openwrtv4/target/linux/atheros-2.6/files/drivers/mtd/devices/spiflash.c

534 lines
14 KiB
C

/*
* MTD driver for the SPI Flash Memory support.
*
* Copyright (c) 2005-2006 Atheros Communications Inc.
* Copyright (C) 2006 FON Technology, SL.
* Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
* Copyright (C) 2006 Felix Fietkau <nbd@openwrt.org>
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
/*===========================================================================
** !!!! VERY IMPORTANT NOTICE !!!! FLASH DATA STORED IN LITTLE ENDIAN FORMAT
**
** This module contains the Serial Flash access routines for the Atheros SOC.
** The Atheros SOC integrates a SPI flash controller that is used to access
** serial flash parts. The SPI flash controller executes in "Little Endian"
** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be
** BYTESWAPPED! The SPI Flash controller hardware by default performs READ
** ONLY byteswapping when accessed via the SPI Flash Alias memory region
** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the
** flash sectors is stored in "Little Endian" format.
**
** The spiflash_write() routine performs byteswapping on all write
** operations.
**===========================================================================*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/squashfs_fs.h>
#include <linux/root_dev.h>
#include <asm/delay.h>
#include <asm/io.h>
#include "spiflash.h"
/* debugging */
/* #define SPIFLASH_DEBUG */
#ifndef __BIG_ENDIAN
#error This driver currently only works with big endian CPU.
#endif
#define MAX_PARTS 32
static char module_name[] = "spiflash";
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define FALSE 0
#define TRUE 1
#define ROOTFS_NAME "rootfs"
static __u32 spiflash_regread32(int reg);
static void spiflash_regwrite32(int reg, __u32 data);
static __u32 spiflash_sendcmd (int op);
int __init spiflash_init (void);
void __exit spiflash_exit (void);
static int spiflash_probe_chip (void);
static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr);
static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf);
static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf);
/* Flash configuration table */
struct flashconfig {
__u32 byte_cnt;
__u32 sector_cnt;
__u32 sector_size;
__u32 cs_addrmask;
} flashconfig_tbl[MAX_FLASH] =
{
{ 0, 0, 0, 0},
{ STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0},
{ STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0},
{ STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0},
{ STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0}
};
/* Mapping of generic opcodes to STM serial flash opcodes */
struct opcodes {
__u16 code;
__s8 tx_cnt;
__s8 rx_cnt;
} stm_opcodes[] = {
{STM_OP_WR_ENABLE, 1, 0},
{STM_OP_WR_DISABLE, 1, 0},
{STM_OP_RD_STATUS, 1, 1},
{STM_OP_WR_STATUS, 1, 0},
{STM_OP_RD_DATA, 4, 4},
{STM_OP_FAST_RD_DATA, 1, 0},
{STM_OP_PAGE_PGRM, 8, 0},
{STM_OP_SECTOR_ERASE, 4, 0},
{STM_OP_BULK_ERASE, 1, 0},
{STM_OP_DEEP_PWRDOWN, 1, 0},
{STM_OP_RD_SIG, 4, 1}
};
/* Driver private data structure */
struct spiflash_data {
struct mtd_info *mtd;
struct mtd_partition *parsed_parts; /* parsed partitions */
void *spiflash_readaddr; /* memory mapped data for read */
void *spiflash_mmraddr; /* memory mapped register space */
spinlock_t mutex;
};
static struct spiflash_data *spidata;
extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts);
/***************************************************************************************************/
static __u32
spiflash_regread32(int reg)
{
volatile __u32 *data = (__u32 *)(spidata->spiflash_mmraddr + reg);
return (*data);
}
static void
spiflash_regwrite32(int reg, __u32 data)
{
volatile __u32 *addr = (__u32 *)(spidata->spiflash_mmraddr + reg);
*addr = data;
return;
}
static __u32
spiflash_sendcmd (int op)
{
__u32 reg;
__u32 mask;
struct opcodes *ptr_opcode;
ptr_opcode = &stm_opcodes[op];
do {
reg = spiflash_regread32(SPI_FLASH_CTL);
} while (reg & SPI_CTL_BUSY);
spiflash_regwrite32(SPI_FLASH_OPCODE, ptr_opcode->code);
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt |
(ptr_opcode->rx_cnt << 4) | SPI_CTL_START;
spiflash_regwrite32(SPI_FLASH_CTL, reg);
if (ptr_opcode->rx_cnt > 0) {
do {
reg = spiflash_regread32(SPI_FLASH_CTL);
} while (reg & SPI_CTL_BUSY);
reg = (__u32) spiflash_regread32(SPI_FLASH_DATA);
switch (ptr_opcode->rx_cnt) {
case 1:
mask = 0x000000ff;
break;
case 2:
mask = 0x0000ffff;
break;
case 3:
mask = 0x00ffffff;
break;
default:
mask = 0xffffffff;
break;
}
reg &= mask;
}
else {
reg = 0;
}
return reg;
}
/* Probe SPI flash device
* Function returns 0 for failure.
* and flashconfig_tbl array index for success.
