850 lines
20 KiB
TypeScript
850 lines
20 KiB
TypeScript
import { Data } from "types"
|
|
import * as svg from "./svg"
|
|
import * as vec from "./vec"
|
|
|
|
export function screenToWorld(point: number[], data: Data) {
|
|
return vec.sub(vec.div(point, data.camera.zoom), data.camera.point)
|
|
}
|
|
|
|
export function getBoundsFromPoints(a: number[], b: number[]) {
|
|
const minX = Math.min(a[0], b[0])
|
|
const maxX = Math.max(a[0], b[0])
|
|
const minY = Math.min(a[1], b[1])
|
|
const maxY = Math.max(a[1], b[1])
|
|
|
|
return {
|
|
minX,
|
|
maxX,
|
|
minY,
|
|
maxY,
|
|
width: maxX - minX,
|
|
height: maxY - minY,
|
|
}
|
|
}
|
|
|
|
// A helper for getting tangents.
|
|
export function getCircleTangentToPoint(
|
|
A: number[],
|
|
r0: number,
|
|
P: number[],
|
|
side: number
|
|
) {
|
|
const B = vec.lrp(A, P, 0.5),
|
|
r1 = vec.dist(A, B),
|
|
delta = vec.sub(B, A),
|
|
d = vec.len(delta)
|
|
|
|
if (!(d <= r0 + r1 && d >= Math.abs(r0 - r1))) {
|
|
return
|
|
}
|
|
|
|
const a = (r0 * r0 - r1 * r1 + d * d) / (2.0 * d),
|
|
n = 1 / d,
|
|
p = vec.add(A, vec.mul(delta, a * n)),
|
|
h = Math.sqrt(r0 * r0 - a * a),
|
|
k = vec.mul(vec.per(delta), h * n)
|
|
|
|
return side === 0 ? vec.add(p, k) : vec.sub(p, k)
|
|
}
|
|
|
|
export function circleCircleIntersections(a: number[], b: number[]) {
|
|
const R = a[2],
|
|
r = b[2]
|
|
|
|
let dx = b[0] - a[0],
|
|
dy = b[1] - a[1]
|
|
|
|
const d = Math.sqrt(dx * dx + dy * dy),
|
|
x = (d * d - r * r + R * R) / (2 * d),
|
|
y = Math.sqrt(R * R - x * x)
|
|
|
|
dx /= d
|
|
dy /= d
|
|
|
|
return [
|
|
[a[0] + dx * x - dy * y, a[1] + dy * x + dx * y],
|
|
[a[0] + dx * x + dy * y, a[1] + dy * x - dx * y],
|
|
]
|
|
}
|
|
|
|
export function getClosestPointOnCircle(
|
|
C: number[],
|
|
r: number,
|
|
P: number[],
|
|
padding = 0
|
|
) {
|
|
const v = vec.sub(C, P)
|
|
return vec.sub(C, vec.mul(vec.div(v, vec.len(v)), r + padding))
|
|
}
|
|
|
|
export function projectPoint(p0: number[], a: number, d: number) {
|
|
return [Math.cos(a) * d + p0[0], Math.sin(a) * d + p0[1]]
|
|
}
|
|
|
|
function shortAngleDist(a0: number, a1: number) {
|
|
const max = Math.PI * 2
|
|
const da = (a1 - a0) % max
|
|
return ((2 * da) % max) - da
|
|
}
|
|
|
|
export function lerpAngles(a0: number, a1: number, t: number) {
|
|
return a0 + shortAngleDist(a0, a1) * t
|
|
}
|
|
|
|
export function getBezierCurveSegments(points: number[][], tension = 0.4) {
|
|
const len = points.length,
|
|
cpoints: number[][] = [...points]
|
|
|
|
if (len < 2) {
|
|
throw Error("Curve must have at least two points.")
