Cleaner notebook with python.

This commit is contained in:
jupfi 2024-08-19 09:43:35 +02:00
parent a27b222671
commit 307fdb132b
5 changed files with 1626 additions and 1175 deletions

4
.gitignore vendored
View file

@ -5,4 +5,6 @@ fig/
.ipynb_checkpoints/
data/
__pycache__/
*.mat
*.mat
!T2_CPMG.mat

File diff suppressed because it is too large Load diff

BIN
T2_CPMG.mat Normal file

Binary file not shown.

114
cfl.py
View file

@ -1,114 +0,0 @@
# Copyright 2013-2015. The Regents of the University of California.
# Copyright 2021. Uecker Lab. University Center Göttingen.
# All rights reserved. Use of this source code is governed by
# a BSD-style license which can be found in the LICENSE file.
#
# Authors:
# 2013 Martin Uecker <uecker@eecs.berkeley.edu>
# 2015 Jonathan Tamir <jtamir@eecs.berkeley.edu>
from __future__ import print_function
from __future__ import with_statement
import numpy as np
import mmap
import os
def readcfl(name):
# get dims from .hdr
with open(name + ".hdr", "rt") as h:
h.readline() # skip
l = h.readline()
dims = [int(i) for i in l.split()]
# remove singleton dimensions from the end
n = np.prod(dims)
dims_prod = np.cumprod(dims)
dims = dims[:np.searchsorted(dims_prod, n)+1]
# load data and reshape into dims
with open(name + ".cfl", "rb") as d:
a = np.fromfile(d, dtype=np.complex64, count=n);
return a.reshape(dims, order='F') # column-major
def readmulticfl(name):
# get dims from .hdr
with open(name + ".hdr", "rt") as h:
lines = h.read().splitlines()
index_dim = 1 + lines.index('# Dimensions')
total_size = int(lines[index_dim])
index_sizes = 1 + lines.index('# SizesDimensions')
sizes = [int(i) for i in lines[index_sizes].split()]
index_dims = 1 + lines.index('# MultiDimensions')
with open(name + ".cfl", "rb") as d:
a = np.fromfile(d, dtype=np.complex64, count=total_size)
offset = 0
result = []
for i in range(len(sizes)):
dims = ([int(i) for i in lines[index_dims + i].split()])
n = np.prod(dims)
result.append(a[offset:offset+n].reshape(dims, order='F'))
offset += n
if total_size != offset:
print("Error")
return result
def writecfl(name, array):
with open(name + ".hdr", "wt") as h:
h.write('# Dimensions\n')
for i in (array.shape):
h.write("%d " % i)
h.write('\n')
size = np.prod(array.shape) * np.dtype(np.complex64).itemsize
with open(name + ".cfl", "a+b") as d:
os.ftruncate(d.fileno(), size)
mm = mmap.mmap(d.fileno(), size, flags=mmap.MAP_SHARED, prot=mmap.PROT_WRITE)
if array.dtype != np.complex64:
array = array.astype(np.complex64)
mm.write(np.ascontiguousarray(array.T))
mm.close()
#with mmap.mmap(d.fileno(), size, flags=mmap.MAP_SHARED, prot=mmap.PROT_WRITE) as mm:
# mm.write(array.astype(np.complex64).tobytes(order='F'))
def writemulticfl(name, arrays):
size = 0
dims = []
for array in arrays:
size += array.size
dims.append(array.shape)
with open(name + ".hdr", "wt") as h:
h.write('# Dimensions\n')
h.write("%d\n" % size)
h.write('# SizesDimensions\n')
for dim in dims:
h.write("%d " % len(dim))
h.write('\n')
h.write('# MultiDimensions\n')
for dim in dims:
for i in dim:
h.write("%d " % i)
h.write('\n')
size = size * np.dtype(np.complex64).itemsize
with open(name + ".cfl", "a+b") as d:
os.ftruncate(d.fileno(), size)
mm = mmap.mmap(d.fileno(), size, flags=mmap.MAP_SHARED, prot=mmap.PROT_WRITE)
for array in arrays:
if array.dtype != np.complex64:
array = array.astype(np.complex64)
mm.write(np.ascontiguousarray(array.T))
mm.close()

78
reco.py
View file

@ -1,78 +0,0 @@
import scipy.io as sio
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
import sys,os
from cfl import writecfl
os.environ['TOOLBOX_PATH'] = '/home/jpfitzer/bart-0.9.00'
os.environ['BART_TOOLBOX_PATH'] = '/home/jpfitzer/bart-0.9.00'
sys.path.append('/home/jpfitzer/bart-0.9.00/bart/python')
rawName = 'T2_CPMG.mat'
mat_data_0=sio.loadmat(rawName)
# Format: sampled, # kSpace [kRd, kPh, kSl, kSpace_echo_1, kSpace_echo_2, ..., kSpace_echo_nETL] (102400, 23)
# So the first three are the coordinates of the kspace, and the rest are the echoes
print(mat_data_0['kSpaces3D'].shape)
kSpaces3D = mat_data_0['kSpaces3D']
# self.mapVals['sampled'] = np.concatenate((kRD, kPH, kSL, dataAll_sampled), axis=1)
# nReadout, nPhase, nSlice
nPoints = (80, 80, 16)
echo_train_length = mat_data_0['kSpaces3D'].shape[1] - 3 # Because the first 3 are kRD, kPH, kSL -> should give 20
print(f"Echo train length: {echo_train_length}")
echo_spacing = mat_data_0['echoSpacing'][0][0]
print(f"Echo spacing: {echo_spacing}")
k_readout = kSpaces3D[:, 0]
k_phase = kSpaces3D[:, 1]
k_slice = kSpaces3D[:, 2]
# The rest of the data is the echoes
echos = kSpaces3D[:, 3:]
# Reshape the kspace data for bart
kSpace = echos.reshape(nPoints[2], nPoints[1], nPoints[0], echo_train_length)
print(kSpace.shape)
# cfl = writecfl('kSpace', kSpace)
# Create the image with bart fft -i 7 kSpace fft -> three dimensional
# Put the echos on the fifth dimension:
# bart transpose 3 5
# Put the slices on the correct dimension
# bart transpose 0 2
# traj = writecfl('traj', np.stack((k_readout, k_phase, k_slice), axis=1))
# Echo times with echo spacing
TE = np.linspace(echo_spacing, echo_spacing * echo_train_length, echo_train_length, endpoint=True)
print("TE: ", TE)
# Create the echotimes file:
# bart vec ... echo_times
# bart scale 0.001 echo_times echo_times_scaled
# Move the echo_times to the correct dimension:
# bart transpose 0 5 echo_times_scaled echo_times_final
# Fit the model:
# bart mobafit -T echo_times_final fft_transposed fit
# Now some values will be very large so we can apply a threshold to obtain a mask
# bart threshold -M 1000 reco/fit reco/mask
# Multiply the fit with the mask
# bart fmac reco/fit reco/fit reco/fit_mask
# Select slice
# bart slice 6 1 reco/fit_mask reco/R2_map
# Invert the data to get T2
# bart invert reco/R2_map reco/T2_map