Added support for DALL-E and WolframAlpha
New "imagine" and "calculate" commands Implemented image sending Moved OpenAI specific code to OpenAI class Abstracted away OpenAI API in bot class Minor fixes
This commit is contained in:
parent
9f5e87db4c
commit
bf23771989
12 changed files with 265 additions and 44 deletions
22
README.md
22
README.md
|
@ -1,13 +1,23 @@
|
|||
# GPTbot
|
||||
|
||||
GPTbot is a simple bot that uses the [OpenAI Chat Completion API](https://platform.openai.com/docs/guides/chat)
|
||||
to generate responses to messages in a Matrix room.
|
||||
GPTbot is a simple bot that uses different APIs to generate responses to
|
||||
messages in a Matrix room.
|
||||
|
||||
It will also save a log of the spent tokens to a DuckDB database
|
||||
(database.db in the working directory, by default).
|
||||
It is called GPTbot because it was originally intended to only use GPT-3 to
|
||||
generate responses. However, it supports other services/APIs, and I will
|
||||
probably add more in the future, so the name is a bit misleading.
|
||||
|
||||
Note that this bot does not yet support encryption - this is still work in
|
||||
progress.
|
||||
## Features
|
||||
|
||||
- AI-generated responses to all messages in a Matrix room (chatbot)
|
||||
- Currently supports OpenAI (tested with `gpt-3.5-turbo`)
|
||||
- AI-generated pictures via the `!gptbot imagine` command
|
||||
- Currently supports OpenAI (DALL-E)
|
||||
- DuckDB database to store spent tokens
|
||||
|
||||
## Planned features
|
||||
|
||||
- End-to-end encryption support (partly implemented, but not yet working)
|
||||
|
||||
## Installation
|
||||
|
||||
|
|
|
@ -1,10 +1,11 @@
|
|||
import openai
|
||||
import markdown2
|
||||
import duckdb
|
||||
import tiktoken
|
||||
|
||||
import magic
|
||||
import asyncio
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from nio import (
|
||||
AsyncClient,
|
||||
AsyncClientConfig,
|
||||
|
@ -24,9 +25,10 @@ from nio import (
|
|||
)
|
||||
from nio.crypto import Olm
|
||||
|
||||
from typing import Optional, List, Dict
|
||||
from typing import Optional, List, Dict, Tuple
|
||||
from configparser import ConfigParser
|
||||
from datetime import datetime
|
||||
from io import BytesIO
|
||||
|
||||
import uuid
|
||||
|
||||
|
@ -35,6 +37,8 @@ from migrations import migrate
|
|||
from callbacks import RESPONSE_CALLBACKS, EVENT_CALLBACKS
|
||||
from commands import COMMANDS
|
||||
from .store import DuckDBStore
|
||||
from .openai import OpenAI
|
||||
from .wolframalpha import WolframAlpha
|
||||
|
||||
|
||||
class GPTBot:
|
||||
|
@ -46,11 +50,11 @@ class GPTBot:
|
|||
force_system_message: bool = False
|
||||
max_tokens: int = 3000 # Maximum number of input tokens
|
||||
max_messages: int = 30 # Maximum number of messages to consider as input
|
||||
model: str = "gpt-3.5-turbo" # OpenAI chat model to use
|
||||
matrix_client: Optional[AsyncClient] = None
|
||||
sync_token: Optional[str] = None
|
||||
logger: Optional[Logger] = Logger()
|
||||
openai_api_key: Optional[str] = None
|
||||
chat_api: Optional[OpenAI] = None
|
||||
image_api: Optional[OpenAI] = None
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: ConfigParser):
|
||||
|
@ -79,12 +83,15 @@ class GPTBot:
|
|||
bot.force_system_message = config["GPTBot"].getboolean(
|
||||
"ForceSystemMessage", bot.force_system_message)
|
||||
|
||||
bot.chat_api = bot.image_api = OpenAI(config["OpenAI"]["APIKey"], config["OpenAI"].get("Model"), bot.logger)
|
||||
bot.max_tokens = config["OpenAI"].getint("MaxTokens", bot.max_tokens)
|
||||
bot.max_messages = config["OpenAI"].getint(
|
