/** * Clamp a value into a range. * @param n * @param min */ export function clamp(n: number, min: number): number export function clamp(n: number, min: number, max: number): number export function clamp(n: number, min: number, max?: number): number { return Math.max(min, typeof max !== 'undefined' ? Math.min(n, max) : n) } /** * Negate a vector. * @param A */ export function neg(A: number[]) { return [-A[0], -A[1]] } /** * Add vectors. * @param A * @param B */ export function add(A: number[], B: number[]) { return [A[0] + B[0], A[1] + B[1]] } /** * Add scalar to vector. * @param A * @param B */ export function addScalar(A: number[], n: number) { return [A[0] + n, A[1] + n] } /** * Subtract vectors. * @param A * @param B */ export function sub(A: number[], B: number[]) { return [A[0] - B[0], A[1] - B[1]] } /** * Subtract scalar from vector. * @param A * @param B */ export function subScalar(A: number[], n: number) { return [A[0] - n, A[1] - n] } /** * Get the vector from vectors A to B. * @param A * @param B */ export function vec(A: number[], B: number[]) { // A, B as vectors get the vector from A to B return [B[0] - A[0], B[1] - A[1]] } /** * Vector multiplication by scalar * @param A * @param n */ export function mul(A: number[], n: number) { return [A[0] * n, A[1] * n] } export function mulV(A: number[], B: number[]) { return [A[0] * B[0], A[1] * B[1]] } /** * Vector division by scalar. * @param A * @param n */ export function div(A: number[], n: number) { return [A[0] / n, A[1] / n] } /** * Vector division by vector. * @param A * @param n */ export function divV(A: number[], B: number[]) { return [A[0] / B[0], A[1] / B[1]] } /** * Perpendicular rotation of a vector A * @param A */ export function per(A: number[]) { return [A[1], -A[0]] } /** * Dot product * @param A * @param B */ export function dpr(A: number[], B: number[]) { return A[0] * B[0] + A[1] * B[1] } /** * Cross product (outer product) | A X B | * @param A * @param B */ export function cpr(A: number[], B: number[]) { return A[0] * B[1] - B[0] * A[1] } /** * Length of the vector squared * @param A */ export function len2(A: number[]) { return A[0] * A[0] + A[1] * A[1] } /** * Length of the vector * @param A */ export function len(A: number[]) { return Math.hypot(A[0], A[1]) } /** * Project A over B * @param A * @param B */ export function pry(A: number[], B: number[]) { return dpr(A, B) / len(B) } /** * Get normalized / unit vector. * @param A */ export function uni(A: number[]) { return div(A, len(A)) } /** * Get normalized / unit vector. * @param A */ export function normalize(A: number[]) { return uni(A) } /** * Get the tangent between two vectors. * @param A * @param B * @returns */ export function tangent(A: number[], B: number[]) { return normalize(sub(A, B)) } /** * Dist length from A to B squared. * @param A * @param B */ export function dist2(A: number[], B: number[]) { return len2(sub(A, B)) } /** * Dist length from A to B * @param A * @param B */ export function dist(A: number[], B: number[]) { return Math.hypot(A[1] - B[1], A[0] - B[0]) } /** * A faster, though less accurate method for testing distances. Maybe faster? * @param A * @param B * @returns */ export function fastDist(A: number[], B: number[]) { const V = [B[0] - A[0], B[1] - A[1]] const aV = [Math.abs(V[0]), Math.abs(V[1])] let r = 1 / Math.max(aV[0], aV[1]) r = r * (1.29289 - (aV[0] + aV[1]) * r * 0.29289) return [V[0] * r, V[1] * r] } /** * Angle between vector A and vector B in radians * @param A * @param B */ export function ang(A: number[], B: number[]) { return Math.atan2(cpr(A, B), dpr(A, B)) } /** * Angle between vector A and vector B in radians * @param A * @param B */ export function angle(A: number[], B: number[]) { return Math.atan2(B[1] - A[1], B[0] - A[0]) } /** * Mean between two vectors or mid vector between two vectors * @param A * @param B */ export function med(A: number[], B: number[]) { return mul(add(A, B), 0.5) } /** * Vector rotation by r (radians) * @param A * @param r rotation in radians */ export function rot(A: number[], r: number) { return [ A[0] * Math.cos(r) - A[1] * Math.sin(r), A[0] * Math.sin(r) + A[1] * Math.cos(r), ] } /** * Rotate a vector around another vector by r (radians) * @param A vector * @param C center * @param r rotation in radians */ export function rotWith(A: number[], C: number[], r: number) { if (r === 0) return A const s = Math.sin(r) const c = Math.cos(r) const px = A[0] - C[0] const py = A[1] - C[1] const nx = px * c - py * s const ny = px * s + py * c return [nx + C[0], ny + C[1]] } /** * Check of two vectors are identical. * @param A * @param B */ export function isEqual(A: number[], B: number[]) { return A[0] === B[0] && A[1] === B[1] } /** * Interpolate