1756 lines
40 KiB
TypeScript
1756 lines
40 KiB
TypeScript
import React from 'react'
|
|
import { Bounds, Edge, Corner, BezierCurveSegment } from 'types'
|
|
import { v4 as uuid } from 'uuid'
|
|
import vec from './vec'
|
|
import _isMobile from 'ismobilejs'
|
|
import { intersectPolygonBounds } from './intersections'
|
|
|
|
/* ----------- Numbers and Data Structures ---------- */
|
|
|
|
/**
|
|
* Get a unique string id.
|
|
*/
|
|
export function uniqueId(): string {
|
|
return uuid()
|
|
}
|
|
|
|
/**
|
|
* Linear interpolation betwen two numbers.
|
|
* @param y1
|
|
* @param y2
|
|
* @param mu
|
|
*/
|
|
export function lerp(y1: number, y2: number, mu: number): number {
|
|
mu = clamp(mu, 0, 1)
|
|
return y1 * (1 - mu) + y2 * mu
|
|
}
|
|
|
|
/**
|
|
* Modulate a value between two ranges.
|
|
* @param value
|
|
* @param rangeA from [low, high]
|
|
* @param rangeB to [low, high]
|
|
* @param clamp
|
|
*/
|
|
export function modulate(
|
|
value: number,
|
|
rangeA: number[],
|
|
rangeB: number[],
|
|
clamp = false
|
|
): number {
|
|
const [fromLow, fromHigh] = rangeA
|
|
const [v0, v1] = rangeB
|
|
const result = v0 + ((value - fromLow) / (fromHigh - fromLow)) * (v1 - v0)
|
|
|
|
return clamp
|
|
? v0 < v1
|
|
? Math.max(Math.min(result, v1), v0)
|
|
: Math.max(Math.min(result, v0), v1)
|
|
: result
|
|
}
|
|
|
|
/**
|
|
* Clamp a value into a range.
|
|
* @param n
|
|
* @param min
|
|
*/
|
|
export function clamp(n: number, min: number): number
|
|
export function clamp(n: number, min: number, max: number): number
|
|
export function clamp(n: number, min: number, max?: number): number {
|
|
return Math.max(min, typeof max !== 'undefined' ? Math.min(n, max) : n)
|
|
}
|
|
|
|
// TODO: replace with a string compression algorithm
|
|
export function compress(s: string): string {
|
|
return s
|
|
}
|
|
|
|
// TODO: replace with a string decompression algorithm
|
|
export function decompress(s: string): string {
|
|
return s
|
|
}
|
|
|
|
/**
|
|
* Recursively clone an object or array.
|
|
* @param obj
|
|
*/
|
|
export function deepClone<T>(obj: T): T {
|
|
if (obj === null) return null
|
|
|
|
const clone: any = { ...obj }
|
|
|
|
Object.keys(obj).forEach(
|
|
(key) =>
|
|
(clone[key] =
|
|
typeof obj[key] === 'object' ? deepClone(obj[key]) : obj[key])
|
|
)
|
|
|
|
if (Array.isArray(obj)) {
|
|
clone.length = obj.length
|
|
return Array.from(clone) as any as T
|
|
}
|
|
|
|
return clone as T
|
|
}
|
|
|
|
/**
|
|
* Seeded random number generator, using [xorshift](https://en.wikipedia.org/wiki/Xorshift).
|
|
* The result will always be betweeen -1 and 1.
|
|
*
|
|
* Adapted from [seedrandom](https://github.com/davidbau/seedrandom).
|
|
*/
|
|
export function rng(seed = ''): () => number {
|
|
let x = 0
|
|
let y = 0
|
|
let z = 0
|
|
let w = 0
|
|
|
|
function next() {
|
|
const t = x ^ (x << 11)
|
|
;(x = y), (y = z), (z = w)
|
|
w ^= ((w >>> 19) ^ t ^ (t >>> 8)) >>> 0
|
|
return w / 0x100000000
|
|
}
|
|
|
|
for (let k = 0; k < seed.length + 64; k++) {
|
|
;(x ^= seed.charCodeAt(k) | 0), next()
|
|
}
|
|
|
|
return next
|
|
}
|
|
|
|
/**
|
|
* Shuffle the contents of an array.
|
|
* @param arr
|
|
* @param offset
|
|
*/
|
|
export function shuffleArr<T>(arr: T[], offset: number): T[] {
|
|
return arr.map((_, i) => arr[(i + offset) % arr.length])
|
|
}
|
|
|
|
/**
|
|
* Deep compare two arrays.
|
|
* @param a
|
|
* @param b
|
|
*/
|
|
export function deepCompareArrays<T>(a: T[], b: T[]): boolean {
|
|
if (a?.length !== b?.length) return false
|
|
return deepCompare(a, b)
|
|
}
|
|
|
|
/**
|
|
* Deep compare any values.
|
|
* @param a
|
|
* @param b
|
|
*/
|
|
export function deepCompare<T>(a: T, b: T): boolean {
|
|
return a === b || JSON.stringify(a) === JSON.stringify(b)
|
|
}
|
|
|
|
/**
|
|
* Find whether two arrays intersect.
|
|
* @param a
|
|
* @param b
|
|
* @param fn An optional function to apply to the items of a; will check if b includes the result.
|
|
*/
|
|
export function arrsIntersect<T, K>(
|
|
a: T[],
|
|
b: K[],
|
|
fn?: (item: K) => T
|
|
): boolean
|
|
export function arrsIntersect<T>(a: T[], b: T[]): boolean
|
|
export function arrsIntersect<T>(
|
|
a: T[],
|
|
b: unknown[],
|
|
fn?: (item: unknown) => T
|
|
): boolean {
|
|
return a.some((item) => b.includes(fn ? fn(item) : item))
|
|
}
|
|
|
|
/**
|
|
* Get the unique values from an array of strings or numbers.
|
|
* @param items
|
|
*/
|
|
export function uniqueArray<T extends string | number>(...items: T[]): T[] {
|
|
return Array.from(new Set(items).values())
|
|
}
|
|
|
|
/**
|
|
* Convert a set to an array.
|
|
* @param set
|
|
*/
|
|
export function setToArray<T>(set: Set<T>): T[] {
|
|
return Array.from(set.values())
|
|
}
|
|
|
|
/* -------------------- Hit Tests ------------------- */
|
|
|
|
/**
|
|
* Get whether a point is inside of a circle.
|
|
* @param A
|
|
* @param b
|
|
* @returns
|
|
*/
|
|
export function pointInCircle(A: number[], C: number[], r: number): boolean {
|
|
return vec.dist(A, C) <= r
|
|
}
|
|
|
|
/**
|
|
* Get whether a point is inside of an ellipse.
|
|
* @param point
|
|
* @param center
|
|
* @param rx
|
|
* @param ry
|
|
* @param rotation
|
|
* @returns
|
|
*/
|
|
export function pointInEllipse(
|
|
A: number[],
|
|
C: number[],
|
|
rx: number,
|
|
ry: number,
|
|
rotation = 0
|
|
): boolean {
|
|
rotation = rotation || 0
|
|
const cos = Math.cos(rotation)
|
|
const sin = Math.sin(rotation)
|
|
const delta = vec.sub(A, C)
|
|
const tdx = cos * delta[0] + sin * delta[1]
|
|
const tdy = sin * delta[0] - cos * delta[1]
|
|
|
|
return (tdx * tdx) / (rx * rx) + (tdy * tdy) / (ry * ry) <= 1
|
|
}
|
|
|
|
/**
|
|
* Get whether a point is inside of a rectangle.