||||
"MaxMessages", bot.max_messages)
|
||||
bot.model = config["OpenAI"].get("Model", bot.model)
|
||||
|
||||
bot.openai_api_key = config["OpenAI"]["APIKey"]
|
||||
# Set up WolframAlpha
|
||||
if "WolframAlpha" in config:
|
||||
bot.calculation_api = WolframAlpha(
|
||||
config["WolframAlpha"]["APIKey"], bot.logger)
|
||||
|
||||
# Set up the Matrix client
|
||||
|
||||
|
@ -165,7 +172,7 @@ class GPTBot:
|
|||
def _truncate(self, messages: list, max_tokens: Optional[int] = None,
|
||||
model: Optional[str] = None, system_message: Optional[str] = None):
|
||||
max_tokens = max_tokens or self.max_tokens
|
||||
model = model or self.model
|
||||
model = model or self.chat_api.chat_model
|
||||
system_message = self.default_system_message if system_message is None else system_message
|
||||
|
||||
encoding = tiktoken.encoding_for_model(model)
|
||||
|
@ -224,10 +231,13 @@ class GPTBot:
|
|||
await COMMANDS.get(command, COMMANDS[None])(room, event, self)
|
||||
|
||||
async def event_callback(self,room: MatrixRoom, event: Event):
|
||||
self.logger.log("Received event: " + str(event), "debug")
|
||||
for eventtype, callback in EVENT_CALLBACKS.items():
|
||||
if isinstance(event, eventtype):
|
||||
await callback(room, event, self)
|
||||
self.logger.log("Received event: " + str(event.event_id), "debug")
|
||||
try:
|
||||
for eventtype, callback in EVENT_CALLBACKS.items():
|
||||
if isinstance(event, eventtype):
|
||||
await callback(room, event, self)
|
||||
except Exception as e:
|
||||
self.logger.log(f"Error in event callback for {event.__class__}: {e}", "error")
|
||||
|
||||
async def response_callback(self, response: Response):
|
||||
for response_type, callback in RESPONSE_CALLBACKS.items():
|
||||
|
@ -244,6 +254,52 @@ class GPTBot:
|
|||
for invite in invites.keys():
|
||||
await self.matrix_client.join(invite)
|
||||
|
||||
async def send_image(self, room: MatrixRoom, image: bytes, message: Optional[str] = None):
|
||||
self.logger.log(
|
||||
f"Sending image of size {len(image)} bytes to room {room.room_id}")
|
||||
|
||||
bio = BytesIO(image)
|
||||
img = Image.open(bio)
|
||||
mime = Image.MIME[img.format]
|
||||
|
||||
(width, height) = img.size
|
||||
|
||||
self.logger.log(
|
||||
f"Uploading - Image size: {width}x{height} pixels, MIME type: {mime}")
|
||||
|
||||
bio.seek(0)
|
||||
|
||||
response, _ = await self.matrix_client.upload(
|
||||
bio,
|
||||
content_type=mime,
|
||||
filename="image",
|
||||
filesize=len(image)
|
||||
)
|
||||
|
||||
self.logger.log("Uploaded image - sending message...")
|
||||
|
||||
content = {
|
||||
"body": message or "",
|
||||
"info": {
|
||||
"mimetype": mime,
|
||||
"size": len(image),
|
||||
"w": width,
|
||||
"h": height,
|
||||
},
|
||||
"msgtype": "m.image",
|
||||
"url": response.content_uri
|
||||
}
|
||||
|
||||
status = await self.matrix_client.room_send(
|
||||
room.room_id,
|
||||
"m.room.message",
|
||||
content
|
||||
)
|
||||
|
||||
self.logger.log(str(status), "debug")
|
||||
|
||||
self.logger.log("Sent image")
|
||||
|
||||
async def send_message(self, room: MatrixRoom, message: str, notice: bool = False):
|
||||
markdowner = markdown2.Markdown(extras=["fenced-code-blocks"])
|
||||
formatted_body = markdowner.convert(message)
|
||||
|
@ -428,28 +484,17 @@ class GPTBot:
|
|||
|
||||
await self.matrix_client.room_typing(room.room_id, False)
|
||||
|
||||
async def generate_chat_response(self, messages: List[Dict[str, str]]) -> str:
|
||||
async def generate_chat_response(self, messages: List[Dict[str, str]]) -> Tuple[str, int]:
|
||||
"""Generate a response to a chat message.