|
|
}
|
|
|
|
for (let i = 1; i < len - 1; i++) {
|
|
const p0 = points[i - 1],
|
|
p1 = points[i],
|
|
p2 = points[i + 1]
|
|
|
|
const pdx = p2[0] - p0[0],
|
|
pdy = p2[1] - p0[1],
|
|
pd = Math.hypot(pdx, pdy),
|
|
nx = pdx / pd, // normalized x
|
|
ny = pdy / pd, // normalized y
|
|
dp = Math.hypot(p1[0] - p0[0], p1[1] - p0[1]), // Distance to previous
|
|
dn = Math.hypot(p1[0] - p2[0], p1[1] - p2[1]) // Distance to next
|
|
|
|
cpoints[i] = [
|
|
// tangent start
|
|
p1[0] - nx * dp * tension,
|
|
p1[1] - ny * dp * tension,
|
|
// tangent end
|
|
p1[0] + nx * dn * tension,
|
|
p1[1] + ny * dn * tension,
|
|
// normal
|
|
nx,
|
|
ny,
|
|
]
|
|
}
|
|
|
|
// TODO: Reflect the nearest control points, not average them
|
|
const d0 = Math.hypot(points[0][0] + cpoints[1][0])
|
|
cpoints[0][2] = (points[0][0] + cpoints[1][0]) / 2
|
|
cpoints[0][3] = (points[0][1] + cpoints[1][1]) / 2
|
|
cpoints[0][4] = (cpoints[1][0] - points[0][0]) / d0
|
|
cpoints[0][5] = (cpoints[1][1] - points[0][1]) / d0
|
|
|
|
const d1 = Math.hypot(points[len - 1][1] + cpoints[len - 1][1])
|
|
cpoints[len - 1][0] = (points[len - 1][0] + cpoints[len - 2][2]) / 2
|
|
cpoints[len - 1][1] = (points[len - 1][1] + cpoints[len - 2][3]) / 2
|
|
cpoints[len - 1][4] = (cpoints[len - 2][2] - points[len - 1][0]) / -d1
|
|
cpoints[len - 1][5] = (cpoints[len - 2][3] - points[len - 1][1]) / -d1
|
|
|
|
const results: {
|
|
start: number[]
|
|
tangentStart: number[]
|
|
normalStart: number[]
|
|
pressureStart: number
|
|
end: number[]
|
|
tangentEnd: number[]
|
|
normalEnd: number[]
|
|
pressureEnd: number
|
|
}[] = []
|
|
|
|
for (let i = 1; i < cpoints.length; i++) {
|
|
results.push({
|
|
start: points[i - 1].slice(0, 2),
|
|
tangentStart: cpoints[i - 1].slice(2, 4),
|
|
normalStart: cpoints[i - 1].slice(4, 6),
|
|
pressureStart: 2 + ((i - 1) % 2 === 0 ? 1.5 : 0),
|
|
end: points[i].slice(0, 2),
|
|
tangentEnd: cpoints[i].slice(0, 2),
|
|
normalEnd: cpoints[i].slice(4, 6),
|
|
pressureEnd: 2 + (i % 2 === 0 ? 1.5 : 0),
|
|
})
|
|
}
|
|
|
|
return results
|
|
}
|
|
|
|
export function cubicBezier(
|
|
tx: number,
|
|
x1: number,
|
|
y1: number,
|
|
x2: number,
|
|
y2: number
|
|
) {
|
|
// Inspired by Don Lancaster's two articles
|
|
// http://www.tinaja.com/glib/cubemath.pdf
|
|
// http://www.tinaja.com/text/bezmath.html
|
|
|
|
// Set start and end point
|
|
const x0 = 0,
|
|
y0 = 0,
|
|
x3 = 1,
|
|
y3 = 1,
|
|
// Convert the coordinates to equation space
|
|
A = x3 - 3 * x2 + 3 * x1 - x0,
|
|
B = 3 * x2 - 6 * x1 + 3 * x0,
|
|
C = 3 * x1 - 3 * x0,
|
|
D = x0,
|
|
E = y3 - 3 * y2 + 3 * y1 - y0,
|
|
F = 3 * y2 - 6 * y1 + 3 * y0,
|
|
G = 3 * y1 - 3 * y0,
|
|
H = y0,
|
|
// Variables for the loop below
|
|
iterations = 5
|
|
|
|
let i: number,
|
|
slope: number,
|
|
x: number,
|
|
t = tx
|
|
|
|
// Loop through a few times to get a more accurate time value, according to the Newton-Raphson method
|
|
// http://en.wikipedia.org/wiki/Newton's_method