|
|
* @param A
|
|
* @param point
|
|
* @param size
|
|
*/
|
|
export function pointInRect(
|
|
A: number[],
|
|
point: number[],
|
|
size: number[]
|
|
): boolean {
|
|
return !(
|
|
point[0] < point[0] ||
|
|
point[0] > point[0] + size[0] ||
|
|
point[1] < point[1] ||
|
|
point[1] > point[1] + size[1]
|
|
)
|
|
}
|
|
|
|
/* --------------------- Bounds --------------------- */
|
|
|
|
/**
|
|
* Get whether a point is inside of a bounds.
|
|
* @param A
|
|
* @param b
|
|
* @returns
|
|
*/
|
|
export function pointInBounds(A: number[], b: Bounds): boolean {
|
|
return !(A[0] < b.minX || A[0] > b.maxX || A[1] < b.minY || A[1] > b.maxY)
|
|
}
|
|
|
|
/**
|
|
* Get whether two bounds collide.
|
|
* @param a Bounds
|
|
* @param b Bounds
|
|
* @returns
|
|
*/
|
|
export function boundsCollide(a: Bounds, b: Bounds): boolean {
|
|
return !(
|
|
a.maxX < b.minX ||
|
|
a.minX > b.maxX ||
|
|
a.maxY < b.minY ||
|
|
a.minY > b.maxY
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Get whether the bounds of A contain the bounds of B. A perfect match will return true.
|
|
* @param a Bounds
|
|
* @param b Bounds
|
|
* @returns
|
|
*/
|
|
export function boundsContain(a: Bounds, b: Bounds): boolean {
|
|
return (
|
|
a.minX < b.minX && a.minY < b.minY && a.maxY > b.maxY && a.maxX > b.maxX
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Get whether the bounds of A are contained by the bounds of B.
|
|
* @param a Bounds
|
|
* @param b Bounds
|
|
* @returns
|
|
*/
|
|
export function boundsContained(a: Bounds, b: Bounds): boolean {
|
|
return boundsContain(b, a)
|
|
}
|
|
|
|
/**
|
|
* Get whether a set of points are all contained by a bounding box.
|
|
* @returns
|
|
*/
|
|
export function boundsContainPolygon(a: Bounds, points: number[][]): boolean {
|
|
return points.every((point) => pointInBounds(point, a))
|
|
}
|
|
|
|
/**
|
|
* Get whether a polygon collides a bounding box.
|
|
* @param points
|
|
* @param b
|
|
*/
|
|
export function boundsCollidePolygon(a: Bounds, points: number[][]): boolean {
|
|
return intersectPolygonBounds(points, a).length > 0
|
|
}
|
|
|
|
/**
|
|
* Get whether two bounds are identical.
|
|
* @param a Bounds
|
|
* @param b Bounds
|
|
* @returns
|
|
*/
|
|
export function boundsAreEqual(a: Bounds, b: Bounds): boolean {
|
|
return !(
|
|
b.maxX !== a.maxX ||
|
|
b.minX !== a.minX ||
|
|
b.maxY !== a.maxY ||
|
|
b.minY !== a.minY
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Find a bounding box from an array of points.
|
|
* @param points
|
|
* @param rotation (optional) The bounding box's rotation.
|
|
*/
|
|
export function getBoundsFromPoints(points: number[][], rotation = 0): Bounds {
|
|
let minX = Infinity
|
|
let minY = Infinity
|
|
let maxX = -Infinity
|
|
let maxY = -Infinity
|
|
|
|
if (points.length < 2) {
|
|
minX = 0
|
|
minY = 0
|
|
maxX = 1
|
|
maxY = 1
|
|
} else {
|
|
for (const [x, y] of points) {
|
|
minX = Math.min(x, minX)
|
|
minY = Math.min(y, minY)
|
|
maxX = Math.max(x, maxX)
|
|
maxY = Math.max(y, maxY)
|
|
}
|
|
}
|
|
|
|
if (rotation !== 0) {
|
|
return getBoundsFromPoints(
|
|
points.map((pt) =>
|
|
vec.rotWith(pt, [(minX + maxX) / 2, (minY + maxY) / 2], rotation)
|
|
)
|
|
)
|
|
}
|
|
|
|
return {
|
|
minX,
|
|
minY,
|
|
maxX,
|
|
maxY,
|
|
width: Math.max(1, maxX - minX),
|
|
height: Math.max(1, maxY - minY),
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Move a bounding box without recalculating it.
|
|
* @param bounds
|
|
* @param delta
|
|
* @returns
|
|
*/
|
|
export function translateBounds(bounds: Bounds, delta: number[]): Bounds {
|
|
return {
|
|
minX: bounds.minX + delta[0],
|
|
minY: bounds.minY + delta[1],
|
|
maxX: bounds.maxX + delta[0],
|
|
maxY: bounds.maxY + delta[1],
|
|
width: bounds.width,
|
|
height: bounds.height,
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Rotate a bounding box.
|
|
* @param bounds
|
|
* @param center
|
|
* @param rotation
|
|
*/
|
|
export function rotateBounds(
|
|
bounds: Bounds,
|
|
center: number[],
|
|
rotation: number
|
|
): Bounds {
|
|
const [minX, minY] = vec.rotWith([bounds.minX, bounds.minY], center, rotation)
|
|
const [maxX, maxY] = vec.rotWith([bounds.maxX, bounds.maxY], center, rotation)
|
|
|
|
return {
|
|
minX,
|
|
minY,
|
|
maxX,
|
|
maxY,
|
|
width: bounds.width,
|
|
height: bounds.height,
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the rotated bounds of an ellipse.
|
|
* @param x
|
|
* @param y
|
|
* @param rx
|
|
* @param ry
|
|
* @param rotation
|
|
*/
|
|
export function getRotatedEllipseBounds(
|
|
x: number,
|
|
y: number,
|
|
rx: number,
|
|
ry: number,
|
|
rotation: number
|
|
): Bounds {
|
|
const c = Math.cos(rotation)
|
|
const s = Math.sin(rotation)
|
|
const w = Math.hypot(rx * c, ry * s)
|
|
const h = Math.hypot(rx * s, ry * c)
|
|
|
|
return {
|
|
minX: x + rx - w,
|
|
minY: y + ry - h,
|
|
maxX: x + rx + w,
|
|
maxY: y + ry + h,
|
|
width: w * 2,
|
|
height: h * 2,
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get a bounding box that includes two bounding boxes.
|
|
* @param a Bounding box
|
|
* @param b Bounding box
|
|
* @returns
|
|
*/
|
|
export function getExpandedBounds(a: Bounds, b: Bounds): Bounds {
|
|
const minX = Math.min(a.minX, b.minX),
|
|
minY = Math.min(a.minY, b.minY),
|
|
maxX = Math.max(a.maxX, b.maxX),
|
|
maxY = Math.max(a.maxY, b.maxY),
|
|
width = Math.abs(maxX - minX),
|
|
height = Math.abs(maxY - minY)
|
|
|
|
return { minX, minY, maxX, maxY, width, height }
|
|
}
|
|
|
|
/**
|
|
* Get the common bounds of a group of bounds.
|
|
* @returns
|
|
*/
|
|
export function getCommonBounds(...b: Bounds[]): Bounds {
|
|
if (b.length < 2) return b[0]
|
|
|
|
let bounds = b[0]
|
|
|
|
for (let i = 1; i < b.length; i++) {
|
|
bounds = getExpandedBounds(bounds, b[i])
|
|
}
|
|
|
|
return bounds
|
|
}
|
|
|
|
export function getRotatedCorners(b: Bounds, rotation: number): number[][] {
|
|
const center = [b.minX + b.width / 2, b.minY + b.height / 2]
|
|
|
|
return [
|
|
[b.minX, b.minY],
|
|
[b.maxX, b.minY],
|
|
[b.maxX, b.maxY],
|
|
[b.minX, b.maxY],
|
|
].map((point) => vec.rotWith(point, center, rotation))
|
|
}
|
|
|
|
export function getTransformedBoundingBox(
|
|
bounds: Bounds,
|
|
handle: Corner | Edge | 'center',
|
|
delta: number[],
|
|
rotation = 0,
|
|
isAspectRatioLocked = false
|
|
): Bounds & { scaleX: number; scaleY: number } {
|
|
// Create top left and bottom right corners.
