257 lines
7.6 KiB
Python
257 lines
7.6 KiB
Python
|
import sqlite3
|
||
|
import os
|
||
|
import inspect
|
||
|
|
||
|
import openai
|
||
|
import asyncio
|
||
|
import markdown2
|
||
|
import tiktoken
|
||
|
|
||
|
from nio import AsyncClient, RoomMessageText, MatrixRoom, Event, InviteEvent
|
||
|
from nio.api import MessageDirection
|
||
|
from nio.responses import RoomMessagesError, SyncResponse
|
||
|
|
||
|
from configparser import ConfigParser
|
||
|
from datetime import datetime
|
||
|
|
||
|
config = ConfigParser()
|
||
|
config.read("config.ini")
|
||
|
|
||
|
# Set up GPT API
|
||
|
openai.api_key = config["OpenAI"]["APIKey"]
|
||
|
MODEL = config["OpenAI"].get("Model", "gpt-3.5-turbo")
|
||
|
|
||
|
# Set up Matrix client
|
||
|
MATRIX_HOMESERVER = config["Matrix"]["Homeserver"]
|
||
|
MATRIX_ACCESS_TOKEN = config["Matrix"]["AccessToken"]
|
||
|
BOT_USER_ID = config["Matrix"]["UserID"]
|
||
|
|
||
|
client = AsyncClient(MATRIX_HOMESERVER, BOT_USER_ID)
|
||
|
|
||
|
SYNC_TOKEN = None
|
||
|
|
||
|
# Set up SQLite3 database
|
||
|
conn = sqlite3.connect("token_usage.db")
|
||
|
cursor = conn.cursor()
|
||
|
cursor.execute(
|
||
|
"""
|
||
|
CREATE TABLE IF NOT EXISTS token_usage (
|
||
|
room_id TEXT NOT NULL,
|
||
|
tokens INTEGER NOT NULL,
|
||
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
||
|
)
|
||
|
"""
|
||
|
)
|
||
|
conn.commit()
|
||
|
|
||
|
# Define the system message and max token limit
|
||
|
SYSTEM_MESSAGE = "You are a helpful assistant."
|
||
|
MAX_TOKENS = 3000
|
||
|
|
||
|
|
||
|
def logging(message, log_level="info"):
|
||
|
caller = inspect.currentframe().f_back.f_code.co_name
|
||
|
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f")
|
||
|
print(f"[{timestamp} - {caller}] [{log_level.upper()}] {message}")
|
||
|
|
||
|
|
||
|
async def gpt_query(messages):
|
||
|
logging(f"Querying GPT with {len(messages)} messages")
|
||
|
try:
|
||
|
response = openai.ChatCompletion.create(
|
||
|
model=MODEL,
|
||
|
messages=messages
|
||
|
)
|
||
|
result_text = response.choices[0].message['content']
|
||
|
tokens_used = response.usage["total_tokens"]
|
||
|
logging(f"Used {tokens_used} tokens")
|
||
|
return result_text, tokens_used
|
||
|
|
||
|
except Exception as e:
|
||
|
logging(f"Error during GPT API call: {e}", "error")
|
||
|
return None, 0
|
||
|
|
||
|
|
||
|
async def fetch_last_n_messages(room_id, n=20):
|
||
|
# Fetch the last n messages from the room
|
||
|
room = await client.join(room_id)
|
||
|
messages = []
|
||
|
|
||
|
logging(f"Fetching last {n} messages from room {room_id}...")
|
||
|
|
||
|
response = await client.room_messages(
|
||
|
room_id=room_id,
|
||
|
start=SYNC_TOKEN,
|
||
|
limit=n,
|
||
|
)
|
||
|
|
||
|
if isinstance(response, RoomMessagesError):
|
||
|
logging(
|
||
|
f"Error fetching messages: {response.message} (status code {response.status_code})", "error")
|
||
|
return []
|
||
|
|
||
|
for event in response.chunk:
|
||
|
if isinstance(event, RoomMessageText):
|
||
|
messages.append(event)
|
||
|
|
||
|
logging(f"Found {len(messages)} messages")
|
||
|
|
||
|
# Reverse the list so that messages are in chronological order
|
||
|
return messages[::-1]
|
||
|
|
||
|
|
||
|
def truncate_messages_to_fit_tokens(messages, max_tokens=MAX_TOKENS):
|
||
|
encoding = tiktoken.encoding_for_model(MODEL)
|
||
|
total_tokens = 0
|
||
|
|
||
|
system_message_tokens = len(encoding.encode(SYSTEM_MESSAGE)) + 1
|
||
|
|
||
|
if system_message_tokens > max_tokens:
|
||
|
logging(
|
||
|
f"System message is too long to fit within token limit ({system_message_tokens} tokens) - cannot proceed", "error")
|
||
|
return []
|
||
|
|
||
|
total_tokens += system_message_tokens
|
||
|
|
||
|
total_tokens = len(SYSTEM_MESSAGE) + 1
|
||
|
truncated_messages = []
|
||
|
|
||
|
for message in messages[0] + reversed(messages[1:]):
|
||
|
content = message["content"]
|
||
|
tokens = len(encoding.encode(content)) + 1
|
||
|
if total_tokens + tokens > max_tokens:
|
||
|
break
|
||
|
total_tokens += tokens
|
||
|
truncated_messages.append(message)
|
||
|
|
||
|
return list(truncated_messages[0] + reversed(truncated_messages[1:]))
|
||
|
|
||
|
|
||
|
async def message_callback(room: MatrixRoom, event: RoomMessageText):
|
||
|
