import openai import requests import json from .logging import Logger from typing import Dict, List, Tuple, Generator, Optional class OpenAI: api_key: str chat_model: str = "gpt-3.5-turbo" logger: Logger api_code: str = "openai" @property def chat_api(self) -> str: return self.chat_model classification_api = chat_api image_api: str = "dalle" operator: str = "OpenAI ([https://openai.com](https://openai.com))" def __init__(self, api_key, chat_model=None, logger=None): self.api_key = api_key self.chat_model = chat_model or self.chat_model self.logger = logger or Logger() def generate_chat_response(self, messages: List[Dict[str, str]], user: Optional[str] = None) -> Tuple[str, int]: """Generate a response to a chat message. Args: messages (List[Dict[str, str]]): A list of messages to use as context. Returns: Tuple[str, int]: The response text and the number of tokens used. """ self.logger.log(f"Generating response to {len(messages)} messages using {self.chat_model}...") response = openai.ChatCompletion.create( model=self.chat_model, messages=messages, api_key=self.api_key, user = user ) result_text = response.choices[0].message['content'] tokens_used = response.usage["total_tokens"] self.logger.log(f"Generated response with {tokens_used} tokens.") return result_text, tokens_used def classify_message(self, query: str, user: Optional[str] = None) -> Tuple[Dict[str, str], int]: system_message = """You are a classifier for different types of messages. You decide whether an incoming message is meant to be a prompt for an AI chat model, an image generation AI, or a calculation for WolframAlpha. You respond with a JSON object like this: { "type": event_type, "prompt": prompt } - If the message you received is meant for the AI chat model, the event_type is "chat", and the prompt is the literal content of the message you received. This is also the default if none of the other options apply. - If it is a prompt for a calculation that can be answered better by WolframAlpha than an AI chat bot, the event_type is "calculate". Optimize the message you received for input to WolframAlpha, and return it as the prompt attribute. - If it is a prompt for an AI image generation, the event_type is "imagine". Optimize the message you received for use with DALL-E, and return it as the prompt attribute. - If for any reason you are unable to classify the message (for example, if it infringes on your terms of service), the event_type is "error", and the prompt is a message explaining why you are unable to process the message. Only the event_types mentioned above are allowed, you must not respond in any other way.""" messages = [ { "role": "system", "content": system_message }, { "role": "user", "content": query } ] self.logger.log(f"Classifying message '{query}'...") response = openai.ChatCompletion.create( model=self.chat_model, messages=messages, api_key=self.api_key, user = user ) try: result = json.loads(response.choices[0].message['content']) except: result = {"type": "chat", "prompt": query} tokens_used = response.usage["total_tokens"] self.logger.log(f"Classified message as {result['type']} with {tokens_used} tokens.") return result, tokens_used def generate_image(self, prompt: str, user: Optional[str] = None) -> Generator[bytes, None, None]: """Generate an image from a prompt. Args: prompt (str): The prompt to use. Yields: bytes: The image data. """ self.logger.log(f"Generating image from prompt '{prompt}'...") response = openai.Image.create( prompt=prompt, n=1, api_key=self.api_key, size="1024x1024", user = user ) images = [] for image in response.data: image = requests.get(image.url).content images.append(image) return images, len(images)