|
||||
|
||||
Args:
|
||||
messages (List[Dict[str, str]]): A list of messages to use as context.
|
||||
|
||||
Returns:
|
||||
str: The response to the chat.
|
||||
Tuple[str, int]: The response text and the number of tokens used.
|
||||
"""
|
||||
|
||||
self.logger.log(f"Generating response to {len(messages)} messages...")
|
||||
|
||||
response = openai.ChatCompletion.create(
|
||||
model=self.model,
|
||||
messages=messages,
|
||||
api_key=self.openai_api_key
|
||||
)
|
||||
|
||||
result_text = response.choices[0].message['content']
|
||||
tokens_used = response.usage["total_tokens"]
|
||||
self.logger.log(f"Generated response with {tokens_used} tokens.")
|
||||
return result_text, tokens_used
|
||||
return self.chat_api.generate_chat_response(messages)
|
||||
|
||||
def get_system_message(self, room: MatrixRoom | int) -> str:
|
||||
default = self.default_system_message
|
||||
|
|
62
classes/openai.py
Normal file
62
classes/openai.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
import openai
|
||||
import requests
|
||||
|
||||
from .logging import Logger
|
||||
|
||||
from typing import Dict, List, Tuple, Generator
|
||||
|
||||
class OpenAI:
|
||||
api_key: str
|
||||
chat_model: str = "gpt-3.5-turbo"
|
||||
logger: Logger
|
||||
|
||||
def __init__(self, api_key, chat_model=None, logger=None):
|
||||
self.api_key = api_key
|
||||
self.chat_model = chat_model or self.chat_model
|
||||
self.logger = logger or Logger()
|
||||
|
||||
def generate_chat_response(self, messages: List[Dict[str, str]]) -> Tuple[str, int]:
|
||||
"""Generate a response to a chat message.
|
||||
|
||||
Args:
|
||||
messages (List[Dict[str, str]]): A list of messages to use as context.
|
||||
|
||||
Returns:
|
||||
Tuple[str, int]: The response text and the number of tokens used.
|
||||
"""
|
||||
|
||||
self.logger.log(f"Generating response to {len(messages)} messages using {self.chat_model}...")
|
||||
|
||||
response = openai.ChatCompletion.create(
|
||||
model=self.chat_model,
|
||||
messages=messages,
|
||||
api_key=self.api_key
|
||||
)
|
||||
|
||||
result_text = response.choices[0].message['content']
|
||||
tokens_used = response.usage["total_tokens"]
|
||||
self.logger.log(f"Generated response with {tokens_used} tokens.")
|
||||
return result_text, tokens_used
|
||||
|
||||
def generate_image(self, prompt: str) -> Generator[bytes, None, None]:
|
||||
"""Generate an image from a prompt.
|
||||
|
||||
Args:
|
||||
prompt (str): The prompt to use.
|
||||
|
||||
Yields:
|
||||
bytes: The image data.
|
||||
"""
|
||||
|
||||
self.logger.log(f"Generating image from prompt '{prompt}'...")
