danicoin/src/cryptonote_core/cryptonote_tx_utils.cpp

494 lines
20 KiB
C++
Raw Normal View History

// Copyright (c) 2014-2017, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include "include_base_utils.h"
using namespace epee;
#include "cryptonote_tx_utils.h"
#include "cryptonote_config.h"
#include "cryptonote_basic/miner.h"
#include "crypto/crypto.h"
#include "crypto/hash.h"
#include "ringct/rctSigs.h"
namespace cryptonote
{
//---------------------------------------------------------------
bool construct_miner_tx(size_t height, size_t median_size, uint64_t already_generated_coins, size_t current_block_size, uint64_t fee, const account_public_address &miner_address, transaction& tx, const blobdata& extra_nonce, size_t max_outs, uint8_t hard_fork_version) {
tx.vin.clear();
tx.vout.clear();
tx.extra.clear();
keypair txkey = keypair::generate();
add_tx_pub_key_to_extra(tx, txkey.pub);
if(!extra_nonce.empty())
if(!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
return false;
txin_gen in;
in.height = height;
uint64_t block_reward;
if(!get_block_reward(median_size, current_block_size, already_generated_coins, block_reward, hard_fork_version))
{
LOG_PRINT_L0("Block is too big");
return false;
}
#if defined(DEBUG_CREATE_BLOCK_TEMPLATE)
LOG_PRINT_L1("Creating block template: reward " << block_reward <<
", fee " << fee);
#endif
block_reward += fee;
// from hard fork 2, we cut out the low significant digits. This makes the tx smaller, and
// keeps the paid amount almost the same. The unpaid remainder gets pushed back to the
// emission schedule
// from hard fork 4, we use a single "dusty" output. This makes the tx even smaller,
// and avoids the quantization. These outputs will be added as rct outputs with identity
// masks, to they can be used as rct inputs.
if (hard_fork_version >= 2 && hard_fork_version < 4) {
block_reward = block_reward - block_reward % ::config::BASE_REWARD_CLAMP_THRESHOLD;
}
std::vector<uint64_t> out_amounts;
decompose_amount_into_digits(block_reward, hard_fork_version >= 2 ? 0 : ::config::DEFAULT_DUST_THRESHOLD,
[&out_amounts](uint64_t a_chunk) { out_amounts.push_back(a_chunk); },
[&out_amounts](uint64_t a_dust) { out_amounts.push_back(a_dust); });
CHECK_AND_ASSERT_MES(1 <= max_outs, false, "max_out must be non-zero");
if (height == 0 || hard_fork_version >= 4)
{
// the genesis block was not decomposed, for unknown reasons
while (max_outs < out_amounts.size())
{
//out_amounts[out_amounts.size() - 2] += out_amounts.back();
//out_amounts.resize(out_amounts.size() - 1);
out_amounts[1] += out_amounts[0];
for (size_t n = 1; n < out_amounts.size(); ++n)
out_amounts[n - 1] = out_amounts[n];
out_amounts.resize(out_amounts.size() - 1);
}
}
else
{
CHECK_AND_ASSERT_MES(max_outs >= out_amounts.size(), false, "max_out exceeded");
}
uint64_t summary_amounts = 0;
for (size_t no = 0; no < out_amounts.size(); no++)
{
crypto::key_derivation derivation = AUTO_VAL_INIT(derivation);;
crypto::public_key out_eph_public_key = AUTO_VAL_INIT(out_eph_public_key);
bool r = crypto::generate_key_derivation(miner_address.m_view_public_key, txkey.sec, derivation);
CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to generate_key_derivation(" << miner_address.m_view_public_key << ", " << txkey.sec << ")");
r = crypto::derive_public_key(derivation, no, miner_address.m_spend_public_key, out_eph_public_key);
CHECK_AND_ASSERT_MES(r, false, "while creating outs: failed to derive_public_key(" << derivation << ", " << no << ", "<< miner_address.m_spend_public_key << ")");
txout_to_key tk;
tk.key = out_eph_public_key;
tx_out out;
summary_amounts += out.amount = out_amounts[no];
out.target = tk;
tx.vout.push_back(out);
}
CHECK_AND_ASSERT_MES(summary_amounts == block_reward, false, "Failed to construct miner tx, summary_amounts = " << summary_amounts << " not equal block_reward = " << block_reward);
if (hard_fork_version >= 4)
tx.version = 2;
else
tx.version = 1;
//lock
tx.unlock_time = height + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW;
