a3e846685d
See contained diff. The upsampling is important for Voice Messages, but is being done here because it's easier to add all the tests at once. This also introduces a new Object utility - that will be tested on its own commit.
225 lines
7 KiB
TypeScript
225 lines
7 KiB
TypeScript
/*
|
|
Copyright 2020, 2021 The Matrix.org Foundation C.I.C.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* Quickly resample an array to have less/more data points. If an input which is larger
|
|
* than the desired size is provided, it will be downsampled. Similarly, if the input
|
|
* is smaller than the desired size then it will be upsampled.
|
|
* @param {number[]} input The input array to resample.
|
|
* @param {number} points The number of samples to end up with.
|
|
* @returns {number[]} The resampled array.
|
|
*/
|
|
export function arrayFastResample(input: number[], points: number): number[] {
|
|
if (input.length === points) return input; // short-circuit a complicated call
|
|
|
|
// Heavily inspired by matrix-media-repo (used with permission)
|
|
// https://github.com/turt2live/matrix-media-repo/blob/abe72c87d2e29/util/util_audio/fastsample.go#L10
|
|
let samples: number[] = [];
|
|
if (input.length > points) {
|
|
// Danger: this loop can cause out of memory conditions if the input is too small.
|
|
const everyNth = Math.round(input.length / points);
|
|
for (let i = 0; i < input.length; i += everyNth) {
|
|
samples.push(input[i]);
|
|
}
|
|
} else {
|
|
// Smaller inputs mean we have to spread the values over the desired length. We
|
|
// end up overshooting the target length in doing this, so we'll resample down
|
|
// before returning. This recursion is risky, but mathematically should not go
|
|
// further than 1 level deep.
|
|
const spreadFactor = Math.ceil(points / input.length);
|
|
for (const val of input) {
|
|
samples.push(...arraySeed(val, spreadFactor));
|
|
}
|
|
samples = arrayFastResample(samples, points);
|
|
}
|
|
|
|
// Sanity fill, just in case
|
|
while (samples.length < points) {
|
|
samples.push(input[input.length - 1]);
|
|
}
|
|
|
|
// Sanity trim, just in case
|
|
if (samples.length > points) {
|
|
samples = samples.slice(0, points);
|
|
}
|
|
|
|
return samples;
|
|
}
|
|
|
|
/**
|
|
* Creates an array of the given length, seeded with the given value.
|
|
* @param {T} val The value to seed the array with.
|
|
* @param {number} length The length of the array to create.
|
|
* @returns {T[]} The array.
|
|
*/
|
|
export function arraySeed<T>(val: T, length: number): T[] {
|
|
const a: T[] = [];
|
|
for (let i = 0; i < length; i++) {
|
|
a.push(val);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* Clones an array as fast as possible, retaining references of the array's values.
|
|
* @param a The array to clone. Must be defined.
|
|
* @returns A copy of the array.
|
|
*/
|
|
export function arrayFastClone<T>(a: T[]): T[] {
|
|
return a.slice(0, a.length);
|
|
}
|
|
|
|
/**
|
|
* Determines if the two arrays are different either in length, contents,
|
|
* or order of those contents.
|
|
* @param a The first array. Must be defined.
|
|
* @param b The second array. Must be defined.
|
|
* @returns True if they are different, false otherwise.
|
|
*/
|
|
export function arrayHasOrderChange(a: any[], b: any[]): boolean {
|
|
if (a.length === b.length) {
|
|
for (let i = 0; i < a.length; i++) {
|
|
if (a[i] !== b[i]) return true;
|
|
}
|
|
return false;
|
|
} else {
|
|
return true; // like arrayHasDiff, a difference in length is a natural change
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Determines if two arrays are different through a shallow comparison.
|
|
* @param a The first array. Must be defined.
|
|
* @param b The second array. Must be defined.
|
|
* @returns True if they are different, false otherwise.