|
||||
|
||||
response = openai.Image.create(
|
||||
prompt=prompt,
|
||||
n=1,
|
||||
api_key=self.api_key,
|
||||
size="1024x1024"
|
||||
)
|
||||
|
||||
for image in response.data:
|
||||
image = requests.get(image.url).content
|
||||
yield image
|
35
classes/wolframalpha.py
Normal file
35
classes/wolframalpha.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
import wolframalpha
|
||||
import requests
|
||||
|
||||
from .logging import Logger
|
||||
|
||||
from typing import Dict, List, Tuple, Generator, Optional
|
||||
|
||||
class WolframAlpha:
|
||||
api_key: str
|
||||
logger: Logger
|
||||
client: wolframalpha.Client
|
||||
|
||||
def __init__(self, api_key: str, logger: Optional[Logger] = None):
|
||||
self.api_key: str = api_key
|
||||
self.logger: Logger = logger or Logger()
|
||||
self.client = wolframalpha.Client(self.api_key)
|
||||
|
||||
def generate_calculation_response(self, query: str, text: Optional[bool] = False, results_only: Optional[bool] = False) -> Generator[str | bytes, None, None]:
|
||||
self.logger.log(f"Querying WolframAlpha for {query}")
|
||||
|
||||
response: wolframalpha.Result = self.client.query(query)
|
||||
|
||||
for pod in response.pods if not results_only else response.results:
|
||||
self.logger.log(pod.keys(), "debug")
|
||||
if pod.title:
|
||||
yield "*" + pod.title + "*"
|
||||
for subpod in pod.subpods:
|
||||
self.logger.log(subpod.keys(), "debug")
|
||||
if subpod.title:
|
||||
yield "*" + subpod.title + "*"
|
||||
if subpod.img and not text:
|
||||
image = requests.get(subpod.img.src).content
|
||||
yield image
|
||||
elif subpod.plaintext:
|
||||
yield "```\n" + subpod.plaintext + "\n```"
|
|
@ -6,6 +6,8 @@ from .unknown import command_unknown
|
|||
from .coin import command_coin
|
||||
from .ignoreolder import command_ignoreolder
|
||||
from .systemmessage import command_systemmessage
|
||||
from .imagine import command_imagine
|
||||
from .calculate import command_calculate
|
||||
|
||||
COMMANDS = {
|
||||
"help": command_help,
|
||||
|
@ -15,5 +17,7 @@ COMMANDS = {
|
|||
"coin": command_coin,
|
||||
"ignoreolder": command_ignoreolder,
|
||||
"systemmessage": command_systemmessage,
|
||||
"imagine": command_imagine,
|
||||
"calculate": command_calculate,
|
||||
None: command_unknown,
|
||||
}
|
||||
|
|
34
commands/calculate.py
Normal file
34
commands/calculate.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
from nio.events.room_events import RoomMessageText
|
||||
from nio.rooms import MatrixRoom
|
||||
|
||||
|
||||
async def command_calculate(room: MatrixRoom, event: RoomMessageText, bot):
|
||||
prompt = event.body.split()[2:]
|
||||
text = False
|
||||
results_only = True
|
||||
|
||||
if "--text" in prompt:
|
||||
text = True
|
||||
delete = prompt.index("--text")
|
||||
del prompt[delete]
|
||||
|
||||
if "--details" in prompt:
|
||||
results_only = False
|
||||
delete = prompt.index("--details")
|
||||
del prompt[delete]
|
||||
|
||||
prompt = " ".join(prompt)
|
||||
|
||||
if prompt:
|
||||
bot.logger.log("Querying WolframAlpha")
|
||||
|
||||
for subpod in bot.calculation_api.generate_calculation_response(prompt, text, results_only):
|
||||
bot.logger.log(f"Sending subpod...")