|
|
for (i = 0; i < iterations; i++) {
|
|
// The curve's x equation for the current time value
|
|
x = A * t * t * t + B * t * t + C * t + D
|
|
|
|
// The slope we want is the inverse of the derivate of x
|
|
slope = 1 / (3 * A * t * t + 2 * B * t + C)
|
|
|
|
// Get the next estimated time value, which will be more accurate than the one before
|
|
t -= (x - tx) * slope
|
|
t = t > 1 ? 1 : t < 0 ? 0 : t
|
|
}
|
|
|
|
// Find the y value through the curve's y equation, with the now more accurate time value
|
|
return Math.abs(E * t * t * t + F * t * t + G * t * H)
|
|
}
|
|
|
|
export function copyToClipboard(string: string) {
|
|
let textarea: HTMLTextAreaElement
|
|
let result: boolean
|
|
|
|
try {
|
|
navigator.clipboard.writeText(string)
|
|
} catch (e) {
|
|
try {
|
|
textarea = document.createElement("textarea")
|
|
textarea.setAttribute("position", "fixed")
|
|
textarea.setAttribute("top", "0")
|
|
textarea.setAttribute("readonly", "true")
|
|
textarea.setAttribute("contenteditable", "true")
|
|
textarea.style.position = "fixed" // prevent scroll from jumping to the bottom when focus is set.
|
|
textarea.value = string
|
|
|
|
document.body.appendChild(textarea)
|
|
|
|
textarea.focus()
|
|
textarea.select()
|
|
|
|
const range = document.createRange()
|
|
range.selectNodeContents(textarea)
|
|
|
|
const sel = window.getSelection()
|
|
sel.removeAllRanges()
|
|
sel.addRange(range)
|
|
|
|
textarea.setSelectionRange(0, textarea.value.length)
|
|
result = document.execCommand("copy")
|
|
} catch (err) {
|
|
result = null
|
|
} finally {
|
|
document.body.removeChild(textarea)
|
|
}
|
|
}
|
|
|
|
return !!result
|
|
}
|
|
|
|
/**
|
|
* Get a bezier curve data to for a spline that fits an array of points.
|
|
* @param points An array of points formatted as [x, y]
|
|
* @param k Tension
|
|
* @returns An array of points as [cp1x, cp1y, cp2x, cp2y, px, py].
|
|
*/
|
|
export function getSpline(pts: number[][], k = 0.5) {
|
|
let p0: number[],
|
|
[p1, p2, p3] = pts
|
|
|
|
const results: number[][] = []
|
|
|
|
for (let i = 1, len = pts.length; i < len; i++) {
|
|
p0 = p1
|
|
p1 = p2
|
|
p2 = p3
|
|
p3 = pts[i + 2] ? pts[i + 2] : p2
|
|
results.push([
|
|
p1[0] + ((p2[0] - p0[0]) / 6) * k,
|
|
p1[1] + ((p2[1] - p0[1]) / 6) * k,
|
|
p2[0] - ((p3[0] - p1[0]) / 6) * k,
|
|
p2[1] - ((p3[1] - p1[1]) / 6) * k,
|
|
pts[i][0],
|
|
pts[i][1],
|
|
])
|
|
}
|
|
|
|
return results
|
|
}
|
|
|
|
export function getCurvePoints(
|
|
pts: number[][],
|
|
tension = 0.5,
|
|
isClosed = false,
|
|
numOfSegments = 3
|
|
) {
|
|
const _pts = [...pts],
|
|
len = pts.length,
|
|
res: number[][] = [] // results
|
|
|
|
let t1x: number, // tension vectors
|
|
t2x: number,
|
|
t1y: number,
|
|
t2y: number,
|
|
c1: number, // cardinal points
|
|
c2: number,
|
|
c3: number,
|
|
c4: number,
|
|
st: number,
|
|
st2: number,
|
|
st3: number
|
|
|
|
// The algorithm require a previous and next point to the actual point array.