tx.vin.push_back(in);
//LOG_PRINT("MINER_TX generated ok, block_reward=" << print_money(block_reward) << "(" << print_money(block_reward - fee) << "+" << print_money(fee)
// << "), current_block_size=" << current_block_size << ", already_generated_coins=" << already_generated_coins << ", tx_id=" << get_transaction_hash(tx), LOG_LEVEL_2);
return true;
}
//---------------------------------------------------------------
crypto::public_key get_destination_view_key_pub(const std::vector<tx_destination_entry> &destinations, const account_keys &sender_keys)
{
if (destinations.empty())
return null_pkey;
for (size_t n = 1; n < destinations.size(); ++n)
{
if (!memcmp(&destinations[n].addr, &sender_keys.m_account_address, sizeof(destinations[0].addr)))
continue;
if (destinations[n].amount == 0)
continue;
if (memcmp(&destinations[n].addr, &destinations[0].addr, sizeof(destinations[0].addr)))
return null_pkey;
}
return destinations[0].addr.m_view_public_key;
}
//---------------------------------------------------------------
bool construct_tx_and_get_tx_key(const account_keys& sender_account_keys, const std::vector<tx_source_entry>& sources, const std::vector<tx_destination_entry>& destinations, std::vector<uint8_t> extra, transaction& tx, uint64_t unlock_time, crypto::secret_key &tx_key, bool rct)
{
std::vector<rct::key> amount_keys;
tx.set_null();
amount_keys.clear();
tx.version = rct ? 2 : 1;
tx.unlock_time = unlock_time;
tx.extra = extra;
keypair txkey = keypair::generate();
remove_field_from_tx_extra(tx.extra, typeid(tx_extra_pub_key));
add_tx_pub_key_to_extra(tx, txkey.pub);
tx_key = txkey.sec;
// if we have a stealth payment id, find it and encrypt it with the tx key now
std::vector<tx_extra_field> tx_extra_fields;
if (parse_tx_extra(tx.extra, tx_extra_fields))
{
tx_extra_nonce extra_nonce;
if (find_tx_extra_field_by_type(tx_extra_fields, extra_nonce))
{
crypto::hash8 payment_id = null_hash8;
if (get_encrypted_payment_id_from_tx_extra_nonce(extra_nonce.nonce, payment_id))
{
LOG_PRINT_L2("Encrypting payment id " << payment_id);
crypto::public_key view_key_pub = get_destination_view_key_pub(destinations, sender_account_keys);
if (view_key_pub == null_pkey)
{
LOG_ERROR("Destinations have to have exactly one output to support encrypted payment ids");
return false;
}
if (!encrypt_payment_id(payment_id, view_key_pub, txkey.sec))
{
LOG_ERROR("Failed to encrypt payment id");
return false;
}
std::string extra_nonce;
set_encrypted_payment_id_to_tx_extra_nonce(extra_nonce, payment_id);
remove_field_from_tx_extra(tx.extra, typeid(tx_extra_nonce));
if (!add_extra_nonce_to_tx_extra(tx.extra, extra_nonce))
{
LOG_ERROR("Failed to add encrypted payment id to tx extra");
return false;
}
LOG_PRINT_L1("Encrypted payment ID: " << payment_id);
}
}
}
else
{
LOG_ERROR("Failed to parse tx extra");
return false;
}
struct input_generation_context_data
{
keypair in_ephemeral;
};
std::vector<input_generation_context_data> in_contexts;
uint64_t summary_inputs_money = 0;
//fill inputs
int idx = -1;
for(const tx_source_entry& src_entr: sources)
{
++idx;
if(src_entr.real_output >= src_entr.outputs.size())
{
LOG_ERROR("real_output index (" << src_entr.real_output << ")bigger than output_keys.size()=" << src_entr.outputs.size());
return false;
}
summary_inputs_money += src_entr.amount;
//key_derivation recv_derivation;
in_contexts.push_back(input_generation_context_data());
keypair& in_ephemeral = in_contexts.back().in_ephemeral;
crypto::key_image img;
if(!generate_key_image_helper(sender_account_keys, src_entr.real_out_tx_key, src_entr.real_output_in_tx_index, in_ephemeral, img))
return false;
//check that derivated key is equal with real output key
if( !(in_ephemeral.pub == src_entr.outputs[src_entr.real_output].second.dest) )
{
LOG_ERROR("derived public key mismatch with output public key at index " << idx << ", real out " << src_entr.real_output << "! "<< ENDL << "derived_key:"