|
||||
if isinstance(subpod, bytes):
|
||||
await bot.send_image(room, subpod)
|
||||
else:
|
||||
await bot.send_message(room, subpod, True)
|
||||
|
||||
return
|
||||
|
||||
await bot.send_message(room, "You need to provide a prompt.", True)
|
|
@ -5,13 +5,15 @@ from nio.rooms import MatrixRoom
|
|||
async def command_help(room: MatrixRoom, event: RoomMessageText, bot):
|
||||
body = """Available commands:
|
||||
|
||||
!gptbot help - Show this message
|
||||
!gptbot newroom <room name> - Create a new room and invite yourself to it
|
||||
!gptbot stats - Show usage statistics for this room
|
||||
!gptbot botinfo - Show information about the bot
|
||||
!gptbot coin - Flip a coin (heads or tails)
|
||||
!gptbot ignoreolder - Ignore messages before this point as context
|
||||
!gptbot systemmessage - Get or set the system message for this room
|
||||
- !gptbot help - Show this message
|
||||
- !gptbot newroom \<room name\> - Create a new room and invite yourself to it
|
||||
- !gptbot stats - Show usage statistics for this room
|
||||
- !gptbot botinfo - Show information about the bot
|
||||
- !gptbot coin - Flip a coin (heads or tails)
|
||||
- !gptbot ignoreolder - Ignore messages before this point as context
|
||||
- !gptbot systemmessage \<message\> - Get or set the system message for this room
|
||||
- !gptbot imagine \<prompt\> - Generate an image from a prompt
|
||||
- !gptbot calculate [--text] [--details] \<query\> - Calculate a result to a calculation, optionally forcing text output instead of an image, and optionally showing additional details like the input interpretation
|
||||
"""
|
||||
|
||||
await bot.send_message(room, body, True)
|
17
commands/imagine.py
Normal file
17
commands/imagine.py
Normal file
|
@ -0,0 +1,17 @@
|
|||
from nio.events.room_events import RoomMessageText
|
||||
from nio.rooms import MatrixRoom
|
||||
|
||||
|
||||
async def command_imagine(room: MatrixRoom, event: RoomMessageText, bot):
|
||||
prompt = " ".join(event.body.split()[2:])
|
||||
|
||||
if prompt:
|
||||
bot.logger.log("Generating image...")
|
||||
|
||||
for image in bot.image_api.generate_image(prompt):
|
||||
bot.logger.log(f"Sending image...")
|
||||
await bot.send_image(room, image)
|
||||
|
||||
return
|
||||
|
||||
await bot.send_message(room, "You need to provide a prompt.", True)
|
|
@ -23,7 +23,7 @@ async def command_newroom(room: MatrixRoom, event: RoomMessageText, bot):
|
|||
await bot.send_message(room, f"Sorry, I was unable to invite you to the new room. Please try again later, or create a room manually.", True)
|
||||
return
|
||||
|
||||
await context["client"].room_put_state(
|
||||
await bot.matrix_client.room_put_state(
|
||||
new_room.room_id, "m.room.power_levels", {"users": {event.sender: 100}})
|
||||
|
||||
await bot.matrix_client.joined_rooms()
|
||||
|
|
|
@ -2,7 +2,7 @@ from nio.events.room_events import RoomMessageText
|
|||
from nio.rooms import MatrixRoom
|
||||
|
||||
|
||||
async def command_unknown(room: MatrixRoom, event: RoomMessageText, context: dict):
|
||||
async def command_unknown(room: MatrixRoom, event: RoomMessageText, bot):
|
||||
bot.logger.log("Unknown command")
|
||||
|
||||
bot.send_message(room, "Unknown command - try !gptbot help", True)
|
||||
await bot.send_message(room, "Unknown command - try !gptbot help", True)
|
|
@ -38,6 +38,15 @@ APIKey = sk-yoursecretkey
|
|||
#
|
||||
# MaxMessages = 20
|
||||
|
||||
[WolframAlpha]
|
||||
|
||||
# An API key for Wolfram|Alpha
|
||||
# Request one at https://developer.wolframalpha.com
|
||||
#
|
||||
# Leave unset to disable Wolfram|Alpha integration (`!gptbot calculate`)
|
||||
#
|
||||
#APIKey = YOUR-APIKEY
|
||||
|
||||
[Matrix]
|
||||
|
||||
# The URL to your Matrix homeserver
|
||||
|
@ -80,4 +89,4 @@ AccessToken = syt_yoursynapsetoken
|
|||
# If not defined, the bot will not be able to remember anything, and will not support encryption
|
||||
# N.B.: Encryption doesn't work as it is supposed to anyway.
|
||||
|
||||
Path = database.db
|
||||
Path = database.db
|
||||
|
|
|
@ -2,4 +2,7 @@ openai
|
|||
matrix-nio[e2e]
|
||||
markdown2[all]
|
||||
tiktoken
|
||||
duckdb
|
||||
duckdb
|
||||
python-magic
|
||||
pillow
|
||||
wolframalpha
|
||||
|
|
Loading…
Reference in a new issue