|
|
const [ax0, ay0] = [bounds.minX, bounds.minY]
|
|
const [ax1, ay1] = [bounds.maxX, bounds.maxY]
|
|
|
|
// Create a second set of corners for the new box.
|
|
let [bx0, by0] = [bounds.minX, bounds.minY]
|
|
let [bx1, by1] = [bounds.maxX, bounds.maxY]
|
|
|
|
// If the drag is on the center, just translate the bounds.
|
|
if (handle === 'center') {
|
|
return {
|
|
minX: bx0 + delta[0],
|
|
minY: by0 + delta[1],
|
|
maxX: bx1 + delta[0],
|
|
maxY: by1 + delta[1],
|
|
width: bx1 - bx0,
|
|
height: by1 - by0,
|
|
scaleX: 1,
|
|
scaleY: 1,
|
|
}
|
|
}
|
|
|
|
// Counter rotate the delta. This lets us make changes as if
|
|
// the (possibly rotated) boxes were axis aligned.
|
|
const [dx, dy] = vec.rot(delta, -rotation)
|
|
|
|
/*
|
|
1. Delta
|
|
|
|
Use the delta to adjust the new box by changing its corners.
|
|
The dragging handle (corner or edge) will determine which
|
|
corners should change.
|
|
*/
|
|
switch (handle) {
|
|
case Edge.Top:
|
|
case Corner.TopLeft:
|
|
case Corner.TopRight: {
|
|
by0 += dy
|
|
break
|
|
}
|
|
case Edge.Bottom:
|
|
case Corner.BottomLeft:
|
|
case Corner.BottomRight: {
|
|
by1 += dy
|
|
break
|
|
}
|
|
}
|
|
|
|
switch (handle) {
|
|
case Edge.Left:
|
|
case Corner.TopLeft:
|
|
case Corner.BottomLeft: {
|
|
bx0 += dx
|
|
break
|
|
}
|
|
case Edge.Right:
|
|
case Corner.TopRight:
|
|
case Corner.BottomRight: {
|
|
bx1 += dx
|
|
break
|
|
}
|
|
}
|
|
|
|
const aw = ax1 - ax0
|
|
const ah = ay1 - ay0
|
|
|
|
const scaleX = (bx1 - bx0) / aw
|
|
const scaleY = (by1 - by0) / ah
|
|
|
|
const flipX = scaleX < 0
|
|
const flipY = scaleY < 0
|
|
|
|
const bw = Math.abs(bx1 - bx0)
|
|
const bh = Math.abs(by1 - by0)
|
|
|
|
/*
|
|
2. Aspect ratio
|
|
|
|
If the aspect ratio is locked, adjust the corners so that the
|
|
new box's aspect ratio matches the original aspect ratio.
|
|
*/
|
|
|
|
if (isAspectRatioLocked) {
|
|
const ar = aw / ah
|
|
const isTall = ar < bw / bh
|
|
const tw = bw * (scaleY < 0 ? 1 : -1) * (1 / ar)
|
|
const th = bh * (scaleX < 0 ? 1 : -1) * ar
|
|
|
|
switch (handle) {
|
|
case Corner.TopLeft: {
|
|
if (isTall) by0 = by1 + tw
|
|
else bx0 = bx1 + th
|
|
break
|
|
}
|
|
case Corner.TopRight: {
|
|
if (isTall) by0 = by1 + tw
|
|
else bx1 = bx0 - th
|
|
break
|
|
}
|
|
case Corner.BottomRight: {
|
|
if (isTall) by1 = by0 - tw
|
|
else bx1 = bx0 - th
|
|
break
|
|
}
|
|
case Corner.BottomLeft: {
|
|
if (isTall) by1 = by0 - tw
|
|
else bx0 = bx1 + th
|
|
break
|
|
}
|
|
case Edge.Bottom:
|
|
case Edge.Top: {
|
|
const m = (bx0 + bx1) / 2
|
|
const w = bh * ar
|
|
bx0 = m - w / 2
|
|
bx1 = m + w / 2
|
|
break
|
|
}
|
|
case Edge.Left:
|
|
case Edge.Right: {
|
|
const m = (by0 + by1) / 2
|
|
const h = bw / ar
|
|
by0 = m - h / 2
|
|
by1 = m + h / 2
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
3. Rotation
|
|
|
|
If the bounds are rotated, get a vector from the rotated anchor
|
|
corner in the inital bounds to the rotated anchor corner in the
|
|
result's bounds. Subtract this vector from the result's corners,
|
|
so that the two anchor points (initial and result) will be equal.
|
|
*/
|
|
|
|
if (rotation % (Math.PI * 2) !== 0) {
|
|
let cv = [0, 0]
|
|
|
|
const c0 = vec.med([ax0, ay0], [ax1, ay1])
|
|
const c1 = vec.med([bx0, by0], [bx1, by1])
|
|
|
|
switch (handle) {
|
|
case Corner.TopLeft: {
|
|
cv = vec.sub(
|
|
vec.rotWith([bx1, by1], c1, rotation),
|
|
vec.rotWith([ax1, ay1], c0, rotation)
|
|
)
|
|
break
|
|
}
|
|
case Corner.TopRight: {
|
|
cv = vec.sub(
|
|
vec.rotWith([bx0, by1], c1, rotation),
|
|
vec.rotWith([ax0, ay1], c0, rotation)
|
|
)
|
|
break
|
|
}
|
|
case Corner.BottomRight: {
|
|
cv = vec.sub(
|
|
vec.rotWith([bx0, by0], c1, rotation),
|
|
vec.rotWith([ax0, ay0], c0, rotation)
|
|
)
|
|
break
|
|
}
|
|
case Corner.BottomLeft: {
|
|
cv = vec.sub(
|
|
vec.rotWith([bx1, by0], c1, rotation),
|
|
vec.rotWith([ax1, ay0], c0, rotation)
|
|
)
|
|
break
|
|
}
|
|
case Edge.Top: {
|
|
cv = vec.sub(
|
|
vec.rotWith(vec.med([bx0, by1], [bx1, by1]), c1, rotation),
|
|
vec.rotWith(vec.med([ax0, ay1], [ax1, ay1]), c0, rotation)
|
|
)
|
|
break
|
|
}
|
|
case Edge.Left: {
|
|
cv = vec.sub(
|
|
vec.rotWith(vec.med([bx1, by0], [bx1, by1]), c1, rotation),
|
|
vec.rotWith(vec.med([ax1, ay0], [ax1, ay1]), c0, rotation)
|
|
)
|
|
break
|
|
}
|
|
case Edge.Bottom: {
|
|
cv = vec.sub(
|
|
vec.rotWith(vec.med([bx0, by0], [bx1, by0]), c1, rotation),
|
|
vec.rotWith(vec.med([ax0, ay0], [ax1, ay0]), c0, rotation)
|
|
)
|
|
break
|
|
}
|
|
case Edge.Right: {
|
|
cv = vec.sub(
|
|
vec.rotWith(vec.med([bx0, by0], [bx0, by1]), c1, rotation),
|
|
vec.rotWith(vec.med([ax0, ay0], [ax0, ay1]), c0, rotation)
|
|
)
|
|
break
|
|
}
|
|
}
|
|
|
|
;[bx0, by0] = vec.sub([bx0, by0], cv)
|
|
;[bx1, by1] = vec.sub([bx1, by1], cv)
|
|
}
|
|
|
|
/*
|
|
4. Flips
|
|
|
|
If the axes are flipped (e.g. if the right edge has been dragged
|
|
left past the initial left edge) then swap points on that axis.