|
|
// Check if we will draw closed or open curve.
|
|
// If closed, copy end points to beginning and first points to end
|
|
// If open, duplicate first points to befinning, end points to end
|
|
if (isClosed) {
|
|
_pts.unshift(_pts[len - 1])
|
|
_pts.push(_pts[0])
|
|
} else {
|
|
//copy 1. point and insert at beginning
|
|
_pts.unshift(_pts[0])
|
|
_pts.push(_pts[len - 1])
|
|
// _pts.push(_pts[len - 1])
|
|
}
|
|
|
|
// For each point, calculate a segment
|
|
for (let i = 1; i < _pts.length - 2; i++) {
|
|
// Calculate points along segment and add to results
|
|
for (let t = 0; t <= numOfSegments; t++) {
|
|
// Step
|
|
st = t / numOfSegments
|
|
st2 = Math.pow(st, 2)
|
|
st3 = Math.pow(st, 3)
|
|
|
|
// Cardinals
|
|
c1 = 2 * st3 - 3 * st2 + 1
|
|
c2 = -(2 * st3) + 3 * st2
|
|
c3 = st3 - 2 * st2 + st
|
|
c4 = st3 - st2
|
|
|
|
// Tension
|
|
t1x = (_pts[i + 1][0] - _pts[i - 1][0]) * tension
|
|
t2x = (_pts[i + 2][0] - _pts[i][0]) * tension
|
|
t1y = (_pts[i + 1][1] - _pts[i - 1][1]) * tension
|
|
t2y = (_pts[i + 2][1] - _pts[i][1]) * tension
|
|
|
|
// Control points
|
|
res.push([
|
|
c1 * _pts[i][0] + c2 * _pts[i + 1][0] + c3 * t1x + c4 * t2x,
|
|
c1 * _pts[i][1] + c2 * _pts[i + 1][1] + c3 * t1y + c4 * t2y,
|
|
])
|
|
}
|
|
}
|
|
|
|
res.push(pts[pts.length - 1])
|
|
|
|
return res
|
|
}
|
|
|
|
export function angleDelta(a0: number, a1: number) {
|
|
return shortAngleDist(a0, a1)
|
|
}
|
|
|
|
/**
|
|
* Rotate a point around a center.
|
|
* @param x The x-axis coordinate of the point.
|
|
* @param y The y-axis coordinate of the point.
|
|
* @param cx The x-axis coordinate of the point to rotate round.
|
|
* @param cy The y-axis coordinate of the point to rotate round.
|
|
* @param angle The distance (in radians) to rotate.
