479 lines
9.5 KiB
TypeScript
479 lines
9.5 KiB
TypeScript
/**
|
|
* Clamp a value into a range.
|
|
* @param n
|
|
* @param min
|
|
*/
|
|
export function clamp(n: number, min: number): number
|
|
export function clamp(n: number, min: number, max: number): number
|
|
export function clamp(n: number, min: number, max?: number): number {
|
|
return Math.max(min, typeof max !== "undefined" ? Math.min(n, max) : n)
|
|
}
|
|
|
|
/**
|
|
* Negate a vector.
|
|
* @param A
|
|
*/
|
|
export function neg(A: number[]) {
|
|
return [-A[0], -A[1]]
|
|
}
|
|
|
|
/**
|
|
* Add vectors.
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function add(A: number[], B: number[]) {
|
|
return [A[0] + B[0], A[1] + B[1]]
|
|
}
|
|
|
|
/**
|
|
* Add scalar to vector.
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function addScalar(A: number[], n: number) {
|
|
return [A[0] + n, A[1] + n]
|
|
}
|
|
|
|
/**
|
|
* Subtract vectors.
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function sub(A: number[], B: number[]) {
|
|
return [A[0] - B[0], A[1] - B[1]]
|
|
}
|
|
|
|
/**
|
|
* Subtract scalar from vector.
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function subScalar(A: number[], n: number) {
|
|
return [A[0] - n, A[1] - n]
|
|
}
|
|
|
|
/**
|
|
* Get the vector from vectors A to B.
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function vec(A: number[], B: number[]) {
|
|
// A, B as vectors get the vector from A to B
|
|
return [B[0] - A[0], B[1] - A[1]]
|
|
}
|
|
|
|
/**
|
|
* Vector multiplication by scalar
|
|
* @param A
|
|
* @param n
|
|
*/
|
|
export function mul(A: number[], n: number) {
|
|
return [A[0] * n, A[1] * n]
|
|
}
|
|
|
|
export function mulV(A: number[], B: number[]) {
|
|
return [A[0] * B[0], A[1] * B[1]]
|
|
}
|
|
|
|
/**
|
|
* Vector division by scalar.
|
|
* @param A
|
|
* @param n
|
|
*/
|
|
export function div(A: number[], n: number) {
|
|
return [A[0] / n, A[1] / n]
|
|
}
|
|
|
|
/**
|
|
* Vector division by vector.
|
|
* @param A
|
|
* @param n
|
|
*/
|
|
export function divV(A: number[], B: number[]) {
|
|
return [A[0] / B[0], A[1] / B[1]]
|
|
}
|
|
|
|
/**
|
|
* Perpendicular rotation of a vector A
|
|
* @param A
|
|
*/
|
|
export function per(A: number[]) {
|
|
return [A[1], -A[0]]
|
|
}
|
|
|
|
/**
|
|
* Dot product
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function dpr(A: number[], B: number[]) {
|
|
return A[0] * B[0] + A[1] * B[1]
|
|
}
|
|
|
|
/**
|
|
* Cross product (outer product) | A X B |
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function cpr(A: number[], B: number[]) {
|
|
return A[0] * B[1] - B[0] * A[1]
|
|
}
|
|
|
|
/**
|
|
* Length of the vector squared
|
|
* @param A
|
|
*/
|
|
export function len2(A: number[]) {
|
|
return A[0] * A[0] + A[1] * A[1]
|
|
}
|
|
|
|
/**
|
|
* Length of the vector
|
|
* @param A
|
|
*/
|
|
export function len(A: number[]) {
|
|
return Math.hypot(A[0], A[1])
|
|
}
|
|
|
|
/**
|
|
* Project A over B
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function pry(A: number[], B: number[]) {
|
|
return dpr(A, B) / len(B)
|
|
}
|
|
|
|
/**
|
|
* Get normalized / unit vector.
|
|
* @param A
|
|
*/
|
|
export function uni(A: number[]) {
|
|
return div(A, len(A))
|
|
}
|
|
|
|
/**
|
|
* Get normalized / unit vector.
|
|
* @param A
|
|
*/
|
|
export function normalize(A: number[]) {
|
|
return uni(A)
|
|
}
|
|
|
|
/**
|
|
* Get the tangent between two vectors.
|
|
* @param A
|
|
* @param B
|
|
* @returns
|
|
*/
|
|
export function tangent(A: number[], B: number[]) {
|
|
return normalize(sub(A, B))
|
|
}
|
|
|
|
/**
|
|
* Dist length from A to B squared.
