603 lines
18 KiB
C
603 lines
18 KiB
C
|
/*
|
||
|
* validator/val_nsec.c - validator NSEC denial of existance functions.
|
||
|
*
|
||
|
* Copyright (c) 2007, NLnet Labs. All rights reserved.
|
||
|
*
|
||
|
* This software is open source.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* Redistributions of source code must retain the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer.
|
||
|
*
|
||
|
* Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* Neither the name of the NLNET LABS nor the names of its contributors may
|
||
|
* be used to endorse or promote products derived from this software without
|
||
|
* specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
||
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* \file
|
||
|
*
|
||
|
* This file contains helper functions for the validator module.
|
||
|
* The functions help with NSEC checking, the different NSEC proofs
|
||
|
* for denial of existance, and proofs for presence of types.
|
||
|
*/
|
||
|
#include "config.h"
|
||
|
#include "validator/val_nsec.h"
|
||
|
#include "validator/val_utils.h"
|
||
|
#include "util/data/msgreply.h"
|
||
|
#include "util/data/dname.h"
|
||
|
#include "util/net_help.h"
|
||
|
#include "util/module.h"
|
||
|
#include "services/cache/rrset.h"
|
||
|
|
||
|
/** get ttl of rrset */
|
||
|
static uint32_t
|
||
|
rrset_get_ttl(struct ub_packed_rrset_key* k)
|
||
|
{
|
||
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
||
|
return d->ttl;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
nsecbitmap_has_type_rdata(uint8_t* bitmap, size_t len, uint16_t type)
|
||
|
{
|
||
|
/* Check type present in NSEC typemap with bitmap arg */
|
||
|
/* bitmasks for determining type-lowerbits presence */
|
||
|
uint8_t masks[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
|
||
|
uint8_t type_window = type>>8;
|
||
|
uint8_t type_low = type&0xff;
|
||
|
uint8_t win, winlen;
|
||
|
/* read each of the type bitmap windows and see if the searched
|
||
|
* type is amongst it */
|
||
|
while(len > 0) {
|
||
|
if(len < 3) /* bad window, at least window# winlen bitmap */
|
||
|
return 0;
|
||
|
win = *bitmap++;
|
||
|
winlen = *bitmap++;
|
||
|
len -= 2;
|
||
|
if(len < winlen || winlen < 1 || winlen > 32)
|
||
|
return 0; /* bad window length */
|
||
|
if(win == type_window) {
|
||
|
/* search window bitmap for the correct byte */
|
||
|
/* mybyte is 0 if we need the first byte */
|
||
|
size_t mybyte = type_low>>3;
|
||
|
if(winlen <= mybyte)
|
||
|
return 0; /* window too short */
|
||
|
return (int)(bitmap[mybyte] & masks[type_low&0x7]);
|
||
|
} else {
|
||
|
/* not the window we are looking for */
|
||
|
bitmap += winlen;
|
||
|
len -= winlen;
|
||
|
}
|
||
|
}
|
||
|
/* end of bitmap reached, no type found */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
nsec_has_type(struct ub_packed_rrset_key* nsec, uint16_t type)
|
||
|
{
|
||
|
struct packed_rrset_data* d = (struct packed_rrset_data*)nsec->
|
||
|
entry.data;
|
||
|
size_t len;
|
||
|
if(!d || d->count == 0 || d->rr_len[0] < 2+1)
|
||
|
return 0;
|
||
|
len = dname_valid(d->rr_data[0]+2, d->rr_len[0]-2);
|
||
|
if(!len)
|
||
|
return 0;
|
||
|
return nsecbitmap_has_type_rdata(d->rr_data[0]+2+len,
|
||
|
d->rr_len[0]-2-len, type);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get next owner name from nsec record
|
||
|
* @param nsec: the nsec RRset.
|
||
|
* If there are multiple RRs, then this will only return one of them.
|
||
|
* @param nm: the next name is returned.
|
||
|
* @param ln: length of nm is returned.
|
||
|
* @return false on a bad NSEC RR (too short, malformed dname).