|
|
*/
|
|
|
|
if (bx1 < bx0) {
|
|
;[bx1, bx0] = [bx0, bx1]
|
|
}
|
|
|
|
if (by1 < by0) {
|
|
;[by1, by0] = [by0, by1]
|
|
}
|
|
|
|
return {
|
|
minX: bx0,
|
|
minY: by0,
|
|
maxX: bx1,
|
|
maxY: by1,
|
|
width: bx1 - bx0,
|
|
height: by1 - by0,
|
|
scaleX: ((bx1 - bx0) / (ax1 - ax0 || 1)) * (flipX ? -1 : 1),
|
|
scaleY: ((by1 - by0) / (ay1 - ay0 || 1)) * (flipY ? -1 : 1),
|
|
}
|
|
}
|
|
|
|
export function getTransformAnchor(
|
|
type: Edge | Corner,
|
|
isFlippedX: boolean,
|
|
isFlippedY: boolean
|
|
): Corner | Edge {
|
|
let anchor: Corner | Edge = type
|
|
|
|
// Change corner anchors if flipped
|
|
switch (type) {
|
|
case Corner.TopLeft: {
|
|
if (isFlippedX && isFlippedY) {
|
|
anchor = Corner.BottomRight
|
|
} else if (isFlippedX) {
|
|
anchor = Corner.TopRight
|
|
} else if (isFlippedY) {
|
|
anchor = Corner.BottomLeft
|
|
} else {
|
|
anchor = Corner.BottomRight
|
|
}
|
|
break
|
|
}
|
|
case Corner.TopRight: {
|
|
if (isFlippedX && isFlippedY) {
|
|
anchor = Corner.BottomLeft
|
|
} else if (isFlippedX) {
|
|
anchor = Corner.TopLeft
|
|
} else if (isFlippedY) {
|
|
anchor = Corner.BottomRight
|
|
} else {
|
|
anchor = Corner.BottomLeft
|
|
}
|
|
break
|
|
}
|
|
case Corner.BottomRight: {
|
|
if (isFlippedX && isFlippedY) {
|
|
anchor = Corner.TopLeft
|
|
} else if (isFlippedX) {
|
|
anchor = Corner.BottomLeft
|
|
} else if (isFlippedY) {
|
|
anchor = Corner.TopRight
|
|
} else {
|
|
anchor = Corner.TopLeft
|
|
}
|
|
break
|
|
}
|
|
case Corner.BottomLeft: {
|
|
if (isFlippedX && isFlippedY) {
|
|
anchor = Corner.TopRight
|
|
} else if (isFlippedX) {
|
|
anchor = Corner.BottomRight
|
|
} else if (isFlippedY) {
|
|
anchor = Corner.TopLeft
|
|
} else {
|
|
anchor = Corner.TopRight
|
|
}
|
|
break
|
|
}
|
|
}
|
|
|
|
return anchor
|
|
}
|
|
|
|
/**
|
|
* Get the relative bounds (usually a child) within a transformed bounding box.
|
|
* @param bounds
|
|
* @param initialBounds
|
|
* @param initialShapeBounds
|
|
* @param isFlippedX
|
|
* @param isFlippedY
|
|
*/
|
|
export function getRelativeTransformedBoundingBox(
|
|
bounds: Bounds,
|
|
initialBounds: Bounds,
|
|
initialShapeBounds: Bounds,
|
|
isFlippedX: boolean,
|
|
isFlippedY: boolean
|
|
): Bounds {
|
|
const nx =
|
|
(isFlippedX
|
|
? initialBounds.maxX - initialShapeBounds.maxX
|
|
: initialShapeBounds.minX - initialBounds.minX) / initialBounds.width
|
|
|
|
const ny =
|
|
(isFlippedY
|
|
? initialBounds.maxY - initialShapeBounds.maxY
|
|
: initialShapeBounds.minY - initialBounds.minY) / initialBounds.height
|
|
|
|
const nw = initialShapeBounds.width / initialBounds.width
|
|
const nh = initialShapeBounds.height / initialBounds.height
|
|
|
|
const minX = bounds.minX + bounds.width * nx
|
|
const minY = bounds.minY + bounds.height * ny
|
|
const width = bounds.width * nw
|
|
const height = bounds.height * nh
|
|
|
|
return {
|
|
minX,
|
|
minY,
|
|
maxX: minX + width,
|
|
maxY: minY + height,
|
|
width,
|
|
height,
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the size of a rotated box.
|
|
* @param size : ;
|
|
* @param rotation
|
|
*/
|
|
export function getRotatedSize(size: number[], rotation: number): number[] {
|
|
const center = vec.div(size, 2)
|
|
|
|
const points = [[0, 0], [size[0], 0], size, [0, size[1]]].map((point) =>
|
|
vec.rotWith(point, center, rotation)
|
|
)
|
|
|
|
const bounds = getBoundsFromPoints(points)
|
|
|
|
return [bounds.width, bounds.height]
|
|
}
|
|
|
|
/**
|
|
* Get the center of a bounding box.
|
|
* @param bounds
|
|
*/
|
|
export function getBoundsCenter(bounds: Bounds): number[] {
|
|
return [bounds.minX + bounds.width / 2, bounds.minY + bounds.height / 2]
|
|
}
|
|
|
|
/* --------------- Circles and Angles --------------- */
|
|
|
|
/**
|
|
* Get the outer of between a circle and a point.
|
|
* @param C The circle's center.
|
|
* @param r The circle's radius.
|
|
* @param P The point.
|
|
* @param side
|
|
*/
|
|
export function getCircleTangentToPoint(
|
|
C: number[],
|
|
r: number,
|
|
P: number[],
|
|
side: number
|
|
): number[] {
|
|
const B = vec.lrp(C, P, 0.5),
|
|
r1 = vec.dist(C, B),
|
|
delta = vec.sub(B, C),
|
|
d = vec.len(delta)
|
|
|
|
if (!(d <= r + r1 && d >= Math.abs(r - r1))) {
|
|
return
|
|
}
|
|
|
|
const a = (r * r - r1 * r1 + d * d) / (2.0 * d),
|
|
n = 1 / d,
|
|
p = vec.add(C, vec.mul(delta, a * n)),
|
|
h = Math.sqrt(r * r - a * a),
|
|
k = vec.mul(vec.per(delta), h * n)
|
|
|
|
return side === 0 ? vec.add(p, k) : vec.sub(p, k)
|
|
}
|
|
|
|
/**
|
|
* Get outer tangents of two circles.