|
|
*/
|
|
export function rotatePoint(A: number[], B: number[], angle: number) {
|
|
const s = Math.sin(angle)
|
|
const c = Math.cos(angle)
|
|
|
|
const px = A[0] - B[0]
|
|
const py = A[1] - B[1]
|
|
|
|
const nx = px * c - py * s
|
|
const ny = px * s + py * c
|
|
|
|
return [nx + B[0], ny + B[1]]
|
|
}
|
|
|
|
export function degreesToRadians(d: number) {
|
|
return (d * Math.PI) / 180
|
|
}
|
|
|
|
export function radiansToDegrees(r: number) {
|
|
return (r * 180) / Math.PI
|
|
}
|
|
|
|
export function getArcLength(C: number[], r: number, A: number[], B: number[]) {
|
|
const sweep = getSweep(C, A, B)
|
|
return r * (2 * Math.PI) * (sweep / (2 * Math.PI))
|
|
}
|
|
|
|
export function getArcDashOffset(
|
|
C: number[],
|
|
r: number,
|
|
A: number[],
|
|
B: number[],
|
|
step: number
|
|
) {
|
|
const del0 = getSweep(C, A, B)
|
|
const len0 = getArcLength(C, r, A, B)
|
|
const off0 = del0 < 0 ? len0 : 2 * Math.PI * C[2] - len0
|
|
return -off0 / 2 + step
|
|
}
|
|
|
|
export function getEllipseDashOffset(A: number[], step: number) {
|
|
const c = 2 * Math.PI * A[2]
|
|
return -c / 2 + -step
|
|
}
|
|
|
|
export function getSweep(C: number[], A: number[], B: number[]) {
|
|
return angleDelta(vec.angle(C, A), vec.angle(C, B))
|
|
}
|
|
|
|
export function deepCompareArrays<T>(a: T[], b: T[]) {
|
|
if (a?.length !== b?.length) return false
|
|
return deepCompare(a, b)
|
|
}
|
|
|
|
export function deepCompare<T>(a: T, b: T) {
|
|
return a === b || JSON.stringify(a) === JSON.stringify(b)
|
|
}
|
|
|
|
/**
|
|
* Get outer tangents of two circles.
|
|
* @param x0
|
|
* @param y0
|
|
* @param r0
|
|
* @param x1
|
|
* @param y1
|
|
* @param r1
|
|
* @returns [lx0, ly0, lx1, ly1, rx0, ry0, rx1, ry1]
|
|
*/
|
|
export function getOuterTangents(
|
|
C0: number[],
|
|
r0: number,
|
|
C1: number[],
|
|
r1: number
|
|
) {
|
|
const a0 = vec.angle(C0, C1)
|
|
const d = vec.dist(C0, C1)
|
|
|
|
// Circles are overlapping, no tangents
|
|
if (d < Math.abs(r1 - r0)) return
|
|
|
|
const a1 = Math.acos((r0 - r1) / d),
|
|
t0 = a0 + a1,
|
|
t1 = a0 - a1
|
|
|
|
return [
|
|
[C0[0] + r0 * Math.cos(t1), C0[1] + r0 * Math.sin(t1)],
|
|
[C1[0] + r1 * Math.cos(t1), C1[1] + r1 * Math.sin(t1)],
|
|
[C0[0] + r0 * Math.cos(t0), C0[1] + r0 * Math.sin(t0)],
|
|
[C1[0] + r1 * Math.cos(t0), C1[1] + r1 * Math.sin(t0)],
|
|
]
|
|
}
|
|
|
|
export function arrsIntersect<T, K>(
|
|
a: T[],
|
|
b: K[],
|
|
fn?: (item: K) => T
|
|
): boolean
|
|
export function arrsIntersect<T>(a: T[], b: T[]): boolean
|
|
export function arrsIntersect<T>(
|
|
a: T[],
|
|
b: unknown[],
|
|
fn?: (item: unknown) => T
|
|
) {
|
|
return a.some((item) => b.includes(fn ? fn(item) : item))
|
|
}
|
|
|
|
// /**
|
|
// * Will mutate an array to remove items.