|
||
|
*/
|
||
|
static int
|
||
|
nsec_get_next(struct ub_packed_rrset_key* nsec, uint8_t** nm, size_t* ln)
|
||
|
{
|
||
|
struct packed_rrset_data* d = (struct packed_rrset_data*)nsec->
|
||
|
entry.data;
|
||
|
if(!d || d->count == 0 || d->rr_len[0] < 2+1) {
|
||
|
*nm = 0;
|
||
|
*ln = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
*nm = d->rr_data[0]+2;
|
||
|
*ln = dname_valid(*nm, d->rr_len[0]-2);
|
||
|
if(!*ln) {
|
||
|
*nm = 0;
|
||
|
*ln = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* For an NSEC that matches the DS queried for, check absence of DS type.
|
||
|
*
|
||
|
* @param nsec: NSEC for proof, must be trusted.
|
||
|
* @param qinfo: what is queried for.
|
||
|
* @return if secure the nsec proves that no DS is present, or
|
||
|
* insecure if it proves it is not a delegation point.
|
||
|
* or bogus if something was wrong.
|
||
|
*/
|
||
|
static enum sec_status
|
||
|
val_nsec_proves_no_ds(struct ub_packed_rrset_key* nsec,
|
||
|
struct query_info* qinfo)
|
||
|
{
|
||
|
log_assert(qinfo->qtype == LDNS_RR_TYPE_DS);
|
||
|
log_assert(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC);
|
||
|
|
||
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_SOA) && qinfo->qname_len != 1) {
|
||
|
/* SOA present means that this is the NSEC from the child,
|
||
|
* not the parent (so it is the wrong one). */
|
||
|
return sec_status_bogus;
|
||
|
}
|
||
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_DS)) {
|
||
|
/* DS present means that there should have been a positive
|
||
|
* response to the DS query, so there is something wrong. */
|
||
|
return sec_status_bogus;
|
||
|
}
|
||
|
|
||
|
if(!nsec_has_type(nsec, LDNS_RR_TYPE_NS)) {
|
||
|
/* If there is no NS at this point at all, then this
|
||
|
* doesn't prove anything one way or the other. */
|
||
|
return sec_status_insecure;
|
||
|
}
|
||
|
/* Otherwise, this proves no DS. */
|
||
|
return sec_status_secure;
|
||
|
}
|
||
|
|
||
|
/** check security status from cache or verify rrset, returns true if secure */
|
||
|
static int
|
||
|
nsec_verify_rrset(struct module_env* env, struct val_env* ve,
|
||
|
struct ub_packed_rrset_key* nsec, struct key_entry_key* kkey,
|
||
|
char** reason)
|
||
|
{
|
||
|
struct packed_rrset_data* d = (struct packed_rrset_data*)
|
||
|
nsec->entry.data;
|
||
|
if(d->security == sec_status_secure)
|
||
|
return 1;
|
||
|
rrset_check_sec_status(env->rrset_cache, nsec, *env->now);
|
||
|
if(d->security == sec_status_secure)
|
||
|
return 1;
|
||
|
d->security = val_verify_rrset_entry(env, ve, nsec, kkey, reason);
|
||
|
if(d->security == sec_status_secure) {
|
||
|
rrset_update_sec_status(env->rrset_cache, nsec, *env->now);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
enum sec_status
|
||
|
val_nsec_prove_nodata_dsreply(struct module_env* env, struct val_env* ve,
|
||
|
struct query_info* qinfo, struct reply_info* rep,
|
||
|
struct key_entry_key* kkey, time_t* proof_ttl, char** reason)
|
||
|
{
|
||
|
struct ub_packed_rrset_key* nsec = reply_find_rrset_section_ns(
|
||
|
rep, qinfo->qname, qinfo->qname_len, LDNS_RR_TYPE_NSEC,
|
||
|
qinfo->qclass);
|
||
|
enum sec_status sec;
|
||
|
size_t i;
|
||
|
uint8_t* wc = NULL, *ce = NULL;
|
||
|
int valid_nsec = 0;
|
||
|
struct ub_packed_rrset_key* wc_nsec = NULL;
|
||
|
|
||
|
/* If we have a NSEC at the same name, it must prove one
|
||
|
* of two things
|
||
|
* --
|
||
|
* 1) this is a delegation point and there is no DS
|
||
|
* 2) this is not a delegation point */
|
||
|
if(nsec) {
|
||
|
if(!nsec_verify_rrset(env, ve, nsec, kkey, reason)) {
|
||
|
verbose(VERB_ALGO, "NSEC RRset for the "
|
||
|
"referral did not verify.");
|
||
|
return sec_status_bogus;
|
||
|
}
|
||
|
sec = val_nsec_proves_no_ds(nsec, qinfo);
|
||
|
if(sec == sec_status_bogus) {
|
||
|
/* something was wrong. */
|
||
|
*reason = "NSEC does not prove absence of DS";
|
||
|
return sec;
|
||
|
} else if(sec == sec_status_insecure) {
|
||
|
/* this wasn't a delegation point. */
|
||
|
return sec;
|
||
|
} else if(sec == sec_status_secure) {
|
||
|
/* this proved no DS. */
|
||
|
*proof_ttl = ub_packed_rrset_ttl(nsec);
|
||
|
return sec;
|
||
|
}
|
||
|
/* if unchecked, fall through to next proof */
|
||
|
}
|
||
|
|
||
|
/* Otherwise, there is no NSEC at qname. This could be an ENT.
