
// no duplicates and no deleted items, we can be more efficient
assert((bucket_count() & (bucket_count()-1)) == 0); // a power of two
for ( const_iterator it = ht.begin(); it != ht.end(); ++it ) {
size_type num_probes = 0; // how many times we've probed
size_type bucknum;
const size_type bucket_count_minus_one = bucket_count() - 1;
for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
table.test(bucknum); // not empty
bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one) {
++num_probes;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
table.set(bucknum, *it); // copies the value to here
}
settings.inc_num_ht_copies();
}
// Implementation is like copy_from, but it destroys the table of the
// "from" guy by freeing sparsetable memory as we iterate. This is
// useful in resizing, since we're throwing away the "from" guy anyway.
void move_from(MoveDontCopyT mover, sparse_hashtable &ht,
size_type min_buckets_wanted) {
clear(); // clear table, set num_deleted to 0
// If we need to change the size of our table, do it now
size_type resize_to;
if ( mover == MoveDontGrow )
resize_to = ht.bucket_count(); // keep same size as old ht
else // MoveDontCopy
resize_to = settings.min_buckets(ht.size(), min_buckets_wanted);
if ( resize_to > bucket_count() ) { // we don't have enough buckets
table.resize(resize_to); // sets the number of buckets
settings.reset_thresholds(bucket_count());
}
// We use a normal iterator to get non-deleted bcks from ht
// We could use insert() here, but since we know there are
// no duplicates and no deleted items, we can be more efficient
assert( (bucket_count() & (bucket_count()-1)) == 0); // a power of two
// THIS IS THE MAJOR LINE THAT DIFFERS FROM COPY_FROM():
for ( destructive_iterator it = ht.destructive_begin();
it != ht.destructive_end(); ++it ) {
size_type num_probes = 0; // how many times we've probed
size_type bucknum;
for ( bucknum = hash(get_key(*it)) & (bucket_count()-1); // h % buck_cnt
table.test(bucknum); // not empty
bucknum = (bucknum + JUMP_(key, num_probes)) & (bucket_count()-1) ) {
++num_probes;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
table.set(bucknum, *it); // copies the value to here
}
settings.inc_num_ht_copies();
}
// Required by the spec for hashed associative container
public:
// Though the docs say this should be num_buckets, I think it's much
// more useful as num_elements. As a special feature, calling with
// req_elements==0 will cause us to shrink if we can, saving space.
void resize(size_type req_elements) { // resize to this or larger
if ( settings.consider_shrink() || req_elements == 0 )
maybe_shrink();
if ( req_elements > table.num_nonempty() ) // we only grow
resize_delta(req_elements - table.num_nonempty());
}
// Get and change the value of shrink_factor and enlarge_factor. The
// description at the beginning of this file explains how to choose
// the values. Setting the shrink parameter to 0.0 ensures that the
// table never shrinks.
void get_resizing_parameters(float* shrink, float* grow) const {
*shrink = settings.shrink_factor();
*grow = settings.enlarge_factor();
}
void set_resizing_parameters(float shrink, float grow) {
settings.set_resizing_parameters(shrink, grow);
settings.reset_thresholds(bucket_count());
}
// CONSTRUCTORS -- as required by the specs, we take a size,
// but also let you specify a hashfunction, key comparator,
// and key extractor. We also define a copy constructor and =.
// DESTRUCTOR -- the default is fine, surprisingly.
explicit sparse_hashtable(size_type expected_max_items_in_table = 0,
const HashFcn& hf = HashFcn(),
const EqualKey& eql = EqualKey(),
const ExtractKey& ext = ExtractKey(),
const SetKey& set = SetKey(),
const Alloc& alloc = Alloc())
: settings(hf),
key_info(ext, set, eql),
num_deleted(0),
table((expected_max_items_in_table == 0
? HT_DEFAULT_STARTING_BUCKETS
: settings.min_buckets(expected_max_items_in_table, 0)),
alloc) {
settings.reset_thresholds(bucket_count());
}
// As a convenience for resize(), we allow an optional second argument
// which lets you make this new hashtable a different size than ht.