|
|
* @param x0
|
|
* @param y0
|
|
* @param r0
|
|
* @param x1
|
|
* @param y1
|
|
* @param r1
|
|
* @returns [lx0, ly0, lx1, ly1, rx0, ry0, rx1, ry1]
|
|
*/
|
|
export function getOuterTangentsOfCircles(
|
|
C0: number[],
|
|
r0: number,
|
|
C1: number[],
|
|
r1: number
|
|
): number[][] {
|
|
const a0 = vec.angle(C0, C1)
|
|
const d = vec.dist(C0, C1)
|
|
|
|
// Circles are overlapping, no tangents
|
|
if (d < Math.abs(r1 - r0)) return
|
|
|
|
const a1 = Math.acos((r0 - r1) / d),
|
|
t0 = a0 + a1,
|
|
t1 = a0 - a1
|
|
|
|
return [
|
|
[C0[0] + r0 * Math.cos(t1), C0[1] + r0 * Math.sin(t1)],
|
|
[C1[0] + r1 * Math.cos(t1), C1[1] + r1 * Math.sin(t1)],
|
|
[C0[0] + r0 * Math.cos(t0), C0[1] + r0 * Math.sin(t0)],
|
|
[C1[0] + r1 * Math.cos(t0), C1[1] + r1 * Math.sin(t0)],
|
|
]
|
|
}
|
|
|
|
/**
|
|
* Get the closest point on the perimeter of a circle to a given point.
|
|
* @param C The circle's center.
|
|
* @param r The circle's radius.
|
|
* @param P The point.
|
|
*/
|
|
export function getClosestPointOnCircle(
|
|
C: number[],
|
|
r: number,
|
|
P: number[]
|
|
): number[] {
|
|
const v = vec.sub(C, P)
|
|
return vec.sub(C, vec.mul(vec.div(v, vec.len(v)), r))
|
|
}
|
|
|
|
function det(
|
|
a: number,
|
|
b: number,
|
|
c: number,
|
|
d: number,
|
|
e: number,
|
|
f: number,
|
|
g: number,
|
|
h: number,
|
|
i: number
|
|
): number {
|
|
return a * e * i + b * f * g + c * d * h - a * f * h - b * d * i - c * e * g
|
|
}
|
|
|
|
/**
|
|
* Get a circle from three points.
|
|
* @param A
|
|
* @param B
|
|
* @param C
|
|
* @returns [x, y, r]
|
|
*/
|
|
export function circleFromThreePoints(
|
|
A: number[],
|
|
B: number[],
|
|
C: number[]
|
|
): number[] {
|
|
const a = det(A[0], A[1], 1, B[0], B[1], 1, C[0], C[1], 1)
|
|
|
|
const bx = -det(
|
|
A[0] * A[0] + A[1] * A[1],
|
|
A[1],
|
|
1,
|
|
B[0] * B[0] + B[1] * B[1],
|
|
B[1],
|
|
1,
|
|
C[0] * C[0] + C[1] * C[1],
|
|
C[1],
|
|
1
|
|
)
|
|
const by = det(
|
|
A[0] * A[0] + A[1] * A[1],
|
|
A[0],
|
|
1,
|
|
B[0] * B[0] + B[1] * B[1],
|
|
B[0],
|
|
1,
|
|
C[0] * C[0] + C[1] * C[1],
|
|
C[0],
|
|
1
|
|
)
|
|
const c = -det(
|
|
A[0] * A[0] + A[1] * A[1],
|
|
A[0],
|
|
A[1],
|
|
B[0] * B[0] + B[1] * B[1],
|
|
B[0],
|
|
B[1],
|
|
C[0] * C[0] + C[1] * C[1],
|
|
C[0],
|
|
C[1]
|
|
)
|
|
|
|
const x = -bx / (2 * a)
|
|
const y = -by / (2 * a)
|
|
const r = Math.sqrt(bx * bx + by * by - 4 * a * c) / (2 * Math.abs(a))
|
|
|
|
return [x, y, r]
|
|
}
|
|
|
|
/**
|
|
* Find the approximate perimeter of an ellipse.
|
|
* @param rx
|
|
* @param ry
|
|
*/
|
|
export function perimeterOfEllipse(rx: number, ry: number): number {
|
|
const h = Math.pow(rx - ry, 2) / Math.pow(rx + ry, 2)
|
|
const p = Math.PI * (rx + ry) * (1 + (3 * h) / (10 + Math.sqrt(4 - 3 * h)))
|
|
return p
|
|
}
|
|
|
|
/**
|
|
* Get the short angle distance between two angles.
|
|
* @param a0
|
|
* @param a1
|
|
*/
|
|
export function shortAngleDist(a0: number, a1: number): number {
|
|
const max = Math.PI * 2
|
|
const da = (a1 - a0) % max
|
|
return ((2 * da) % max) - da
|
|
}
|
|
|
|
/**
|
|
* Get the long angle distance between two angles.
|
|
* @param a0
|
|
* @param a1
|
|
*/
|
|
export function longAngleDist(a0: number, a1: number): number {
|
|
return Math.PI * 2 - shortAngleDist(a0, a1)
|
|
}
|
|
|
|
/**
|
|
* Interpolate an angle between two angles.
|
|
* @param a0
|
|
* @param a1
|
|
* @param t
|
|
*/
|
|
export function lerpAngles(a0: number, a1: number, t: number): number {
|
|
return a0 + shortAngleDist(a0, a1) * t
|
|
}
|
|
|
|
/**
|
|
* Get the short distance between two angles.
|
|
* @param a0
|
|
* @param a1
|
|
*/
|
|
export function angleDelta(a0: number, a1: number): number {
|
|
return shortAngleDist(a0, a1)
|
|
}
|
|
|
|
/**
|
|
* Get the "sweep" or short distance between two points on a circle's perimeter.
|
|
* @param C
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function getSweep(C: number[], A: number[], B: number[]): number {
|
|
return angleDelta(vec.angle(C, A), vec.angle(C, B))
|
|
}
|
|
|
|
/**
|
|
* Rotate a point around a center.
|
|
* @param x The x-axis coordinate of the point.
|
|
* @param y The y-axis coordinate of the point.
|
|
* @param cx The x-axis coordinate of the point to rotate round.
|
|
* @param cy The y-axis coordinate of the point to rotate round.
|
|
* @param angle The distance (in radians) to rotate.
|
|
*/
|
|
export function rotatePoint(A: number[], B: number[], angle: number): number[] {
|
|
const s = Math.sin(angle)
|
|
const c = Math.cos(angle)
|
|
|
|
const px = A[0] - B[0]
|
|
const py = A[1] - B[1]
|
|
|
|
const nx = px * c - py * s
|
|
const ny = px * s + py * c
|
|
|
|
return [nx + B[0], ny + B[1]]
|
|
}
|
|
|
|
/**
|
|
* Clamp radians within 0 and 2PI
|
|
* @param r
|
|
*/
|
|
export function clampRadians(r: number): number {
|
|
return (Math.PI * 2 + r) % (Math.PI * 2)
|
|
}
|
|
|
|
/**
|
|
* Clamp rotation to even segments.
|
|
* @param r
|
|
* @param segments
|
|
*/
|
|
export function clampToRotationToSegments(r: number, segments: number): number {
|
|
const seg = (Math.PI * 2) / segments
|
|
return Math.floor((clampRadians(r) + seg / 2) / seg) * seg
|
|
}
|
|
|
|
/**
|
|
* Is angle c between angles a and b?
|
|
* @param a
|
|
* @param b
|
|
* @param c
|
|
*/
|
|
export function isAngleBetween(a: number, b: number, c: number): boolean {
|
|
if (c === a || c === b) return true
|
|
const PI2 = Math.PI * 2
|
|
const AB = (b - a + PI2) % PI2
|
|
const AC = (c - a + PI2) % PI2
|
|
return AB <= Math.PI !== AC > AB
|
|
}
|
|
|
|
/**
|
|
* Convert degrees to radians.
|
|
* @param d
|
|
*/
|
|
export function degreesToRadians(d: number): number {
|
|
return (d * Math.PI) / 180
|
|
}
|
|
|
|
/**
|
|
* Convert radians to degrees.
|
|
* @param r
|
|
*/
|
|
export function radiansToDegrees(r: number): number {
|
|
return (r * 180) / Math.PI
|
|
}
|
|
|
|
/**
|
|
* Get the length of an arc between two points on a circle's perimeter.