|
||
|
* (ENT=empty non terminal). If not, this is broken. */
|
||
|
|
||
|
/* verify NSEC rrsets in auth section */
|
||
|
for(i=rep->an_numrrsets; i < rep->an_numrrsets+rep->ns_numrrsets;
|
||
|
i++) {
|
||
|
if(rep->rrsets[i]->rk.type != htons(LDNS_RR_TYPE_NSEC))
|
||
|
continue;
|
||
|
if(!nsec_verify_rrset(env, ve, rep->rrsets[i], kkey, reason)) {
|
||
|
verbose(VERB_ALGO, "NSEC for empty non-terminal "
|
||
|
"did not verify.");
|
||
|
return sec_status_bogus;
|
||
|
}
|
||
|
if(nsec_proves_nodata(rep->rrsets[i], qinfo, &wc)) {
|
||
|
verbose(VERB_ALGO, "NSEC for empty non-terminal "
|
||
|
"proved no DS.");
|
||
|
*proof_ttl = rrset_get_ttl(rep->rrsets[i]);
|
||
|
if(wc && dname_is_wild(rep->rrsets[i]->rk.dname))
|
||
|
wc_nsec = rep->rrsets[i];
|
||
|
valid_nsec = 1;
|
||
|
}
|
||
|
if(val_nsec_proves_name_error(rep->rrsets[i], qinfo->qname)) {
|
||
|
ce = nsec_closest_encloser(qinfo->qname,
|
||
|
rep->rrsets[i]);
|
||
|
}
|
||
|
}
|
||
|
if(wc && !ce)
|
||
|
valid_nsec = 0;
|
||
|
else if(wc && ce) {
|
||
|
/* ce and wc must match */
|
||
|
if(query_dname_compare(wc, ce) != 0)
|
||
|
valid_nsec = 0;
|
||
|
else if(!wc_nsec)
|
||
|
valid_nsec = 0;
|
||
|
}
|
||
|
if(valid_nsec) {
|
||
|
if(wc) {
|
||
|
/* check if this is a delegation */
|
||
|
*reason = "NSEC for wildcard does not prove absence of DS";
|
||
|
return val_nsec_proves_no_ds(wc_nsec, qinfo);
|
||
|
}
|
||
|
/* valid nsec proves empty nonterminal */
|
||
|
return sec_status_insecure;
|
||
|
}
|
||
|
|
||
|
/* NSEC proof did not conlusively point to DS or no DS */
|
||
|
return sec_status_unchecked;
|
||
|
}
|
||
|
|
||
|
int nsec_proves_nodata(struct ub_packed_rrset_key* nsec,
|
||
|
struct query_info* qinfo, uint8_t** wc)
|
||
|
{
|
||
|
log_assert(wc);
|
||
|
if(query_dname_compare(nsec->rk.dname, qinfo->qname) != 0) {
|
||
|
uint8_t* nm;
|
||
|
size_t ln;
|
||
|
|
||
|
/* empty-non-terminal checking.