// We also provide a mechanism of saying you want to "move" the ht argument
// into us instead of copying.
sparse_hashtable(const sparse_hashtable& ht,
size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
: settings(ht.settings),
key_info(ht.key_info),
num_deleted(0),
table(0, ht.get_allocator()) {
settings.reset_thresholds(bucket_count());
copy_from(ht, min_buckets_wanted); // copy_from() ignores deleted entries
}
sparse_hashtable(MoveDontCopyT mover, sparse_hashtable& ht,
size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
: settings(ht.settings),
key_info(ht.key_info),
num_deleted(0),
table(0, ht.get_allocator()) {
settings.reset_thresholds(bucket_count());
move_from(mover, ht, min_buckets_wanted); // ignores deleted entries
}
sparse_hashtable& operator= (const sparse_hashtable& ht) {
if (&ht == this) return *this; // don't copy onto ourselves
settings = ht.settings;
key_info = ht.key_info;
num_deleted = ht.num_deleted;
// copy_from() calls clear and sets num_deleted to 0 too
copy_from(ht, HT_MIN_BUCKETS);
// we purposefully don't copy the allocator, which may not be copyable
return *this;
}
// Many STL algorithms use swap instead of copy constructors
void swap(sparse_hashtable& ht) {
STL_NAMESPACE::swap(settings, ht.settings);
STL_NAMESPACE::swap(key_info, ht.key_info);
STL_NAMESPACE::swap(num_deleted, ht.num_deleted);
table.swap(ht.table);
}
// It's always nice to be able to clear a table without deallocating it
void clear() {
if (!empty() || (num_deleted != 0)) {
table.clear();
}
settings.reset_thresholds(bucket_count());
num_deleted = 0;
}
// LOOKUP ROUTINES
private:
// Returns a pair of positions: 1st where the object is, 2nd where
// it would go if you wanted to insert it. 1st is ILLEGAL_BUCKET
// if object is not found; 2nd is ILLEGAL_BUCKET if it is.
// Note: because of deletions where-to-insert is not trivial: it's the
// first deleted bucket we see, as long as we don't find the key later
pair<size_type, size_type> find_position(const key_type &key) const {
size_type num_probes = 0; // how many times we've probed
const size_type bucket_count_minus_one = bucket_count() - 1;
size_type bucknum = hash(key) & bucket_count_minus_one;
size_type insert_pos = ILLEGAL_BUCKET; // where we would insert
SPARSEHASH_STAT_UPDATE(total_lookups += 1);
while ( 1 ) { // probe until something happens
if ( !table.test(bucknum) ) { // bucket is empty
SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
if ( insert_pos == ILLEGAL_BUCKET ) // found no prior place to insert
return pair<size_type,size_type>(ILLEGAL_BUCKET, bucknum);
else
return pair<size_type,size_type>(ILLEGAL_BUCKET, insert_pos);
} else if ( test_deleted(bucknum) ) {// keep searching, but mark to insert
if ( insert_pos == ILLEGAL_BUCKET )
insert_pos = bucknum;
} else if ( equals(key, get_key(table.unsafe_get(bucknum))) ) {
SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
return pair<size_type,size_type>(bucknum, ILLEGAL_BUCKET);
}
++num_probes; // we're doing another probe
bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
assert(num_probes < bucket_count()
&& "Hashtable is full: an error in key_equal<> or hash<>");
}
}
public:
iterator find(const key_type& key) {
if ( size() == 0 ) return end();
pair<size_type, size_type> pos = find_position(key);
if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
return end();
else
return iterator(this, table.get_iter(pos.first), table.nonempty_end());
}
const_iterator find(const key_type& key) const {
if ( size() == 0 ) return end();
pair<size_type, size_type> pos = find_position(key);
if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
return end();
else
return const_iterator(this,
table.get_iter(pos.first), table.nonempty_end());
}
// This is a tr1 method: the bucket a given key is in, or what bucket
// it would be put in, if it were to be inserted. Shrug.
size_type bucket(const key_type& key) const {
pair<size_type, size_type> pos = find_position(key);
return pos.first == ILLEGAL_BUCKET ? pos.second : pos.first;
}
// Counts how many elements have key key. For maps, it's either 0 or 1.
size_type count(const key_type &key) const {
pair<size_type, size_type> pos = find_position(key);
return pos.first == ILLEGAL_BUCKET ? 0 : 1;
}
// Likewise, equal_range doesn't really make sense for us. Oh well.
pair<iterator,iterator> equal_range(const key_type& key) {
iterator pos = find(key); // either an iterator or end
if (pos == end()) {
return pair<iterator,iterator>(pos, pos);
} else {
const iterator startpos = pos++;
return pair<iterator,iterator>(startpos, pos);
}
}
pair<const_iterator,const_iterator> equal_range(const key_type& key) const {
const_iterator pos = find(key); // either an iterator or end
if (pos == end()) {
return pair<const_iterator,const_iterator>(pos, pos);
} else {
const const_iterator startpos = pos++;
return pair<const_iterator,const_iterator>(startpos, pos);
}
}
// INSERTION ROUTINES
private:
// Private method used by insert_noresize and find_or_insert.