|
|
// * @param arr
|
|
// * @param item
|
|
// */
|
|
// export function pull<T>(arr: T[], ...items: T[]) {
|
|
// for (let item of items) {
|
|
// arr.splice(arr.indexOf(item), 1)
|
|
// }
|
|
// return arr
|
|
// }
|
|
|
|
// /**
|
|
// * Will mutate an array to remove items, based on a function
|
|
// * @param arr
|
|
// * @param fn
|
|
// * @returns
|
|
// */
|
|
// export function pullWith<T>(arr: T[], fn: (item: T) => boolean) {
|
|
// pull(arr, ...arr.filter((item) => fn(item)))
|
|
// return arr
|
|
// }
|
|
|
|
// export function rectContainsRect(
|
|
// x0: number,
|
|
// y0: number,
|
|
// x1: number,
|
|
// y1: number,
|
|
// box: { x: number; y: number; width: number; height: number }
|
|
// ) {
|
|
// return !(
|
|
// x0 > box.x ||
|
|
// x1 < box.x + box.width ||
|
|
// y0 > box.y ||
|
|
// y1 < box.y + box.height
|
|
// )
|
|
// }
|
|
|
|
export function getTouchDisplay() {
|
|
return (
|
|
"ontouchstart" in window ||
|
|
navigator.maxTouchPoints > 0 ||
|
|
navigator.msMaxTouchPoints > 0
|
|
)
|
|
}
|
|
|
|
const rounds = [1, 10, 100, 1000]
|
|
|
|
export function round(n: number, p = 2) {
|
|
return Math.floor(n * rounds[p]) / rounds[p]
|
|
}
|
|
|
|
/**
|
|
* Linear interpolation betwen two numbers.
|
|
* @param y1
|
|
* @param y2
|
|
* @param mu
|
|
*/
|
|
export function lerp(y1: number, y2: number, mu: number) {
|
|
mu = clamp(mu, 0, 1)
|
|
return y1 * (1 - mu) + y2 * mu
|
|
}
|
|
|
|
/**
|
|
* Modulate a value between two ranges.
|
|
* @param value
|
|
* @param rangeA from [low, high]
|
|
* @param rangeB to [low, high]
|
|
* @param clamp
|
|
*/
|
|
export function modulate(
|
|
value: number,
|
|
rangeA: number[],
|
|
rangeB: number[],
|
|
clamp = false
|
|
) {
|
|
const [fromLow, fromHigh] = rangeA
|
|
const [v0, v1] = rangeB
|
|
const result = v0 + ((value - fromLow) / (fromHigh - fromLow)) * (v1 - v0)
|
|
|
|
return clamp
|
|
? v0 < v1
|
|
? Math.max(Math.min(result, v1), v0)
|
|
: Math.max(Math.min(result, v0), v1)
|
|
: result
|
|
}
|
|
|
|
/**
|
|
* Clamp a value into a range.
|
|
* @param n
|
|
* @param min
|
|
*/
|
|
export function clamp(n: number, min: number): number
|
|
export function clamp(n: number, min: number, max: number): number
|
|
export function clamp(n: number, min: number, max?: number): number {
|
|
return Math.max(min, typeof max !== "undefined" ? Math.min(n, max) : n)
|
|
}
|
|
|
|
// CURVES
|
|
// Mostly adapted from https://github.com/Pomax/bezierjs
|
|
|
|
export function computePointOnCurve(t: number, points: number[][]) {
|
|
// shortcuts
|
|
if (t === 0) {
|
|
return points[0]
|
|
}
|
|
|
|
const order = points.length - 1
|
|
|
|
if (t === 1) {
|
|
return points[order]
|
|
}
|
|
|
|
const mt = 1 - t
|
|
let p = points // constant?
|
|
|
|
if (order === 0) {
|
|
return points[0]
|
|
} // linear?
|
|
|
|
if (order === 1) {
|
|
return [mt * p[0][0] + t * p[1][0], mt * p[0][1] + t * p[1][1]]
|
|
} // quadratic/cubic curve?
|
|
|
|
if (order < 4) {
|
|
const mt2 = mt * mt,
|
|
t2 = t * t
|
|
|
|
let a: number,
|
|
b: number,
|
|
c: number,
|
|
d = 0
|
|
|
|
if (order === 2) {
|
|
p = [p[0], p[1], p[2], [0, 0]]
|
|
a = mt2
|
|
b = mt * t * 2
|
|
c = t2
|
|
} else if (order === 3) {
|
|
a = mt2 * mt
|
|
b = mt2 * t * 3
|
|
c = mt * t2 * 3
|
|
d = t * t2
|
|
}
|
|
|
|
return [
|
|
a * p[0][0] + b * p[1][0] + c * p[2][0] + d * p[3][0],
|
|
a * p[0][1] + b * p[1][1] + c * p[2][1] + d * p[3][1],
|
|
]
|
|
} // higher order curves: use de Casteljau's computation
|
|
}
|
|
|
|
function distance2(p: DOMPoint, point: number[]) {
|
|
const dx = p.x - point[0],
|
|
dy = p.y - point[1]
|
|
return dx * dx + dy * dy
|
|
}
|
|
|
|
/**
|
|
* Find the closest point on a path to an off-path point.
