import os import inspect import logging import signal import random import openai import asyncio import markdown2 import tiktoken import duckdb from nio import AsyncClient, RoomMessageText, MatrixRoom, Event, InviteEvent from nio.api import MessageDirection from nio.responses import RoomMessagesError, SyncResponse, RoomRedactError from configparser import ConfigParser from datetime import datetime from argparse import ArgumentParser from typing import List, Dict, Union, Optional from commands import COMMANDS def logging(message: str, log_level: str = "info"): caller = inspect.currentframe().f_back.f_code.co_name timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S:%f") print(f"[{timestamp}] - {caller} - [{log_level.upper()}] {message}") CONTEXT = { "database": False, "default_room_name": "GPTBot", "system_message": "You are a helpful assistant.", "max_tokens": 3000, "max_messages": 20, "model": "gpt-3.5-turbo", "client": None, "sync_token": None, "logger": logging } async def gpt_query(messages: list, model: Optional[str] = None): model = model or CONTEXT["model"] logging(f"Querying GPT with {len(messages)} messages") try: response = openai.ChatCompletion.create( model=model, messages=messages ) result_text = response.choices[0].message['content'] tokens_used = response.usage["total_tokens"] logging(f"Used {tokens_used} tokens") return result_text, tokens_used except Exception as e: logging(f"Error during GPT API call: {e}", "error") return None, 0 async def fetch_last_n_messages(room_id: str, n: Optional[int] = None, client: Optional[AsyncClient] = None, sync_token: Optional[str] = None): messages = [] n = n or CONTEXT["max_messages"] client = client or CONTEXT["client"] sync_token = sync_token or CONTEXT["sync_token"] logging( f"Fetching last {2*n} messages from room {room_id} (starting at {sync_token})...") response = await client.room_messages( room_id=room_id, start=sync_token, limit=2*n, ) if isinstance(response, RoomMessagesError): logging( f"Error fetching messages: {response.message} (status code {response.status_code})", "error") return [] for event in response.chunk: if len(messages) >= n: break if isinstance(event, RoomMessageText): if event.body.startswith("!gptbot ignoreolder"): break if not event.body.startswith("!"): messages.append(event) logging(f"Found {len(messages)} messages (limit: {n})") # Reverse the list so that messages are in chronological order return messages[::-1] def truncate_messages_to_fit_tokens(messages: list, max_tokens: Optional[int] = None, model: Optional[str] = None, system_message: Optional[str] = None): max_tokens = max_tokens or CONTEXT["max_tokens"] model = model or CONTEXT["model"] system_message = system_message or CONTEXT["system_message"] encoding = tiktoken.encoding_for_model(model) total_tokens = 0 system_message_tokens = len(encoding.encode(system_message)) + 1 if system_message_tokens > max_tokens: logging( f"System message is too long to fit within token limit ({system_message_tokens} tokens) - cannot proceed", "error") return [] total_tokens += system_message_tokens total_tokens = len(system_message) + 1 truncated_messages = [] for message in [messages[0]] + list(reversed(messages[1:])): content = message["content"] tokens = len(encoding.encode(content)) + 1 if total_tokens + tokens > max_tokens: break total_tokens += tokens truncated_messages.append(message) return [truncated_messages[0]] + list(reversed(truncated_messages[1:])) async def process_query(room: MatrixRoom, event: RoomMessageText, **kwargs): client = kwargs.get("client") or CONTEXT["client"] database = kwargs.get("database") or CONTEXT["database"] system_message = kwargs.get("system_message") or CONTEXT["system_message"] max_tokens = kwargs.get("max_tokens") or CONTEXT["max_tokens"] await client.room_typing(room.room_id, True) await client.room_read_markers(room.room_id, event.event_id) last_messages = await fetch_last_n_messages(room.room_id, 20) chat_messages = [{"role": "system", "content": system_message}] for message in last_messages: role = "assistant" if message.sender == client.user_id else "user" if not message.event_id == event.event_id: chat_messages.append({"role": role, "content": message.body}) chat_messages.append({"role": "user", "content": event.body}) # Truncate messages to fit within the token limit truncated_messages = truncate_messages_to_fit_tokens( chat_messages, max_tokens - 1) response, tokens_used = await gpt_query(truncated_messages) if response: logging(f"Sending response to room {room.room_id}...") # Convert markdown to HTML markdowner = markdown2.Markdown(extras=["fenced-code-blocks"]) formatted_body = markdowner.convert(response) message = await client.room_send( room.room_id, "m.room.message", {"msgtype": "m.text", "body": response, "format": "org.matrix.custom.html", "formatted_body": formatted_body} ) if database: logging("Logging tokens used...") with database.cursor() as cursor: cursor.execute( "INSERT INTO token_usage (message_id, room_id, tokens, timestamp) VALUES (?, ?, ?, ?)", (message.event_id, room.room_id, tokens_used, datetime.now())) database.commit() else: # Send a notice to the room if there was an error logging("Error during GPT API call - sending notice to room") await client.room_send( room.room_id, "m.room.message", { "msgtype": "m.notice", "body": "Sorry, I'm having trouble connecting to the GPT API right now. Please try again later."