iterator insert_at(const_reference obj, size_type pos) {
if (size() >= max_size())
throw std::length_error("insert overflow");
if ( test_deleted(pos) ) { // just replace if it's been deleted
// The set() below will undelete this object. We just worry about stats
assert(num_deleted > 0);
--num_deleted; // used to be, now it isn't
}
table.set(pos, obj);
return iterator(this, table.get_iter(pos), table.nonempty_end());
}
// If you know *this is big enough to hold obj, use this routine
pair<iterator, bool> insert_noresize(const_reference obj) {
// First, double-check we're not inserting delkey
assert((!settings.use_deleted() || !equals(get_key(obj), key_info.delkey))
&& "Inserting the deleted key");
const pair<size_type,size_type> pos = find_position(get_key(obj));
if ( pos.first != ILLEGAL_BUCKET) { // object was already there
return pair<iterator,bool>(iterator(this, table.get_iter(pos.first),
table.nonempty_end()),
false); // false: we didn't insert
} else { // pos.second says where to put it
return pair<iterator,bool>(insert_at(obj, pos.second), true);
}
}
// Specializations of insert(it, it) depending on the power of the iterator:
// (1) Iterator supports operator-, resize before inserting
template <class ForwardIterator>
void insert(ForwardIterator f, ForwardIterator l, STL_NAMESPACE::forward_iterator_tag) {
size_t dist = STL_NAMESPACE::distance(f, l);
if (dist >= (std::numeric_limits<size_type>::max)())
throw std::length_error("insert-range overflow");
resize_delta(static_cast<size_type>(dist));
for ( ; dist > 0; --dist, ++f) {
insert_noresize(*f);
}
}
// (2) Arbitrary iterator, can't tell how much to resize
template <class InputIterator>
void insert(InputIterator f, InputIterator l, STL_NAMESPACE::input_iterator_tag) {
for ( ; f != l; ++f)
insert(*f);
}
public:
// This is the normal insert routine, used by the outside world
pair<iterator, bool> insert(const_reference obj) {
resize_delta(1); // adding an object, grow if need be
return insert_noresize(obj);
}
// When inserting a lot at a time, we specialize on the type of iterator
template <class InputIterator>
void insert(InputIterator f, InputIterator l) {
// specializes on iterator type
insert(f, l, typename STL_NAMESPACE::iterator_traits<InputIterator>::iterator_category());
}
// DefaultValue is a functor that takes a key and returns a value_type
// representing the default value to be inserted if none is found.
template <class DefaultValue>
value_type& find_or_insert(const key_type& key) {
// First, double-check we're not inserting delkey
assert((!settings.use_deleted() || !equals(key, key_info.delkey))
&& "Inserting the deleted key");
const pair<size_type,size_type> pos = find_position(key);
DefaultValue default_value;
if ( pos.first != ILLEGAL_BUCKET) { // object was already there
return *table.get_iter(pos.first);
} else if (resize_delta(1)) { // needed to rehash to make room
// Since we resized, we can't use pos, so recalculate where to insert.
return *insert_noresize(default_value(key)).first;
} else { // no need to rehash, insert right here
return *insert_at(default_value(key), pos.second);
}
}
// DELETION ROUTINES
size_type erase(const key_type& key) {
// First, double-check we're not erasing delkey.
assert((!settings.use_deleted() || !equals(key, key_info.delkey))
&& "Erasing the deleted key");
assert(!settings.use_deleted() || !equals(key, key_info.delkey));
const_iterator pos = find(key); // shrug: shouldn't need to be const
if ( pos != end() ) {
assert(!test_deleted(pos)); // or find() shouldn't have returned it
set_deleted(pos);
++num_deleted;
// will think about shrink after next insert
settings.set_consider_shrink(true);
return 1; // because we deleted one thing
} else {
return 0; // because we deleted nothing
}
}
// We return the iterator past the deleted item.
void erase(iterator pos) {
if ( pos == end() ) return; // sanity check
if ( set_deleted(pos) ) { // true if object has been newly deleted
++num_deleted;
// will think about shrink after next insert
settings.set_consider_shrink(true);
}
}
void erase(iterator f, iterator l) {
for ( ; f != l; ++f) {
if ( set_deleted(f) ) // should always be true
++num_deleted;
}
// will think about shrink after next insert
settings.set_consider_shrink(true);
}
// We allow you to erase a const_iterator just like we allow you to
// erase an iterator. This is in parallel to 'delete': you can delete
// a const pointer just like a non-const pointer. The logic is that
// you can't use the object after it's erased anyway, so it doesn't matter
// if it's const or not.