<< string_tools::pod_to_hex(in_ephemeral.pub) << ENDL << "real output_public_key:"
<< string_tools::pod_to_hex(src_entr.outputs[src_entr.real_output].second) );
LOG_ERROR("amount " << src_entr.amount << ", rct " << src_entr.rct);
LOG_ERROR("tx pubkey " << src_entr.real_out_tx_key << ", real_output_in_tx_index " << src_entr.real_output_in_tx_index);
return false;
}
//put key image into tx input
txin_to_key input_to_key;
input_to_key.amount = src_entr.amount;
input_to_key.k_image = img;
//fill outputs array and use relative offsets
for(const tx_source_entry::output_entry& out_entry: src_entr.outputs)
input_to_key.key_offsets.push_back(out_entry.first);
input_to_key.key_offsets = absolute_output_offsets_to_relative(input_to_key.key_offsets);
tx.vin.push_back(input_to_key);
}
// "Shuffle" outs
std::vector<tx_destination_entry> shuffled_dsts(destinations);
std::sort(shuffled_dsts.begin(), shuffled_dsts.end(), [](const tx_destination_entry& de1, const tx_destination_entry& de2) { return de1.amount < de2.amount; } );
uint64_t summary_outs_money = 0;
//fill outputs
size_t output_index = 0;
for(const tx_destination_entry& dst_entr: shuffled_dsts)
{
CHECK_AND_ASSERT_MES(dst_entr.amount > 0 || tx.version > 1, false, "Destination with wrong amount: " << dst_entr.amount);
crypto::key_derivation derivation;
crypto::public_key out_eph_public_key;
bool r = crypto::generate_key_derivation(dst_entr.addr.m_view_public_key, txkey.sec, derivation);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << txkey.sec << ")");
if (tx.version > 1)
{
crypto::secret_key scalar1;
crypto::derivation_to_scalar(derivation, output_index, scalar1);
amount_keys.push_back(rct::sk2rct(scalar1));
}
r = crypto::derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")");
tx_out out;
out.amount = dst_entr.amount;
txout_to_key tk;
tk.key = out_eph_public_key;
out.target = tk;
tx.vout.push_back(out);
output_index++;
summary_outs_money += dst_entr.amount;
}
//check money
if(summary_outs_money > summary_inputs_money )
{
LOG_ERROR("Transaction inputs money ("<< summary_inputs_money << ") less than outputs money (" << summary_outs_money << ")");
return false;
}
// check for watch only wallet
bool zero_secret_key = true;
for (size_t i = 0; i < sizeof(sender_account_keys.m_spend_secret_key); ++i)
zero_secret_key &= (sender_account_keys.m_spend_secret_key.data[i] == 0);
if (zero_secret_key)
{
MDEBUG("Null secret key, skipping signatures");
}
if (tx.version == 1)
{
//generate ring signatures
crypto::hash tx_prefix_hash;
get_transaction_prefix_hash(tx, tx_prefix_hash);
std::stringstream ss_ring_s;
size_t i = 0;
for(const tx_source_entry& src_entr: sources)
{
ss_ring_s << "pub_keys:" << ENDL;
std::vector<const crypto::public_key*> keys_ptrs;
std::vector<crypto::public_key> keys(src_entr.outputs.size());
size_t ii = 0;
for(const tx_source_entry::output_entry& o: src_entr.outputs)
{
keys[ii] = rct2pk(o.second.dest);
keys_ptrs.push_back(&keys[ii]);
ss_ring_s << o.second.dest << ENDL;
++ii;
}
tx.signatures.push_back(std::vector<crypto::signature>());
std::vector<crypto::signature>& sigs = tx.signatures.back();
sigs.resize(src_entr.outputs.size());
if (!zero_secret_key)
crypto::generate_ring_signature(tx_prefix_hash, boost::get<txin_to_key>(tx.vin[i]).k_image, keys_ptrs, in_contexts[i].in_ephemeral.sec, src_entr.real_output, sigs.data());
ss_ring_s << "signatures:" << ENDL;
std::for_each(sigs.begin(), sigs.end(), [&](const crypto::signature& s){ss_ring_s << s << ENDL;});
ss_ring_s << "prefix_hash:" << tx_prefix_hash << ENDL << "in_ephemeral_key: " << in_contexts[i].in_ephemeral.sec << ENDL << "real_output: " << src_entr.real_output << ENDL;
i++;
}
MCINFO("construct_tx", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL << ss_ring_s.str());
}
else
{
size_t n_total_outs = sources[0].outputs.size(); // only for non-simple rct
// the non-simple version is slightly smaller, but assumes all real inputs
// are on the same index, so can only be used if there just one ring.