|
||
|
* Done before wildcard, because this is an exact match,
|
||
|
* and would prevent a wildcard from matching. */
|
||
|
|
||
|
/* If the nsec is proving that qname is an ENT, the nsec owner
|
||
|
* will be less than qname, and the next name will be a child
|
||
|
* domain of the qname. */
|
||
|
if(!nsec_get_next(nsec, &nm, &ln))
|
||
|
return 0; /* bad nsec */
|
||
|
if(dname_strict_subdomain_c(nm, qinfo->qname) &&
|
||
|
dname_canonical_compare(nsec->rk.dname,
|
||
|
qinfo->qname) < 0) {
|
||
|
return 1; /* proves ENT */
|
||
|
}
|
||
|
|
||
|
/* wildcard checking. */
|
||
|
|
||
|
/* If this is a wildcard NSEC, make sure that a) it was
|
||
|
* possible to have generated qname from the wildcard and
|
||
|
* b) the type map does not contain qtype. Note that this
|
||
|
* does NOT prove that this wildcard was the applicable
|
||
|
* wildcard. */
|
||
|
if(dname_is_wild(nsec->rk.dname)) {
|
||
|
/* the purported closest encloser. */
|
||
|
uint8_t* ce = nsec->rk.dname;
|
||
|
size_t ce_len = nsec->rk.dname_len;
|
||
|
dname_remove_label(&ce, &ce_len);
|
||
|
|
||
|
/* The qname must be a strict subdomain of the
|
||
|
* closest encloser, for the wildcard to apply
|
||
|
*/
|
||
|
if(dname_strict_subdomain_c(qinfo->qname, ce)) {
|
||
|
/* here we have a matching NSEC for the qname,
|
||
|
* perform matching NSEC checks */
|
||
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_CNAME)) {
|
||
|
/* should have gotten the wildcard CNAME */
|
||
|
return 0;
|
||
|
}
|
||
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_NS) &&
|
||
|
!nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) {
|
||
|
/* wrong parentside (wildcard) NSEC used */
|
||
|
return 0;
|
||
|
}
|
||
|
if(nsec_has_type(nsec, qinfo->qtype)) {
|
||
|
return 0;
|
||
|
}
|
||
|
*wc = ce;
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Otherwise, this NSEC does not prove ENT and is not a
|
||
|
* wildcard, so it does not prove NODATA. */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* If the qtype exists, then we should have gotten it. */
|
||
|
if(nsec_has_type(nsec, qinfo->qtype)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* if the name is a CNAME node, then we should have gotten the CNAME*/
|
||
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_CNAME)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* If an NS set exists at this name, and NOT a SOA (so this is a
|
||
|
* zone cut, not a zone apex), then we should have gotten a
|
||
|
* referral (or we just got the wrong NSEC).
|
||
|
* The reverse of this check is used when qtype is DS, since that
|
||
|
* must use the NSEC from above the zone cut. */
|
||
|
if(qinfo->qtype != LDNS_RR_TYPE_DS &&
|
||
|
nsec_has_type(nsec, LDNS_RR_TYPE_NS) &&
|
||
|
!nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) {
|
||
|
return 0;
|
||
|
} else if(qinfo->qtype == LDNS_RR_TYPE_DS &&
|
||
|
nsec_has_type(nsec, LDNS_RR_TYPE_SOA) &&
|
||
|
!dname_is_root(qinfo->qname)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
val_nsec_proves_name_error(struct ub_packed_rrset_key* nsec, uint8_t* qname)
|
||
|
{
|
||
|
uint8_t* owner = nsec->rk.dname;
|
||
|
uint8_t* next;
|
||
|
size_t nlen;
|
||
|
if(!nsec_get_next(nsec, &next, &nlen))
|
||
|
return 0;
|
||
|
|
||
|
/* If NSEC owner == qname, then this NSEC proves that qname exists. */
|
||
|
if(query_dname_compare(qname, owner) == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* If NSEC is a parent of qname, we need to check the type map
|
||
|
* If the parent name has a DNAME or is a delegation point, then
|
||
|
* this NSEC is being misused. */
|
||
|
if(dname_subdomain_c(qname, owner) &&
|
||
|
(nsec_has_type(nsec, LDNS_RR_TYPE_DNAME) ||
|
||
|
(nsec_has_type(nsec, LDNS_RR_TYPE_NS)
|
||
|
&& !nsec_has_type(nsec, LDNS_RR_TYPE_SOA))
|
||
|
)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if(query_dname_compare(owner, next) == 0) {
|
||
|
/* this nsec is the only nsec */
|
||
|
/* zone.name NSEC zone.name, disproves everything else */
|
||
|
/* but only for subdomains of that zone */
|
||
|
if(dname_strict_subdomain_c(qname, next))
|
||
|
return 1;