vector A to B with a scalar t * @param A * @param B * @param t scalar */ export function lrp(A: number[], B: number[], t: number) { return add(A, mul(vec(A, B), t)) } /** * Interpolate from A to B when curVAL goes fromVAL => to * @param A * @param B * @param from Starting value * @param to Ending value * @param s Strength */ export function int(A: number[], B: number[], from: number, to: number, s = 1) { const t = (clamp(from, to) - from) / (to - from) return add(mul(A, 1 - t), mul(B, s)) } /** * Get the angle between the three vectors A, B, and C. * @param p1 * @param pc * @param p2 */ export function ang3(p1: number[], pc: number[], p2: number[]) { // this, const v1 = vec(pc, p1) const v2 = vec(pc, p2) return ang(v1, v2) } /** * Absolute value of a vector. * @param A * @returns */ export function abs(A: number[]) { return [Math.abs(A[0]), Math.abs(A[1])] } export function rescale(a: number[], n: number) { const l = len(a) return [(n * a[0]) / l, (n * a[1]) / l] } /** * Get whether p1 is left of p2, relative to pc. * @param p1 * @param pc * @param p2 */ export function isLeft(p1: number[], pc: number[], p2: number[]) { // isLeft: >0 for counterclockwise // =0 for none (degenerate) // <0 for clockwise return (pc[0] - p1[0]) * (p2[1] - p1[1]) - (p2[0] - p1[0]) * (pc[1] - p1[1]) } export function clockwise(p1: number[], pc: number[], p2: number[]) { return isLeft(p1, pc, p2) > 0 } const rounds = [1, 10, 100, 1000] export function round(a: number[], d = 2) { return [ Math.round(a[0] * rounds[d]) / rounds[d], Math.round(a[1] * rounds[d]) / rounds[d], ] } /** * Get the minimum distance from a point P to a line with a segment AB. * @param A The start of the line. * @param B The end of the line. * @param P A point. * @returns */ // export function distanceToLine(A: number[], B: number[], P: number[]) { // const delta = sub(B, A) // const angle = Math.atan2(delta[1], delta[0]) // const dir = rot(sub(P, A), -angle) // return dir[1] // } /** * Get the nearest point on a line segment AB. * @param A The start of the line. * @param B The end of the line. * @param P A point. * @param clamp Whether to clamp the resulting point to the segment. * @returns */ // export function nearestPointOnLine( // A: number[], // B: number[], // P: number[], // clamp = true // ) { // const delta = sub(B, A) // const length = len(delta) // const angle = Math.atan2(delta[1], delta[0]) // const dir = rot(sub(P, A), -angle) // if (clamp) { // if (dir[0] < 0) return A // if (dir[0] > length) return B // } // return add(A, div(mul(delta, dir[0]), length)) // } /** * Get the nearest point on a line with a known unit vector that passes through point A * @param A Any point on the line * @param u The unit vector for the line. * @param P A point not on the line to test. * @returns */ export function nearestPointOnLineThroughPoint( A: number[], u: number[], P: number[] ) { return add(A, mul(u, pry(sub(P, A), u))) } /** * Distance between a point and a line with a known unit vector that passes through a point. * @param A Any point on the line * @param u The unit vector for the line. * @param P A point not on the line to test. * @returns */ export function distanceToLineThroughPoint( A: number[], u: number[], P: number[] ) { return dist(P, nearestPointOnLineThroughPoint(A, u, P)) } /** * Get the nearest point on a line segment between A and B * @param A The start of the line segment * @param B The end of the line segment * @param P The off-line point * @param clamp Whether to clamp the point between A and B. * @returns */ export function nearestPointOnLineSegment( A: number[], B: number[], P: number[], clamp = true ) { const delta = sub(B, A) const length = len(delta) const u = div(delta, length) const pt = add(A, mul(u, pry(sub(P, A), u))) if (clamp) { const da = dist(A, pt) const db = dist(B, pt) if (db < da && da > length) return B if (da < db && db > length) return A } return pt } /** * Distance between a point and the nearest point on a line segment between A and B * @param A The start of the line segment * @param B The end of the line segment * @param P The off-line point * @param clamp Whether to clamp the point between A and B. * @returns */ export function distanceToLineSegment( A: number[], B: number[], P: number[], clamp = true ) { return dist(P, nearestPointOnLineSegment(A, B, P, clamp)) } /** * Get a vector d distance from A towards B. * @param A * @param B * @param d * @returns */ export function nudge(A: number[], B: number[], d: number) { return add(A, mul(uni(vec(A, B)), d)) } /** * Round a vector to a precision length. * @param a * @param n */ export function toPrecision(a: number[], n = 4) { return [+a[0].toPrecision(n), +a[1].toPrecision(n)] }