|
|
*/
|
|
export function arrayHasDiff(a: any[], b: any[]): boolean {
|
|
if (a.length === b.length) {
|
|
// When the lengths are equal, check to see if either array is missing
|
|
// an element from the other.
|
|
if (b.some(i => !a.includes(i))) return true;
|
|
if (a.some(i => !b.includes(i))) return true;
|
|
|
|
// if all the keys are common, say so
|
|
return false;
|
|
} else {
|
|
return true; // different lengths means they are naturally diverged
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Performs a diff on two arrays. The result is what is different with the
|
|
* first array (`added` in the returned object means objects in B that aren't
|
|
* in A). Shallow comparisons are used to perform the diff.
|
|
* @param a The first array. Must be defined.
|
|
* @param b The second array. Must be defined.
|
|
* @returns The diff between the arrays.
|
|
*/
|
|
export function arrayDiff<T>(a: T[], b: T[]): { added: T[], removed: T[] } {
|
|
return {
|
|
added: b.filter(i => !a.includes(i)),
|
|
removed: a.filter(i => !b.includes(i)),
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Returns the union of two arrays.
|
|
* @param a The first array. Must be defined.
|
|
* @param b The second array. Must be defined.
|
|
* @returns The union of the arrays.
|
|
*/
|
|
export function arrayUnion<T>(a: T[], b: T[]): T[] {
|
|
return a.filter(i => b.includes(i));
|
|
}
|
|
|
|
/**
|
|
* Merges arrays, deduping contents using a Set.
|
|
* @param a The arrays to merge.
|
|
* @returns The merged array.
|
|
*/
|
|
export function arrayMerge<T>(...a: T[][]): T[] {
|
|
return Array.from(a.reduce((c, v) => {
|
|
v.forEach(i => c.add(i));
|
|
return c;
|
|
}, new Set<T>()));
|
|
}
|
|
|
|
/**
|
|
* Helper functions to perform LINQ-like queries on arrays.
|
|
*/
|
|
export class ArrayUtil<T> {
|
|
/**
|
|
* Create a new array helper.
|
|
* @param a The array to help. Can be modified in-place.
|
|
*/
|
|
constructor(private a: T[]) {
|
|
}
|
|
|
|
/**
|
|
* The value of this array, after all appropriate alterations.
|
|
*/
|
|
public get value(): T[] {
|
|
return this.a;
|
|
}
|
|
|
|
/**
|
|
* Groups an array by keys.
|
|
* @param fn The key-finding function.
|
|
* @returns This.
|
|
*/
|
|
public groupBy<K>(fn: (a: T) => K): GroupedArray<K, T> {
|
|
const obj = this.a.reduce((rv: Map<K, T[]>, val: T) => {
|
|
const k = fn(val);
|
|
if (!rv.has(k)) rv.set(k, []);
|
|
rv.get(k).push(val);
|
|
return rv;
|
|
}, new Map<K, T[]>());
|
|
return new GroupedArray(obj);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper functions to perform LINQ-like queries on groups (maps).
|
|
*/
|
|
export class GroupedArray<K, T> {
|
|
/**
|
|
* Creates a new group helper.
|
|
* @param val The group to help. Can be modified in-place.
|
|
*/
|
|
constructor(private val: Map<K, T[]>) {
|
|
}
|
|
|
|
/**
|
|
* The value of this group, after all applicable alterations.
|
|
*/
|
|
public get value(): Map<K, T[]> {
|
|
return this.val;
|
|
}
|
|
|
|
/**
|
|
* Orders the grouping into an array using the provided key order.
|
|
* @param keyOrder The key order.
|
|
* @returns An array helper of the result.
|
|
*/
|
|
public orderBy(keyOrder: K[]): ArrayUtil<T> {
|
|
const a: T[] = [];
|
|
for (const k of keyOrder) {
|
|
if (!this.val.has(k)) continue;
|
|
a.push(...this.val.get(k));
|
|
}
|
|
return new ArrayUtil(a);
|
|
}
|
|
}
|