logging(f"Received message from {event.sender} in room {room.room_id}")
|
||
|
|
||
|
if event.sender == BOT_USER_ID:
|
||
|
logging("Message is from bot - ignoring")
|
||
|
return
|
||
|
|
||
|
await client.room_typing(room.room_id, True)
|
||
|
|
||
|
await client.room_read_markers(room.room_id, event.event_id)
|
||
|
|
||
|
last_messages = await fetch_last_n_messages(room.room_id, 20)
|
||
|
|
||
|
if not last_messages or all(message.sender == BOT_USER_ID for message in last_messages):
|
||
|
logging("No messages to respond to")
|
||
|
await client.room_typing(room.room_id, False)
|
||
|
return
|
||
|
|
||
|
chat_messages = [{"role": "system", "content": SYSTEM_MESSAGE}]
|
||
|
|
||
|
for message in last_messages:
|
||
|
role = "assistant" if message.sender == BOT_USER_ID else "user"
|
||
|
if not message.event_id == event.event_id:
|
||
|
chat_messages.append({"role": role, "content": message.body})
|
||
|
|
||
|
chat_messages.append({"role": "user", "content": event.body})
|
||
|
|
||
|
# Truncate messages to fit within the token limit
|
||
|
truncated_messages = truncate_messages_to_fit_tokens(
|
||
|
chat_messages, MAX_TOKENS - 1)
|
||
|
|
||
|
response, tokens_used = await gpt_query(truncated_messages)
|
||
|
|
||
|
if response:
|
||
|
# Send the response to the room
|
||
|
|
||
|
logging(f"Sending response to room {room.room_id}...")
|
||
|
|
||
|
markdowner = markdown2.Markdown(extras=["fenced-code-blocks"])
|
||
|
formatted_body = markdowner.convert(response)
|
||
|
|
||
|
await client.room_send(
|
||
|
room.room_id, "m.room.message", {"msgtype": "m.text", "body": response,
|
||
|
"format": "org.matrix.custom.html", "formatted_body": formatted_body}
|
||
|
)
|
||
|
|
||
|
logging("Logging tokens used...")
|
||
|
|
||
|
cursor.execute(
|
||
|
"INSERT INTO token_usage (room_id, tokens) VALUES (?, ?)", (room.room_id, tokens_used))
|
||
|
conn.commit()
|
||
|
else:
|
||
|
# Send a notice to the room if there was an error
|
||
|
|
||
|
logging("Error during GPT API call - sending notice to room")
|
||
|
|
||
|
await client.room_send(
|
||
|
room.room_id, "m.room.message", {
|
||
|
"msgtype": "m.notice", "body": "Sorry, I'm having trouble connecting to the GPT API right now. Please try again later."}
|
||
|
)
|
||
|
print("No response from GPT API")
|
||
|
|
||
|
await client.room_typing(room.room_id, False)
|
||
|
|
||
|
|
||
|
async def room_invite_callback(room: MatrixRoom, event):
|
||
|
logging(f"Received invite to room {room.room_id} - joining...")
|
||
|
|
||
|
await client.join(room.room_id)
|
||
|
await client.room_send(
|
||
|
room.room_id,
|
||
|
"m.room.message",
|
||
|
{"msgtype": "m.text",
|
||
|
"body": "Hello! I'm a helpful assistant. How can I help you today?"}
|
||
|
)
|
||
|
|
||
|
|
||
|
async def accept_pending_invites():
|
||
|
logging("Accepting pending invites...")
|
||
|
|
||
|
for room_id in list(client.invited_rooms.keys()):
|
||
|
logging(f"Joining room {room_id}...")
|
||
|
|
||
|
await client.join(room_id)
|
||
|
await client.room_send(
|
||
|
room_id,
|
||
|
"m.room.message",
|
||
|
{"msgtype": "m.text",
|
||
|
"body": "Hello! I'm a helpful assistant. How can I help you today?"}
|
||
|
)
|
||
|
|
||
|
|
||
|
async def sync_cb(response):
|
||
|
logging(f"Sync response received (next batch: {response.next_batch})")
|
||
|
SYNC_TOKEN = response.next_batch
|
||
|
|
||
|
|
||
|
async def main():
|
||
|
logging("Starting bot...")
|
||
|
|
||
|
client.access_token = MATRIX_ACCESS_TOKEN # Set the access token directly
|
||
|
client.user_id = BOT_USER_ID # Set the user_id directly
|
||
|
|
||
|
client.add_response_callback(sync_cb, SyncResponse)
|
||
|
|
||
|
logging("Syncing...")
|
||
|
|
||
|
await client.sync(timeout=30000)
|
||
|
|
||
|
client.add_event_callback(message_callback, RoomMessageText)
|
||
|
client.add_event_callback(room_invite_callback, InviteEvent)
|
||
|
|
||
|
await accept_pending_invites() # Accept pending invites
|
||
|
|
||
|
logging("Bot started")
|
||
|
|
||
|
try:
|
||
|
await client.sync_forever(timeout=30000) # Continue syncing events
|
||
|
finally:
|
||
|
await client.close() # Properly close the aiohttp client session
|
||
|
logging("Bot stopped")
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
try:
|
||
|
asyncio.run(main())
|
||
|
finally:
|
||
|
conn.close()
|