|
|
* @param pathNode
|
|
* @param point
|
|
* @returns
|
|
*/
|
|
export function getClosestPointOnPath(
|
|
pathNode: SVGPathElement,
|
|
point: number[]
|
|
) {
|
|
const pathLen = pathNode.getTotalLength()
|
|
|
|
let p = 8,
|
|
best: DOMPoint,
|
|
bestLen: number,
|
|
bestDist = Infinity,
|
|
bl: number,
|
|
al: number
|
|
|
|
// linear scan for coarse approximation
|
|
for (
|
|
let scan: DOMPoint, scanLen = 0, scanDist: number;
|
|
scanLen <= pathLen;
|
|
scanLen += p
|
|
) {
|
|
if (
|
|
(scanDist = distance2(
|
|
(scan = pathNode.getPointAtLength(scanLen)),
|
|
point
|
|
)) < bestDist
|
|
) {
|
|
;(best = scan), (bestLen = scanLen), (bestDist = scanDist)
|
|
}
|
|
}
|
|
|
|
// binary search for precise estimate
|
|
p /= 2
|
|
while (p > 0.5) {
|
|
let before: DOMPoint, after: DOMPoint, bd: number, ad: number
|
|
if (
|
|
(bl = bestLen - p) >= 0 &&
|
|
(bd = distance2((before = pathNode.getPointAtLength(bl)), point)) <
|
|
bestDist
|
|
) {
|
|
;(best = before), (bestLen = bl), (bestDist = bd)
|
|
} else if (
|
|
(al = bestLen + p) <= pathLen &&
|
|
(ad = distance2((after = pathNode.getPointAtLength(al)), point)) <
|
|
bestDist
|
|
) {
|
|
;(best = after), (bestLen = al), (bestDist = ad)
|
|
} else {
|
|
p /= 2
|
|
}
|
|
}
|
|
|
|
return {
|
|
point: [best.x, best.y],
|
|
distance: bestDist,
|
|
length: (bl + al) / 2,
|
|
t: (bl + al) / 2 / pathLen,
|
|
}
|
|
}
|
|
|
|
export function det(
|
|
a: number,
|
|
b: number,
|
|
c: number,
|
|
d: number,
|
|
e: number,
|
|
f: number,
|
|
g: number,
|
|
h: number,
|
|
i: number
|
|
) {
|
|
return a * e * i + b * f * g + c * d * h - a * f * h - b * d * i - c * e * g
|
|
}
|
|
|
|
/**
|
|
* Get a circle from three points.