bool use_simple_rct = sources.size() > 1;
if (!use_simple_rct)
{
// non simple ringct requires all real inputs to be at the same index for all inputs
for(const tx_source_entry& src_entr: sources)
{
if(src_entr.real_output != sources.begin()->real_output)
{
LOG_ERROR("All inputs must have the same index for non-simple ringct");
return false;
}
}
// enforce same mixin for all outputs
for (size_t i = 1; i < sources.size(); ++i) {
if (n_total_outs != sources[i].outputs.size()) {
LOG_ERROR("Non-simple ringct transaction has varying mixin");
return false;
}
}
}
uint64_t amount_in = 0, amount_out = 0;
rct::ctkeyV inSk;
// mixRing indexing is done the other way round for simple
rct::ctkeyM mixRing(use_simple_rct ? sources.size() : n_total_outs);
rct::keyV destinations;
std::vector<uint64_t> inamounts, outamounts;
std::vector<unsigned int> index;
for (size_t i = 0; i < sources.size(); ++i)
{
rct::ctkey ctkey;
amount_in += sources[i].amount;
inamounts.push_back(sources[i].amount);
index.push_back(sources[i].real_output);
// inSk: (secret key, mask)
ctkey.dest = rct::sk2rct(in_contexts[i].in_ephemeral.sec);
ctkey.mask = sources[i].mask;
inSk.push_back(ctkey);
// inPk: (public key, commitment)
// will be done when filling in mixRing
}
for (size_t i = 0; i < tx.vout.size(); ++i)
{
destinations.push_back(rct::pk2rct(boost::get<txout_to_key>(tx.vout[i].target).key));
outamounts.push_back(tx.vout[i].amount);
amount_out += tx.vout[i].amount;
}
if (use_simple_rct)
{
// mixRing indexing is done the other way round for simple
for (size_t i = 0; i < sources.size(); ++i)
{
mixRing[i].resize(sources[i].outputs.size());
for (size_t n = 0; n < sources[i].outputs.size(); ++n)
{
mixRing[i][n] = sources[i].outputs[n].second;
}
}
}
else
{
for (size_t i = 0; i < n_total_outs; ++i) // same index assumption
{
mixRing[i].resize(sources.size());
for (size_t n = 0; n < sources.size(); ++n)
{
mixRing[i][n] = sources[n].outputs[i].second;
}
}
}
// fee
if (!use_simple_rct && amount_in > amount_out)
outamounts.push_back(amount_in - amount_out);
// zero out all amounts to mask rct outputs, real amounts are now encrypted
for (size_t i = 0; i < tx.vin.size(); ++i)
{
if (sources[i].rct)
boost::get<txin_to_key>(tx.vin[i]).amount = 0;
}
for (size_t i = 0; i < tx.vout.size(); ++i)
tx.vout[i].amount = 0;
crypto::hash tx_prefix_hash;
get_transaction_prefix_hash(tx, tx_prefix_hash);
rct::ctkeyV outSk;
if (use_simple_rct)
tx.rct_signatures = rct::genRctSimple(rct::hash2rct(tx_prefix_hash), inSk, destinations, inamounts, outamounts, amount_in - amount_out, mixRing, amount_keys, index, outSk);
else
tx.rct_signatures = rct::genRct(rct::hash2rct(tx_prefix_hash), inSk, destinations, outamounts, mixRing, amount_keys, sources[0].real_output, outSk); // same index assumption
CHECK_AND_ASSERT_MES(tx.vout.size() == outSk.size(), false, "outSk size does not match vout");
MCINFO("construct_tx", "transaction_created: " << get_transaction_hash(tx) << ENDL << obj_to_json_str(tx) << ENDL);
}
return true;
}
//---------------------------------------------------------------
bool construct_tx(const account_keys& sender_account_keys, const std::vector<tx_source_entry>& sources, const std::vector<tx_destination_entry>& destinations, std::vector<uint8_t> extra, transaction& tx, uint64_t unlock_time)
{
crypto::secret_key tx_key;
return construct_tx_and_get_tx_key(sender_account_keys, sources, destinations, extra, tx, unlock_time, tx_key);
}
//---------------------------------------------------------------
bool generate_genesis_block(
block& bl
, std::string const & genesis_tx
, uint32_t nonce
)
{
//genesis block
bl = boost::value_initialized<block>();
account_public_address ac = boost::value_initialized<account_public_address>();
std::vector<size_t> sz;
construct_miner_tx(0, 0, 0, 0, 0, ac, bl.miner_tx); // zero fee in genesis
blobdata txb = tx_to_blob(bl.miner_tx);
std::string hex_tx_represent = string_tools::buff_to_hex_nodelimer(txb);
std::string genesis_coinbase_tx_hex = config::GENESIS_TX;
blobdata tx_bl;
string_tools::parse_hexstr_to_binbuff(genesis_coinbase_tx_hex, tx_bl);
bool r = parse_and_validate_tx_from_blob(tx_bl, bl.miner_tx);
CHECK_AND_ASSERT_MES(r, false, "failed to parse coinbase tx from hard coded blob");
bl.major_version = CURRENT_BLOCK_MAJOR_VERSION;
bl.minor_version = CURRENT_BLOCK_MINOR_VERSION;
bl.timestamp = 0;
bl.nonce = nonce;
miner::find_nonce_for_given_block(bl, 1, 0);
return true;
}
//---------------------------------------------------------------
}