|
|
* @param C
|
|
* @param r
|
|
* @param A
|
|
* @param B
|
|
*/
|
|
export function getArcLength(
|
|
C: number[],
|
|
r: number,
|
|
A: number[],
|
|
B: number[]
|
|
): number {
|
|
const sweep = getSweep(C, A, B)
|
|
return r * (2 * Math.PI) * (sweep / (2 * Math.PI))
|
|
}
|
|
|
|
/**
|
|
* Get a dash offset for an arc, based on its length.
|
|
* @param C
|
|
* @param r
|
|
* @param A
|
|
* @param B
|
|
* @param step
|
|
*/
|
|
export function getArcDashOffset(
|
|
C: number[],
|
|
r: number,
|
|
A: number[],
|
|
B: number[],
|
|
step: number
|
|
): number {
|
|
const del0 = getSweep(C, A, B)
|
|
const len0 = getArcLength(C, r, A, B)
|
|
const off0 = del0 < 0 ? len0 : 2 * Math.PI * C[2] - len0
|
|
return -off0 / 2 + step
|
|
}
|
|
|
|
/**
|
|
* Get a dash offset for an ellipse, based on its length.
|
|
* @param A
|
|
* @param step
|
|
*/
|
|
export function getEllipseDashOffset(A: number[], step: number): number {
|
|
const c = 2 * Math.PI * A[2]
|
|
return -c / 2 + -step
|
|
}
|
|
|
|
/* --------------- Curves and Splines --------------- */
|
|
|
|
/**
|
|
* Get bezier curve segments that pass through an array of points.
|
|
* @param points
|
|
* @param tension
|
|
*/
|
|
export function getBezierCurveSegments(
|
|
points: number[][],
|
|
tension = 0.4
|
|
): BezierCurveSegment[] {
|
|
const len = points.length,
|
|
cpoints: number[][] = [...points]
|
|
|
|
if (len < 2) {
|
|
throw Error('Curve must have at least two points.')
|
|
}
|
|
|
|
for (let i = 1; i < len - 1; i++) {
|
|
const p0 = points[i - 1],
|
|
p1 = points[i],
|
|
p2 = points[i + 1]
|
|
|
|
const pdx = p2[0] - p0[0],
|
|
pdy = p2[1] - p0[1],
|
|
pd = Math.hypot(pdx, pdy),
|
|
nx = pdx / pd, // normalized x
|
|
ny = pdy / pd, // normalized y
|
|
dp = Math.hypot(p1[0] - p0[0], p1[1] - p0[1]), // Distance to previous
|
|
dn = Math.hypot(p1[0] - p2[0], p1[1] - p2[1]) // Distance to next
|
|
|
|
cpoints[i] = [
|
|
// tangent start
|
|
p1[0] - nx * dp * tension,
|
|
p1[1] - ny * dp * tension,
|
|
// tangent end
|
|
p1[0] + nx * dn * tension,
|
|
p1[1] + ny * dn * tension,
|
|
// normal
|
|
nx,
|
|
ny,
|
|
]
|
|
}
|
|
|
|
// TODO: Reflect the nearest control points, not average them
|
|
const d0 = Math.hypot(points[0][0] + cpoints[1][0])
|
|
cpoints[0][2] = (points[0][0] + cpoints[1][0]) / 2
|
|
cpoints[0][3] = (points[0][1] + cpoints[1][1]) / 2
|
|
cpoints[0][4] = (cpoints[1][0] - points[0][0]) / d0
|
|
cpoints[0][5] = (cpoints[1][1] - points[0][1]) / d0
|
|
|
|
const d1 = Math.hypot(points[len - 1][1] + cpoints[len - 1][1])
|
|
cpoints[len - 1][0] = (points[len - 1][0] + cpoints[len - 2][2]) / 2
|
|
cpoints[len - 1][1] = (points[len - 1][1] + cpoints[len - 2][3]) / 2
|
|
cpoints[len - 1][4] = (cpoints[len - 2][2] - points[len - 1][0]) / -d1
|
|
cpoints[len - 1][5] = (cpoints[len - 2][3] - points[len - 1][1]) / -d1
|
|
|
|
const results: BezierCurveSegment[] = []
|
|
|
|
for (let i = 1; i < cpoints.length; i++) {
|
|
results.push({
|
|
start: points[i - 1].slice(0, 2),
|
|
tangentStart: cpoints[i - 1].slice(2, 4),
|
|
normalStart: cpoints[i - 1].slice(4, 6),
|
|
pressureStart: 2 + ((i - 1) % 2 === 0 ? 1.5 : 0),
|
|
end: points[i].slice(0, 2),
|
|
tangentEnd: cpoints[i].slice(0, 2),
|
|
normalEnd: cpoints[i].slice(4, 6),
|
|
pressureEnd: 2 + (i % 2 === 0 ? 1.5 : 0),
|
|
})
|
|
}
|
|
|
|
return results
|
|
}
|
|
|
|
/**
|
|
* Find a point along a curve segment, via pomax.
|
|
* @param t
|
|
* @param points [cpx1, cpy1, cpx2, cpy2, px, py][]
|
|
*/
|
|
export function computePointOnCurve(t: number, points: number[][]): number[] {
|
|
// shortcuts
|
|
if (t === 0) {
|
|
return points[0]
|
|
}
|
|
|
|
const order = points.length - 1
|
|
|
|
if (t === 1) {
|
|
return points[order]
|
|
}
|
|
|
|
const mt = 1 - t
|
|
let p = points // constant?
|
|
|
|
if (order === 0) {
|
|
return points[0]
|
|
} // linear?
|
|
|
|
if (order === 1) {
|
|
return [mt * p[0][0] + t * p[1][0], mt * p[0][1] + t * p[1][1]]
|
|
} // quadratic/cubic curve?
|
|
|
|
if (order < 4) {
|
|
const mt2 = mt * mt,
|
|
t2 = t * t
|
|
|
|
let a: number,
|
|
b: number,
|
|
c: number,
|
|
d = 0
|
|
|
|
if (order === 2) {
|
|
p = [p[0], p[1], p[2], [0, 0]]
|
|
a = mt2
|
|
b = mt * t * 2
|
|
c = t2
|
|
} else if (order === 3) {
|
|
a = mt2 * mt
|
|
b = mt2 * t * 3
|
|
c = mt * t2 * 3
|
|
d = t * t2
|
|
}
|
|
|
|
return [
|
|
a * p[0][0] + b * p[1][0] + c * p[2][0] + d * p[3][0],
|
|
a * p[0][1] + b * p[1][1] + c * p[2][1] + d * p[3][1],
|
|
]
|
|
} // higher order curves: use de Casteljau's computation
|
|
}
|
|
|
|
/**
|
|
* Evaluate a 2d cubic bezier at a point t on the x axis.