|
||
|
}
|
||
|
else if(dname_canonical_compare(owner, next) > 0) {
|
||
|
/* this is the last nsec, ....(bigger) NSEC zonename(smaller) */
|
||
|
/* the names after the last (owner) name do not exist
|
||
|
* there are no names before the zone name in the zone
|
||
|
* but the qname must be a subdomain of the zone name(next). */
|
||
|
if(dname_canonical_compare(owner, qname) < 0 &&
|
||
|
dname_strict_subdomain_c(qname, next))
|
||
|
return 1;
|
||
|
} else {
|
||
|
/* regular NSEC, (smaller) NSEC (larger) */
|
||
|
if(dname_canonical_compare(owner, qname) < 0 &&
|
||
|
dname_canonical_compare(qname, next) < 0) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int val_nsec_proves_insecuredelegation(struct ub_packed_rrset_key* nsec,
|
||
|
struct query_info* qinfo)
|
||
|
{
|
||
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_NS) &&
|
||
|
!nsec_has_type(nsec, LDNS_RR_TYPE_DS) &&
|
||
|
!nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) {
|
||
|
/* see if nsec signals an insecure delegation */
|
||
|
if(qinfo->qtype == LDNS_RR_TYPE_DS) {
|
||
|
/* if type is DS and qname is equal to nsec, then it
|
||
|
* is an exact match nsec, result not insecure */
|
||
|
if(dname_strict_subdomain_c(qinfo->qname,
|
||
|
nsec->rk.dname))
|
||
|
return 1;
|
||
|
} else {
|
||
|
if(dname_subdomain_c(qinfo->qname, nsec->rk.dname))
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
uint8_t*
|
||
|
nsec_closest_encloser(uint8_t* qname, struct ub_packed_rrset_key* nsec)
|
||
|
{
|
||
|
uint8_t* next;
|
||
|
size_t nlen;
|
||
|
uint8_t* common1, *common2;
|
||
|
if(!nsec_get_next(nsec, &next, &nlen))
|
||
|
return NULL;
|
||
|
/* longest common with owner or next name */
|
||
|
common1 = dname_get_shared_topdomain(nsec->rk.dname, qname);
|
||
|
common2 = dname_get_shared_topdomain(next, qname);
|
||
|
if(dname_count_labels(common1) > dname_count_labels(common2))
|
||
|
return common1;
|
||
|
return common2;
|
||
|
}
|
||
|
|
||
|
int val_nsec_proves_positive_wildcard(struct ub_packed_rrset_key* nsec,
|
||
|
struct query_info* qinf, uint8_t* wc)
|
||
|
{
|
||
|
uint8_t* ce;
|
||
|
/* 1) prove that qname doesn't exist and
|
||
|
* 2) that the correct wildcard was used
|
||
|
* nsec has been verified already. */
|
||
|
if(!val_nsec_proves_name_error(nsec, qinf->qname))
|
||
|
return 0;
|
||
|
/* check wildcard name */
|
||
|
ce = nsec_closest_encloser(qinf->qname, nsec);
|
||
|
if(!ce)
|
||
|
return 0;
|
||
|
if(query_dname_compare(wc, ce) != 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
val_nsec_proves_no_wc(struct ub_packed_rrset_key* nsec, uint8_t* qname,
|
||
|
size_t qnamelen)
|
||
|
{
|
||
|
/* Determine if a NSEC record proves the non-existence of a
|
||
|
* wildcard that could have produced qname. */
|
||
|
int labs;
|
||
|
int i;
|
||
|
uint8_t* ce = nsec_closest_encloser(qname, nsec);
|
||
|
uint8_t* strip;
|
||
|
size_t striplen;
|
||
|
uint8_t buf[LDNS_MAX_DOMAINLEN+3];
|
||
|
if(!ce)
|
||
|
return 0;
|
||
|
/* we can subtract the closest encloser count - since that is the
|
||
|
* largest shared topdomain with owner and next NSEC name,
|
||
|
* because the NSEC is no proof for names shorter than the owner
|
||
|
* and next names. */
|
||
|
labs = dname_count_labels(qname) - dname_count_labels(ce);
|
||
|
|
||
|
for(i=labs; i>0; i--) {
|
||
|
/* i is number of labels to strip off qname, prepend * wild */
|
||
|
strip = qname;
|
||
|
striplen = qnamelen;
|
||
|
dname_remove_labels(&strip, &striplen, i);
|
||
|
if(striplen > LDNS_MAX_DOMAINLEN-2)
|
||
|
continue; /* too long to prepend wildcard */
|
||
|
buf[0] = 1;
|
||
|
buf[1] = (uint8_t)'*';
|
||
|
memmove(buf+2, strip, striplen);
|
||
|
if(val_nsec_proves_name_error(nsec, buf)) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Find shared topdomain that exists
|
||
|
*/
|
||
|
static void
|
||
|
dlv_topdomain(struct ub_packed_rrset_key* nsec, uint8_t* qname,
|
||
|
uint8_t** nm, size_t* nm_len)
|
||
|
{
|
||
|
/* make sure reply is part of nm */
|
||
|
/* take shared topdomain with left of NSEC. */
|
||
|
|
||
|
/* because, if empty nonterminal, then right is subdomain of qname.