void erase(const_iterator pos) {
if ( pos == end() ) return; // sanity check
if ( set_deleted(pos) ) { // true if object has been newly deleted
++num_deleted;
// will think about shrink after next insert
settings.set_consider_shrink(true);
}
}
void erase(const_iterator f, const_iterator l) {
for ( ; f != l; ++f) {
if ( set_deleted(f) ) // should always be true
++num_deleted;
}
// will think about shrink after next insert
settings.set_consider_shrink(true);
}
// COMPARISON
bool operator==(const sparse_hashtable& ht) const {
if (size() != ht.size()) {
return false;
} else if (this == &ht) {
return true;
} else {
// Iterate through the elements in "this" and see if the
// corresponding element is in ht
for ( const_iterator it = begin(); it != end(); ++it ) {
const_iterator it2 = ht.find(get_key(*it));
if ((it2 == ht.end()) || (*it != *it2)) {
return false;
}
}
return true;
}
}
bool operator!=(const sparse_hashtable& ht) const {
return !(*this == ht);
}
// I/O
// We support reading and writing hashtables to disk. NOTE that
// this only stores the hashtable metadata, not the stuff you've
// actually put in the hashtable! Alas, since I don't know how to
// write a hasher or key_equal, you have to make sure everything
// but the table is the same. We compact before writing.
bool write_metadata(FILE *fp) {
squash_deleted(); // so we don't have to worry about delkey
return table.write_metadata(fp);
}
bool read_metadata(FILE *fp) {
num_deleted = 0; // since we got rid before writing
bool result = table.read_metadata(fp);
settings.reset_thresholds(bucket_count());
return result;
}
// Only meaningful if value_type is a POD.
bool write_nopointer_data(FILE *fp) {
return table.write_nopointer_data(fp);
}
// Only meaningful if value_type is a POD.
bool read_nopointer_data(FILE *fp) {
return table.read_nopointer_data(fp);
}
private:
// Table is the main storage class.
typedef sparsetable<value_type, DEFAULT_GROUP_SIZE, value_alloc_type> Table;
// Package templated functors with the other types to eliminate memory
// needed for storing these zero-size operators. Since ExtractKey and
// hasher's operator() might have the same function signature, they
// must be packaged in different classes.
struct Settings :
sh_hashtable_settings<key_type, hasher, size_type, HT_MIN_BUCKETS> {
explicit Settings(const hasher& hf)
: sh_hashtable_settings<key_type, hasher, size_type, HT_MIN_BUCKETS>(
hf, HT_OCCUPANCY_PCT / 100.0f, HT_EMPTY_PCT / 100.0f) {}
};
// KeyInfo stores delete key and packages zero-size functors:
// ExtractKey and SetKey.
class KeyInfo : public ExtractKey, public SetKey, public key_equal {
public:
KeyInfo(const ExtractKey& ek, const SetKey& sk, const key_equal& eq)
: ExtractKey(ek),
SetKey(sk),
key_equal(eq) {
}
// We want to return the exact same type as ExtractKey: Key or const Key&
typename ExtractKey::result_type get_key(const_reference v) const {
return ExtractKey::operator()(v);
}
void set_key(pointer v, const key_type& k) const {
SetKey::operator()(v, k);
}
bool equals(const key_type& a, const key_type& b) const {
return key_equal::operator()(a, b);
}
// Which key marks deleted entries.
// TODO(csilvers): make a pointer, and get rid of use_deleted (benchmark!)
typename remove_const<key_type>::type delkey;
};
// Utility functions to access the templated operators
size_type hash(const key_type& v) const {
return settings.hash(v);
}
bool equals(const key_type& a, const key_type& b) const {
return key_info.equals(a, b);
}
typename ExtractKey::result_type get_key(const_reference v) const {
return key_info.get_key(v);
}
void set_key(pointer v, const key_type& k) const {
key_info.set_key(v, k);
}
private:
// Actual data
Settings settings;
KeyInfo key_info;
size_type num_deleted; // how many occupied buckets are marked deleted
Table table; // holds num_buckets and num_elements too
};
// We need a global swap as well
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
inline void swap(sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &y) {
x.swap(y);
}
#undef JUMP_
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const typename sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;
// How full we let the table get before we resize. Knuth says .8 is
// good -- higher causes us to probe too much, though saves memory
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT = 80;
// How empty we let the table get before we resize lower.
// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_PCT
= static_cast<int>(0.4 *
sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT);
_END_GOOGLE_NAMESPACE_
#endif /* _SPARSEHASHTABLE_H_ */