|
|
* @param tx
|
|
* @param x1
|
|
* @param y1
|
|
* @param x2
|
|
* @param y2
|
|
*/
|
|
export function cubicBezier(
|
|
tx: number,
|
|
x1: number,
|
|
y1: number,
|
|
x2: number,
|
|
y2: number
|
|
): number {
|
|
// Inspired by Don Lancaster's two articles
|
|
// http://www.tinaja.com/glib/cubemath.pdf
|
|
// http://www.tinaja.com/text/bezmath.html
|
|
|
|
// Set start and end point
|
|
const x0 = 0,
|
|
y0 = 0,
|
|
x3 = 1,
|
|
y3 = 1,
|
|
// Convert the coordinates to equation space
|
|
A = x3 - 3 * x2 + 3 * x1 - x0,
|
|
B = 3 * x2 - 6 * x1 + 3 * x0,
|
|
C = 3 * x1 - 3 * x0,
|
|
D = x0,
|
|
E = y3 - 3 * y2 + 3 * y1 - y0,
|
|
F = 3 * y2 - 6 * y1 + 3 * y0,
|
|
G = 3 * y1 - 3 * y0,
|
|
H = y0,
|
|
// Variables for the loop below
|
|
iterations = 5
|
|
|
|
let i: number,
|
|
slope: number,
|
|
x: number,
|
|
t = tx
|
|
|
|
// Loop through a few times to get a more accurate time value, according to the Newton-Raphson method
|
|
// http://en.wikipedia.org/wiki/Newton's_method
|
|
for (i = 0; i < iterations; i++) {
|
|
// The curve's x equation for the current time value
|
|
x = A * t * t * t + B * t * t + C * t + D
|
|
|
|
// The slope we want is the inverse of the derivate of x
|
|
slope = 1 / (3 * A * t * t + 2 * B * t + C)
|
|
|
|
// Get the next estimated time value, which will be more accurate than the one before
|
|
t -= (x - tx) * slope
|
|
t = t > 1 ? 1 : t < 0 ? 0 : t
|
|
}
|
|
|
|
// Find the y value through the curve's y equation, with the now more accurate time value
|
|
return Math.abs(E * t * t * t + F * t * t + G * t * H)
|
|
}
|
|
|
|
/**
|
|
* Get a bezier curve data for a spline that fits an array of points.
|
|
* @param points An array of points formatted as [x, y]
|
|
* @param k Tension
|
|
*/
|
|
export function getSpline(
|
|
pts: number[][],
|
|
k = 0.5
|
|
): {
|
|
cp1x: number
|
|
cp1y: number
|
|
cp2x: number
|
|
cp2y: number
|
|
px: number
|
|
py: number
|
|
}[] {
|
|
let p0: number[]
|
|
let [p1, p2, p3] = pts
|
|
|
|
const results: {
|
|
cp1x: number
|
|
cp1y: number
|
|
cp2x: number
|
|
cp2y: number
|
|
px: number
|
|
py: number
|
|
}[] = []
|
|
|
|
for (let i = 1, len = pts.length; i < len; i++) {
|
|
p0 = p1
|
|
p1 = p2
|
|
p2 = p3
|
|
p3 = pts[i + 2] ? pts[i + 2] : p2
|
|
|
|
results.push({
|
|
cp1x: p1[0] + ((p2[0] - p0[0]) / 6) * k,
|
|
cp1y: p1[1] + ((p2[1] - p0[1]) / 6) * k,
|
|
cp2x: p2[0] - ((p3[0] - p1[0]) / 6) * k,
|
|
cp2y: p2[1] - ((p3[1] - p1[1]) / 6) * k,
|
|
px: pts[i][0],
|
|
py: pts[i][1],
|
|
})
|
|
}
|
|
|
|
return results
|
|
}
|
|
|
|
/**
|
|
* Get a bezier curve data for a spline that fits an array of points.
|
|
* @param pts
|
|
* @param tension
|
|
* @param isClosed
|
|
* @param numOfSegments
|
|
*/
|
|
export function getCurvePoints(
|
|
pts: number[][],
|
|
tension = 0.5,
|
|
isClosed = false,
|
|
numOfSegments = 3
|
|
): number[][] {
|
|
const _pts = [...pts],
|
|
len = pts.length,
|
|
res: number[][] = [] // results
|
|
|
|
let t1x: number, // tension vectors
|
|
t2x: number,
|
|
t1y: number,
|
|
t2y: number,
|
|
c1: number, // cardinal points
|
|
c2: number,
|
|
c3: number,
|
|
c4: number,
|
|
st: number,
|
|
st2: number,
|
|
st3: number
|
|
|
|
// The algorithm require a previous and next point to the actual point array.
|
|
// Check if we will draw closed or open curve.
|
|
// If closed, copy end points to beginning and first points to end
|
|
// If open, duplicate first points to befinning, end points to end
|
|
if (isClosed) {
|
|
_pts.unshift(_pts[len - 1])
|
|
_pts.push(_pts[0])
|
|
} else {
|
|
//copy 1. point and insert at beginning
|
|
_pts.unshift(_pts[0])
|
|
_pts.push(_pts[len - 1])
|
|
// _pts.push(_pts[len - 1])
|
|
}
|
|
|
|
// For each point, calculate a segment
|
|
for (let i = 1; i < _pts.length - 2; i++) {
|
|
// Calculate points along segment and add to results
|
|
for (let t = 0; t <= numOfSegments; t++) {
|
|
// Step
|
|
st = t / numOfSegments
|
|
st2 = Math.pow(st, 2)
|
|
st3 = Math.pow(st, 3)
|
|
|
|
// Cardinals
|
|
c1 = 2 * st3 - 3 * st2 + 1
|
|
c2 = -(2 * st3) + 3 * st2
|
|
c3 = st3 - 2 * st2 + st
|
|
c4 = st3 - st2
|
|
|
|
// Tension
|
|
t1x = (_pts[i + 1][0] - _pts[i - 1][0]) * tension
|
|
t2x = (_pts[i + 2][0] - _pts[i][0]) * tension
|
|
t1y = (_pts[i + 1][1] - _pts[i - 1][1]) * tension
|
|
t2y = (_pts[i + 2][1] - _pts[i][1]) * tension
|
|
|
|
// Control points
|
|
res.push([
|
|
c1 * _pts[i][0] + c2 * _pts[i + 1][0] + c3 * t1x + c4 * t2x,
|
|
c1 * _pts[i][1] + c2 * _pts[i + 1][1] + c3 * t1y + c4 * t2y,
|
|
])
|
|
}
|
|
}
|
|
|
|
res.push(pts[pts.length - 1])
|
|
|
|
return res
|
|
}
|
|
|
|
/**
|
|
* Simplify a line (using Ramer-Douglas-Peucker algorithm).
|
|
* @param points An array of points as [x, y, ...][]
|
|
* @param tolerance The minimum line distance (also called epsilon).
|
|
* @returns Simplified array as [x, y, ...][]
|
|
*/
|
|
export function simplify(points: number[][], tolerance = 1): number[][] {
|
|
const len = points.length,
|
|
a = points[0],
|
|
b = points[len - 1],
|
|
[x1, y1] = a,
|
|
[x2, y2] = b
|
|
|
|
if (len > 2) {
|
|
let distance = 0
|
|
let index = 0
|
|
const max = Math.hypot(y2 - y1, x2 - x1)
|
|
|
|
for (let i = 1; i < len - 1; i++) {
|
|
const [x0, y0] = points[i],
|
|
d = Math.abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1) / max
|
|
|
|
if (distance > d) continue
|
|
|
|
distance = d
|
|
index = i
|
|
}
|
|
|
|
if (distance > tolerance) {
|
|
const l0 = simplify(points.slice(0, index + 1), tolerance)
|
|
const l1 = simplify(points.slice(index + 1), tolerance)
|
|
return l0.concat(l1.slice(1))
|
|
}
|
|
}
|
|
|
|
return [a, b]
|
|
}
|
|
|
|
/* ----------------- Browser and DOM ---------------- */
|
|
|
|
/**
|
|
* Find whether the current display is a touch display.
|
|
*/
|
|
export function isTouchDisplay(): boolean {
|
|
return (
|
|
'ontouchstart' in window ||
|
|
navigator.maxTouchPoints > 0 ||
|
|
navigator.msMaxTouchPoints > 0
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Find whether the current device is a Mac / iOS / iPadOS.