} ) print("No response from GPT API") await client.room_typing(room.room_id, False) async def process_command(room: MatrixRoom, event: RoomMessageText, context: Optional[dict] = None): context = context or CONTEXT logging( f"Received command {event.body} from {event.sender} in room {room.room_id}") command = event.body.split()[1] if event.body.split()[1:] else None await COMMANDS.get(command, COMMANDS[None])(room, event, context) async def message_callback(room: MatrixRoom, event: RoomMessageText, **kwargs): context = kwargs.get("context") or CONTEXT logging(f"Received message from {event.sender} in room {room.room_id}") if event.sender == context["client"].user_id: logging("Message is from bot itself - ignoring") elif event.body.startswith("!gptbot"): await process_command(room, event) elif event.body.startswith("!"): logging("Might be a command, but not for this bot - ignoring") else: await process_query(room, event, context=context) async def room_invite_callback(room: MatrixRoom, event: InviteEvent, **kwargs): client = kwargs.get("client") or CONTEXT["client"] logging(f"Received invite to room {room.room_id} - joining...") await client.join(room.room_id) await client.room_send( room.room_id, "m.room.message", {"msgtype": "m.text", "body": "Hello! I'm a helpful assistant. How can I help you today?"} ) async def accept_pending_invites(client: Optional[AsyncClient] = None): client = client or CONTEXT["client"] logging("Accepting pending invites...") for room_id in list(client.invited_rooms.keys()): logging(f"Joining room {room_id}...") await client.join(room_id) await client.room_send( room_id, "m.room.message", {"msgtype": "m.text", "body": "Hello! I'm a helpful assistant. How can I help you today?"} ) async def sync_cb(response, write_global: bool = True): logging( f"Sync response received (next batch: {response.next_batch})", "debug") SYNC_TOKEN = response.next_batch if write_global: global CONTEXT CONTEXT["sync_token"] = SYNC_TOKEN async def main(client: Optional[AsyncClient] = None): client = client or CONTEXT["client"] if not client.user_id: whoami = await client.whoami() client.user_id = whoami.user_id try: assert client.user_id except AssertionError: logging( "Failed to get user ID - check your access token or try setting it manually", "critical") await client.close() return logging("Starting bot...") client.add_response_callback(sync_cb, SyncResponse) logging("Syncing...") await client.sync(timeout=30000) client.add_event_callback(message_callback, RoomMessageText) client.add_event_callback(room_invite_callback, InviteEvent) await accept_pending_invites() # Accept pending invites logging("Bot started") try: # Continue syncing events await client.sync_forever(timeout=30000) finally: logging("Syncing one last time...") await client.sync(timeout=30000) await client.close() # Properly close the aiohttp client session logging("Bot stopped") def initialize_database(path: os.PathLike): logging("Initializing database...") database = duckdb.connect(path) with database.cursor() as cursor: # Get the latest migration ID if the migrations table exists try: cursor.execute( """ SELECT MAX(id) FROM migrations """ ) latest_migration = int(cursor.fetchone()[0]) except: latest_migration = 0 # Version 1 if latest_migration < 1: cursor.execute( """ CREATE TABLE IF NOT EXISTS token_usage ( message_id TEXT PRIMARY KEY, room_id TEXT NOT NULL, tokens INTEGER NOT NULL, timestamp TIMESTAMP NOT NULL ) """ ) cursor.execute( """ CREATE TABLE IF NOT EXISTS migrations ( id INTEGER NOT NULL, timestamp TIMESTAMP NOT NULL ) """ ) cursor.execute( "INSERT INTO migrations (id, timestamp) VALUES (1, ?)", (datetime.now(),) ) database.commit() return database if __name__ == "__main__": # Parse command line arguments parser = ArgumentParser() parser.add_argument( "--config", help="Path to config file (default: config.ini in working directory)", default="config.ini") args = parser.parse_args() # Read config file config = ConfigParser() config.read(args.config) # Set up Matrix client try: assert "Matrix" in config assert "Homeserver" in config["Matrix"] assert "AccessToken" in config["Matrix"] except: logging("Matrix config not found or incomplete", "critical") exit(1) CONTEXT["client"] = AsyncClient(config["Matrix"]["Homeserver"]) CONTEXT["client"].access_token = config["Matrix"]["AccessToken"] CONTEXT["client"].user_id = config["Matrix"].get("UserID") # Set up GPT API try: assert "OpenAI" in config assert "APIKey" in config["OpenAI"] except: logging("OpenAI config not found or incomplete", "critical") exit(1) openai.api_key = config["OpenAI"]["APIKey"] if "Model" in config["OpenAI"]: CONTEXT["model"] = config["OpenAI"]["Model"] if "MaxTokens" in config["OpenAI"]: CONTEXT["max_tokens"] = int(config["OpenAI"]["MaxTokens"]) if "MaxMessages" in config["OpenAI"]: CONTEXT["max_messages"] = int(config["OpenAI"]["MaxMessages"]) # Set up database if "Database" in config and config["Database"].get("Path"): CONTEXT["database"] = initialize_database(config["Database"]["Path"]) # Listen for SIGTERM def sigterm_handler(_signo, _stack_frame): logging("Received SIGTERM - exiting...") exit() signal.signal(signal.SIGTERM, sigterm_handler) # Start bot loop try: asyncio.run(main()) except KeyboardInterrupt: logging("Received KeyboardInterrupt - exiting...") except SystemExit: logging("Received SIGTERM - exiting...") finally: if CONTEXT["database"]: CONTEXT["database"].close()