|
||
|
* and any shared topdomain would be empty nonterminals.
|
||
|
*
|
||
|
* If nxdomain, then the right is bigger, and could have an
|
||
|
* interesting shared topdomain, but if it does have one, it is
|
||
|
* an empty nonterminal. An empty nonterminal shared with the left
|
||
|
* one. */
|
||
|
int n;
|
||
|
uint8_t* common = dname_get_shared_topdomain(qname, nsec->rk.dname);
|
||
|
n = dname_count_labels(*nm) - dname_count_labels(common);
|
||
|
dname_remove_labels(nm, nm_len, n);
|
||
|
}
|
||
|
|
||
|
int val_nsec_check_dlv(struct query_info* qinfo,
|
||
|
struct reply_info* rep, uint8_t** nm, size_t* nm_len)
|
||
|
{
|
||
|
uint8_t* next;
|
||
|
size_t i, nlen;
|
||
|
int c;
|
||
|
/* we should now have a NOERROR/NODATA or NXDOMAIN message */
|
||
|
if(rep->an_numrrsets != 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
/* is this NOERROR ? */
|
||
|
if(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR) {
|
||
|
/* it can be a plain NSEC match - go up one more level. */
|
||
|
/* or its an empty nonterminal - go up to nonempty level */
|
||
|
for(i=0; i<rep->ns_numrrsets; i++) {
|
||
|
if(htons(rep->rrsets[i]->rk.type)!=LDNS_RR_TYPE_NSEC ||
|
||
|
!nsec_get_next(rep->rrsets[i], &next, &nlen))
|
||
|
continue;
|
||
|
c = dname_canonical_compare(
|
||
|
rep->rrsets[i]->rk.dname, qinfo->qname);
|
||
|
if(c == 0) {
|
||
|
/* plain match */
|
||
|
if(nsec_has_type(rep->rrsets[i],
|
||
|
LDNS_RR_TYPE_DLV))
|
||
|
return 0;
|
||
|
dname_remove_label(nm, nm_len);
|
||
|
return 1;
|
||
|
} else if(c < 0 &&
|
||
|
dname_strict_subdomain_c(next, qinfo->qname)) {
|
||
|
/* ENT */
|
||
|
dlv_topdomain(rep->rrsets[i], qinfo->qname,
|
||
|
nm, nm_len);
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* is this NXDOMAIN ? */
|
||
|
if(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN) {
|
||
|
/* find the qname denial NSEC record. It can tell us
|
||
|
* a closest encloser name; or that we not need bother */
|
||
|
for(i=0; i<rep->ns_numrrsets; i++) {
|
||
|
if(htons(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC)
|
||
|
continue;
|
||
|
if(val_nsec_proves_name_error(rep->rrsets[i],
|
||
|
qinfo->qname)) {
|
||
|
log_nametypeclass(VERB_ALGO, "topdomain on",
|
||
|
rep->rrsets[i]->rk.dname,
|
||
|
ntohs(rep->rrsets[i]->rk.type), 0);
|
||
|
dlv_topdomain(rep->rrsets[i], qinfo->qname,
|
||
|
nm, nm_len);
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|