|
|
* @param p0
|
|
* @param p1
|
|
* @param center
|
|
* @returns
|
|
*/
|
|
export function circleFromThreePoints(A: number[], B: number[], C: number[]) {
|
|
const a = det(A[0], A[1], 1, B[0], B[1], 1, C[0], C[1], 1)
|
|
|
|
const bx = -det(
|
|
A[0] * A[0] + A[1] * A[1],
|
|
A[1],
|
|
1,
|
|
B[0] * B[0] + B[1] * B[1],
|
|
B[1],
|
|
1,
|
|
C[0] * C[0] + C[1] * C[1],
|
|
C[1],
|
|
1
|
|
)
|
|
const by = det(
|
|
A[0] * A[0] + A[1] * A[1],
|
|
A[0],
|
|
1,
|
|
B[0] * B[0] + B[1] * B[1],
|
|
B[0],
|
|
1,
|
|
C[0] * C[0] + C[1] * C[1],
|
|
C[0],
|
|
1
|
|
)
|
|
const c = -det(
|
|
A[0] * A[0] + A[1] * A[1],
|
|
A[0],
|
|
A[1],
|
|
B[0] * B[0] + B[1] * B[1],
|
|
B[0],
|
|
B[1],
|
|
C[0] * C[0] + C[1] * C[1],
|
|
C[0],
|
|
C[1]
|
|
)
|
|
return [
|
|
-bx / (2 * a),
|
|
-by / (2 * a),
|
|
Math.sqrt(bx * bx + by * by - 4 * a * c) / (2 * Math.abs(a)),
|
|
]
|
|
}
|
|
|
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
export function throttle<P extends any[], T extends (...args: P) => any>(
|
|
fn: T,
|
|
wait: number,
|
|
preventDefault?: boolean
|
|
) {
|
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
let inThrottle: boolean, lastFn: any, lastTime: number
|
|
return function(...args: P) {
|
|
if (preventDefault) args[0].preventDefault()
|
|
// eslint-disable-next-line @typescript-eslint/no-this-alias
|
|
const context = this
|
|
if (!inThrottle) {
|
|
fn.apply(context, args)
|
|
lastTime = Date.now()
|
|
inThrottle = true
|
|
} else {
|
|
clearTimeout(lastFn)
|
|
lastFn = setTimeout(function() {
|
|
if (Date.now() - lastTime >= wait) {
|
|
fn.apply(context, args)
|
|
lastTime = Date.now()
|
|
}
|
|
}, Math.max(wait - (Date.now() - lastTime), 0))
|
|
}
|
|
}
|
|
}
|
|
|
|
export function pointInRect(
|
|
point: number[],
|
|
minX: number,
|
|
minY: number,
|
|
maxX: number,
|
|
maxY: number
|
|
) {
|
|
return !(
|
|
point[0] < minX ||
|
|
point[0] > maxX ||
|
|
point[1] < minY ||
|
|
point[1] > maxY
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Get the intersection of two rays, with origin points p0 and p1, and direction vectors n0 and n1.
|
|
* @param p0 The origin point of the first ray
|
|
* @param n0 The direction vector of the first ray
|
|
* @param p1 The origin point of the second ray
|
|
* @param n1 The direction vector of the second ray
|
|
* @returns
|
|
*/
|
|
export function getRayRayIntersection(
|
|
p0: number[],
|
|
n0: number[],
|
|
p1: number[],
|
|
n1: number[]
|
|
) {
|
|
const p0e = vec.add(p0, n0),
|
|
p1e = vec.add(p1, n1),
|
|
m0 = (p0e[1] - p0[1]) / (p0e[0] - p0[0]),
|
|
m1 = (p1e[1] - p1[1]) / (p1e[0] - p1[0]),
|
|
b0 = p0[1] - m0 * p0[0],
|
|
b1 = p1[1] - m1 * p1[0],
|
|
x = (b1 - b0) / (m0 - m1),
|
|
y = m0 * x + b0
|
|
|
|
return [x, y]
|
|
}
|
|
|
|
export async function postJsonToEndpoint(
|
|
endpoint: string,
|
|
data: { [key: string]: unknown }
|
|
) {
|
|
const d = await fetch(
|
|
`${process.env.NEXT_PUBLIC_BASE_API_URL}/api/${endpoint}`,
|
|
{
|
|
method: "POST",
|
|
headers: { "Content-Type": "application/json" },
|
|
body: JSON.stringify(data),
|
|
}
|
|
)
|
|
|
|
return await d.json()
|
|
}
|
|
|
|
export function getPointerEventInfo(e: React.PointerEvent | WheelEvent) {
|
|
const { shiftKey, ctrlKey, metaKey, altKey } = e
|
|
return { point: [e.clientX, e.clientY], shiftKey, ctrlKey, metaKey, altKey }
|
|
}
|