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function dist2(A: number[], B: number[]) {
|
|
return len2(sub(A, B))
|
|
}
|
|
|
|
/**
|
|
* Dist length from A to B
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function dist(A: number[], B: number[]) {
|
|
return Math.hypot(A[1] - B[1], A[0] - B[0])
|
|
}
|
|
|
|
/**
|
|
* A faster, though less accurate method for testing distances. Maybe faster?
|
|
* @param A
|
|
* @param B
|
|
* @returns
|
|
*/
|
|
export function fastDist(A: number[], B: number[]) {
|
|
const V = [B[0] - A[0], B[1] - A[1]]
|
|
const aV = [Math.abs(V[0]), Math.abs(V[1])]
|
|
let r = 1 / Math.max(aV[0], aV[1])
|
|
r = r * (1.29289 - (aV[0] + aV[1]) * r * 0.29289)
|
|
return [V[0] * r, V[1] * r]
|
|
}
|
|
|
|
/**
|
|
* Angle between vector A and vector B in radians
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function ang(A: number[], B: number[]) {
|
|
return Math.atan2(cpr(A, B), dpr(A, B))
|
|
}
|
|
|
|
/**
|
|
* Angle between vector A and vector B in radians
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function angle(A: number[], B: number[]) {
|
|
return Math.atan2(B[1] - A[1], B[0] - A[0])
|
|
}
|
|
|
|
/**
|
|
* Mean between two vectors or mid vector between two vectors
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function med(A: number[], B: number[]) {
|
|
return mul(add(A, B), 0.5)
|
|
}
|
|
|
|
/**
|
|
* Vector rotation by r (radians)
|
|
* @param A
|
|
* @param r rotation in radians
|
|
*/
|
|
export function rot(A: number[], r: number) {
|
|
return [
|
|
A[0] * Math.cos(r) - A[1] * Math.sin(r),
|
|
A[0] * Math.sin(r) + A[1] * Math.cos(r),
|
|
]
|
|
}
|
|
|
|
/**
|
|
* Rotate a vector around another vector by r (radians)
|
|
* @param A vector
|
|
* @param C center
|
|
* @param r rotation in radians
|
|
*/
|
|
export function rotWith(A: number[], C: number[], r: number) {
|
|
if (r === 0) return A
|
|
|
|
const s = Math.sin(r)
|
|
const c = Math.cos(r)
|
|
|
|
const px = A[0] - C[0]
|
|
const py = A[1] - C[1]
|
|
|
|
const nx = px * c - py * s
|
|
const ny = px * s + py * c
|
|
|
|
return [nx + C[0], ny + C[1]]
|
|
}
|
|
|
|
/**
|
|
* Check of two vectors are identical.
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function isEqual(A: number[], B: number[]) {
|
|
return A[0] === B[0] && A[1] === B[1]
|
|
}
|
|
|
|
/**
|
|
* Interpolate vector A to B with a scalar t
|
|
* @param A
|
|
* @param B
|
|
* @param t scalar
|
|
*/
|
|
export function lrp(A: number[], B: number[], t: number) {
|
|
return add(A, mul(vec(A, B), t))
|
|
}
|
|
|
|
/**
|
|
* Interpolate from A to B when curVAL goes fromVAL => to
|
|
* @param A
|
|
* @param B
|
|
* @param from Starting value
|
|
* @param to Ending value
|
|
* @param s Strength
|
|
*/
|
|
export function int(A: number[], B: number[], from: number, to: number, s = 1) {
|
|
const t = (clamp(from, to) - from) / (to - from)
|
|
return add(mul(A, 1 - t), mul(B, s))
|
|
}
|
|
|
|
/**
|
|
* Get the angle between the three vectors A, B, and C.
|
|
* @param p1
|
|
* @param pc
|
|
* @param p2
|
|
*/
|
|
export function ang3(p1: number[], pc: number[], p2: number[]) {
|
|
// this,
|
|
const v1 = vec(pc, p1)
|
|
const v2 = vec(pc, p2)
|
|
return ang(v1, v2)
|
|
}
|
|
|
|
/**
|
|
* Absolute value of a vector.
|
|
* @param A
|
|
* @returns
|
|
*/
|
|
export function abs(A: number[]) {
|
|
return [Math.abs(A[0]), Math.abs(A[1])]
|
|
}
|
|
|
|
export function rescale(a: number[], n: number) {
|
|
const l = len(a)
|
|
return [(n * a[0]) / l, (n * a[1]) / l]
|
|
}
|
|
|
|
/**
|
|
* Get whether p1 is left of p2, relative to pc.