|
|
*/
|
|
export function isDarwin(): boolean {
|
|
return /Mac|iPod|iPhone|iPad/.test(window.navigator.platform)
|
|
}
|
|
|
|
/**
|
|
* Get whether the current device is a mobile device.
|
|
*/
|
|
export function isMobile(): boolean {
|
|
return _isMobile().any
|
|
}
|
|
|
|
/**
|
|
* Get whether an event is command (mac) or control (pc).
|
|
* @param e
|
|
*/
|
|
export function metaKey(e: KeyboardEvent | React.KeyboardEvent): boolean {
|
|
return isDarwin() ? e.metaKey : e.ctrlKey
|
|
}
|
|
|
|
/**
|
|
* Find the closest point on a SVG path to an off-path point.
|
|
* @param pathNode
|
|
* @param point
|
|
* @returns
|
|
*/
|
|
export function getClosestPointOnSVGPath(
|
|
pathNode: SVGPathElement,
|
|
point: number[]
|
|
): {
|
|
point: number[]
|
|
distance: number
|
|
length: number
|
|
t: number
|
|
} {
|
|
function distance2(p: DOMPoint, point: number[]) {
|
|
const dx = p.x - point[0],
|
|
dy = p.y - point[1]
|
|
return dx * dx + dy * dy
|
|
}
|
|
|
|
const pathLen = pathNode.getTotalLength()
|
|
|
|
let p = 8,
|
|
best: DOMPoint,
|
|
bestLen: number,
|
|
bestDist = Infinity,
|
|
bl: number,
|
|
al: number
|
|
|
|
// linear scan for coarse approximation
|
|
for (
|
|
let scan: DOMPoint, scanLen = 0, scanDist: number;
|
|
scanLen <= pathLen;
|
|
scanLen += p
|
|
) {
|
|
if (
|
|
(scanDist = distance2(
|
|
(scan = pathNode.getPointAtLength(scanLen)),
|
|
point
|
|
)) < bestDist
|
|
) {
|
|
;(best = scan), (bestLen = scanLen), (bestDist = scanDist)
|
|
}
|
|
}
|
|
|
|
// binary search for precise estimate
|
|
p /= 2
|
|
|
|
while (p > 0.5) {
|
|
let before: DOMPoint, after: DOMPoint, bd: number, ad: number
|
|
if (
|
|
(bl = bestLen - p) >= 0 &&
|
|
(bd = distance2((before = pathNode.getPointAtLength(bl)), point)) <
|
|
bestDist
|
|
) {
|
|
;(best = before), (bestLen = bl), (bestDist = bd)
|
|
} else if (
|
|
(al = bestLen + p) <= pathLen &&
|
|
(ad = distance2((after = pathNode.getPointAtLength(al)), point)) <
|
|
bestDist
|
|
) {
|
|
;(best = after), (bestLen = al), (bestDist = ad)
|
|
} else {
|
|
p /= 2
|
|
}
|
|
}
|
|
|
|
return {
|
|
point: [best.x, best.y],
|
|
distance: bestDist,
|
|
length: (bl + al) / 2,
|
|
t: (bl + al) / 2 / pathLen,
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Send data to one of the current project's API endpoints.
|
|
* @param endpoint
|
|
* @param data
|
|
*/
|
|
export async function postJsonToEndpoint(
|
|
endpoint: string,
|
|
data: { [key: string]: unknown }
|
|
): Promise<{ [key: string]: any }> {
|
|
const d = await fetch(
|
|
`${process.env.NEXT_PUBLIC_BASE_API_URL}/api/${endpoint}`,
|
|
{
|
|
method: 'POST',
|
|
headers: { 'Content-Type': 'application/json' },
|
|
body: JSON.stringify(data),
|
|
}
|
|
)
|
|
|
|
return await d.json()
|
|
}
|
|
|
|
/**
|
|
* Turn an array of points into a path of quadradic curves.
|
|
* @param stroke ;
|
|
*/
|
|
export function getSvgPathFromStroke(stroke: number[][]): string {
|
|
if (!stroke.length) return ''
|
|
|
|
const d = stroke.reduce(
|
|
(acc, [x0, y0], i, arr) => {
|
|
const [x1, y1] = arr[(i + 1) % arr.length]
|
|
acc.push(x0, y0, (x0 + x1) / 2, (y0 + y1) / 2)
|
|
return acc
|
|
},
|
|
['M', ...stroke[0], 'Q']
|
|
)
|
|
|
|
d.push('Z')
|
|
return d.join(' ')
|
|
}
|
|
|
|
export function debounce<T extends (...args: unknown[]) => unknown>(
|
|
callback: T,
|
|
waitFor: number
|
|
): (...args: Parameters<T>) => ReturnType<T> {
|
|
let timeout: ReturnType<typeof setTimeout>
|
|
return (...args: Parameters<T>): ReturnType<T> => {
|
|
let result: any
|
|
timeout && clearTimeout(timeout)
|
|
timeout = setTimeout(() => {
|
|
result = callback(...args)
|
|
}, waitFor)
|
|
return result
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get a precise point from an event.
|
|
* @param e
|
|
*/
|
|
export function getPoint(
|
|
e: PointerEvent | React.PointerEvent | Touch | React.Touch | WheelEvent
|
|
): number[] {
|
|
return [
|
|
Number(e.clientX.toPrecision(5)),
|
|
Number(e.clientY.toPrecision(5)),
|
|
'pressure' in e ? Number(e.pressure.toPrecision(5)) || 0.5 : 0.5,
|
|
]
|
|
}
|
|
|
|
export function commandKey(): string {
|
|
return isDarwin() ? '⌘' : 'Ctrl'
|
|
}
|
|
|
|
// function getResizeOffset(a: Bounds, b: Bounds): number[] {
|
|
// const { minX: x0, minY: y0, width: w0, height: h0 } = a
|
|
// const { minX: x1, minY: y1, width: w1, height: h1 } = b
|
|
|
|
// let delta: number[]
|
|
|
|
// if (h0 === h1 && w0 !== w1) {
|
|
// if (x0 !== x1) {
|
|
// // moving left edge, pin right edge
|
|
// delta = vec.sub([x1, y1 + h1 / 2], [x0, y0 + h0 / 2])
|
|
// } else {
|
|
// // moving right edge, pin left edge
|
|
// delta = vec.sub([x1 + w1, y1 + h1 / 2], [x0 + w0, y0 + h0 / 2])
|
|
// }
|
|
// } else if (h0 !== h1 && w0 === w1) {
|
|
// if (y0 !== y1) {
|
|
// // moving top edge, pin bottom edge
|
|
// delta = vec.sub([x1 + w1 / 2, y1], [x0 + w0 / 2, y0])
|
|
// } else {
|
|
// // moving bottom edge, pin top edge
|
|
// delta = vec.sub([x1 + w1 / 2, y1 + h1], [x0 + w0 / 2, y0 + h0])
|
|
// }
|
|
// } else if (x0 !== x1) {
|
|
// if (y0 !== y1) {
|
|
// // moving top left, pin bottom right
|
|
// delta = vec.sub([x1, y1], [x0, y0])
|
|
// } else {
|
|
// // moving bottom left, pin top right
|
|
// delta = vec.sub([x1, y1 + h1], [x0, y0 + h0])
|
|
// }
|
|
// } else if (y0 !== y1) {
|
|
// // moving top right, pin bottom left
|
|
// delta = vec.sub([x1 + w1, y1], [x0 + w0, y0])
|
|
// } else {
|
|
// // moving bottom right, pin top left
|
|
// delta = vec.sub([x1 + w1, y1 + h1], [x0 + w0, y0 + h0])
|
|
// }
|
|
|
|
// return delta
|
|
// }
|