|
|
* @param p1
|
|
* @param pc
|
|
* @param p2
|
|
*/
|
|
export function isLeft(p1: number[], pc: number[], p2: number[]) {
|
|
// isLeft: >0 for counterclockwise
|
|
// =0 for none (degenerate)
|
|
// <0 for clockwise
|
|
return (pc[0] - p1[0]) * (p2[1] - p1[1]) - (p2[0] - p1[0]) * (pc[1] - p1[1])
|
|
}
|
|
|
|
export function clockwise(p1: number[], pc: number[], p2: number[]) {
|
|
return isLeft(p1, pc, p2) > 0
|
|
}
|
|
|
|
const rounds = [1, 10, 100, 1000]
|
|
|
|
export function round(a: number[], d = 2) {
|
|
return [
|
|
Math.round(a[0] * rounds[d]) / rounds[d],
|
|
Math.round(a[1] * rounds[d]) / rounds[d],
|
|
]
|
|
}
|
|
|
|
/**
|
|
* Get the minimum distance from a point P to a line with a segment AB.
|
|
* @param A The start of the line.
|
|
* @param B The end of the line.
|
|
* @param P A point.
|
|
* @returns
|
|
*/
|
|
// export function distanceToLine(A: number[], B: number[], P: number[]) {
|
|
// const delta = sub(B, A)
|
|
// const angle = Math.atan2(delta[1], delta[0])
|
|
// const dir = rot(sub(P, A), -angle)
|
|
// return dir[1]
|
|
// }
|
|
|
|
/**
|
|
* Get the nearest point on a line segment AB.
|
|
* @param A The start of the line.
|
|
* @param B The end of the line.
|
|
* @param P A point.
|
|
* @param clamp Whether to clamp the resulting point to the segment.
|
|
* @returns
|
|
*/
|
|
// export function nearestPointOnLine(
|
|
// A: number[],
|
|
// B: number[],
|
|
// P: number[],
|
|
// clamp = true
|
|
// ) {
|
|
// const delta = sub(B, A)
|
|
// const length = len(delta)
|
|
// const angle = Math.atan2(delta[1], delta[0])
|
|
// const dir = rot(sub(P, A), -angle)
|
|
|
|
// if (clamp) {
|
|
// if (dir[0] < 0) return A
|
|
// if (dir[0] > length) return B
|
|
// }
|
|
|
|
// return add(A, div(mul(delta, dir[0]), length))
|
|
// }
|
|
|
|
/**
|
|
* Get the nearest point on a line with a known unit vector that passes through point A
|
|
* @param A Any point on the line
|
|
* @param u The unit vector for the line.
|
|
* @param P A point not on the line to test.
|
|
* @returns
|
|
*/
|
|
export function nearestPointOnLineThroughPoint(
|
|
A: number[],
|
|
u: number[],
|
|
P: number[]
|
|
) {
|
|
return add(A, mul(u, pry(sub(P, A), u)))
|
|
}
|
|
|
|
/**
|
|
* Distance between a point and a line with a known unit vector that passes through a point.
|
|
* @param A Any point on the line
|
|
* @param u The unit vector for the line.
|
|
* @param P A point not on the line to test.
|
|
* @returns
|
|
*/
|
|
export function distanceToLineThroughPoint(
|
|
A: number[],
|
|
u: number[],
|
|
P: number[]
|
|
) {
|
|
return dist(P, nearestPointOnLineThroughPoint(A, u, P))
|
|
}
|
|
|
|
/**
|
|
* Get the nearest point on a line segment between A and B
|
|
* @param A The start of the line segment
|
|
* @param B The end of the line segment
|
|
* @param P The off-line point
|
|
* @param clamp Whether to clamp the point between A and B.
|
|
* @returns
|
|
*/
|
|
export function nearestPointOnLineSegment(
|
|
A: number[],
|
|
B: number[],
|
|
P: number[],
|
|
clamp = true
|
|
) {
|
|
const delta = sub(B, A)
|
|
const length = len(delta)
|
|
const u = div(delta, length)
|
|
|
|
const pt = add(A, mul(u, pry(sub(P, A), u)))
|
|
|
|
if (clamp) {
|
|
const da = dist(A, pt)
|
|
const db = dist(B, pt)
|
|
|
|
if (db < da && da > length) return B
|
|
if (da < db && db > length) return A
|
|
}
|
|
|
|
return pt
|
|
}
|
|
|
|
/**
|
|
* Distance between a point and the nearest point on a line segment between A and B
|
|
* @param A The start of the line segment
|
|
* @param B The end of the line segment
|
|
* @param P The off-line point
|
|
* @param clamp Whether to clamp the point between A and B.
|
|
* @returns
|
|
*/
|
|
export function distanceToLineSegment(
|
|
A: number[],
|
|
B: number[],
|
|
P: number[],
|
|
clamp = true
|
|
) {
|
|
return dist(P, nearestPointOnLineSegment(A, B, P, clamp))
|
|
}
|
|
|
|
/**
|
|
* Get a vector d distance from A towards B.
|
|
* @param A
|
|
* @param B
|
|
* @param d
|
|
* @returns
|
|
*/
|
|
export function nudge(A: number[], B: number[], d: number) {
|
|
return add(A, mul(uni(vec(A, B)), d))
|
|
}
|