*/
static int
spiflash_probe_chip (void)
{
__u32 sig;
int flash_size;
/* Read the signature on the flash device */
sig = spiflash_sendcmd(SPI_RD_SIG);
switch (sig) {
case STM_8MBIT_SIGNATURE:
flash_size = FLASH_1MB;
break;
case STM_16MBIT_SIGNATURE:
flash_size = FLASH_2MB;
break;
case STM_32MBIT_SIGNATURE:
flash_size = FLASH_4MB;
break;
case STM_64MBIT_SIGNATURE:
flash_size = FLASH_8MB;
break;
default:
printk (KERN_WARNING "%s: Read of flash device signature failed!\n", module_name);
return (0);
}
return (flash_size);
}
static int
spiflash_erase (struct mtd_info *mtd,struct erase_info *instr)
{
struct opcodes *ptr_opcode;
__u32 temp, reg;
int finished = FALSE;
#ifdef SPIFLASH_DEBUG
printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len);
#endif
/* sanity checks */
if (instr->addr + instr->len > mtd->size) return (-EINVAL);
ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE];
temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code);
spin_lock(&spidata->mutex);
spiflash_sendcmd(SPI_WRITE_ENABLE);
do {
schedule();
reg = spiflash_regread32(SPI_FLASH_CTL);
} while (reg & SPI_CTL_BUSY);
spiflash_regwrite32(SPI_FLASH_OPCODE, temp);
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START;
spiflash_regwrite32(SPI_FLASH_CTL, reg);
do {
schedule();
reg = spiflash_sendcmd(SPI_RD_STATUS);
if (!(reg & SPI_STATUS_WIP)) {
finished = TRUE;
}
} while (!finished);
spin_unlock(&spidata->mutex);
instr->state = MTD_ERASE_DONE;
if (instr->callback) instr->callback (instr);
#ifdef SPIFLASH_DEBUG
printk (KERN_DEBUG "%s return\n",__FUNCTION__);
#endif
return (0);
}
static int
spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf)
{
u_char *read_addr;
#ifdef SPIFLASH_DEBUG
printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,(int)len);
#endif
/* sanity checks */
if (!len) return (0);
if (from + len > mtd->size) return (-EINVAL);
/* we always read len bytes */
*retlen = len;
read_addr = (u_char *)(spidata->spiflash_readaddr + from);
spin_lock(&spidata->mutex);
memcpy(buf, read_addr, len);
spin_unlock(&spidata->mutex);
return (0);
}
static int
spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
{
int done = FALSE, page_offset, bytes_left, finished;
__u32 xact_len, spi_data = 0, opcode, reg;
#ifdef SPIFLASH_DEBUG
printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len);
#endif
*retlen = 0;
/* sanity checks */
if (!len) return (0);
if (to + len > mtd->size) return (-EINVAL);
opcode = stm_opcodes[SPI_PAGE_PROGRAM].code;
bytes_left = len;
while (done == FALSE) {
xact_len = MIN(bytes_left, sizeof(__u32));
/* 32-bit writes cannot span across a page boundary
* (256 bytes). This types of writes require two page
* program operations to handle it correctly. The STM part
* will write the overflow data to the beginning of the
* current page as opposed to the subsequent page.
*/
page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len;
if (page_offset > STM_PAGE_SIZE) {
xact_len -= (page_offset - STM_PAGE_SIZE);
}
spin_lock(&spidata->mutex);
spiflash_sendcmd(SPI_WRITE_ENABLE);
do {
schedule();
reg = spiflash_regread32(SPI_FLASH_CTL);
} while (reg & SPI_CTL_BUSY);
switch (xact_len) {
case 1:
spi_data = (u32) ((u8) *buf);
break;
case 2:
spi_data = (buf[1] << 8) | buf[0];
break;
case 3:
spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0];
break;
case 4:
spi_data = (buf[3] << 24) | (buf[2] << 16) |
(buf[1] << 8) | buf[0];
break;
default:
printk("spiflash_write: default case\n");
break;
}
spiflash_regwrite32(SPI_FLASH_DATA, spi_data);
opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8);
spiflash_regwrite32(SPI_FLASH_OPCODE, opcode);
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START;
spiflash_regwrite32(SPI_FLASH_CTL, reg);
finished = FALSE;
do {
schedule();
reg = spiflash_sendcmd(SPI_RD_STATUS);
if (!(reg & SPI_STATUS_WIP)) {
finished = TRUE;
}
} while (!finished);
spin_unlock(&spidata->mutex);
bytes_left -= xact_len;
to += xact_len;
buf += xact_len;
*retlen += xact_len;
if (bytes_left == 0) {
done = TRUE;
}
}
return (0);
}
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL };
#endif
static int spiflash_probe(struct platform_device *pdev)
{
int result = -1;
int index, num_parts;
struct mtd_info *mtd;
spidata->spiflash_mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE);
if (!spidata->spiflash_mmraddr) {
printk (KERN_WARNING "%s: Failed to map flash device\n", module_name);
kfree(spidata);
spidata = NULL;
}
mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
if (!mtd) {
kfree(spidata);
return (-ENXIO);
}
printk ("MTD driver for SPI flash.\n");
printk ("%s: Probing for Serial flash ...\n", module_name);
if (!(index = spiflash_probe_chip())) {
printk (KERN_WARNING "%s: Found no serial flash device\n", module_name);
kfree(mtd);
kfree(spidata);
return (-ENXIO);
}
printk ("%s: Found SPI serial Flash.\n", module_name);
spidata->spiflash_readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt);
if (!spidata->spiflash_readaddr) {
printk (KERN_WARNING "%s: Failed to map flash device\n", module_name);
kfree(mtd);
kfree(spidata);
return (-ENXIO);
}
mtd->name = module_name;
mtd->type = MTD_NORFLASH;
mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE);
mtd->size = flashconfig_tbl[index].byte_cnt;
mtd->erasesize = flashconfig_tbl[index].sector_size;
mtd->writesize = 1;
mtd->numeraseregions = 0;
mtd->eraseregions = NULL;
mtd->erase = spiflash_erase;
mtd->read = spiflash_read;
mtd->write = spiflash_write;
mtd->owner = THIS_MODULE;
#ifdef SPIFLASH_DEBUG
printk (KERN_DEBUG
"mtd->name = %s\n"
"mtd->size = 0x%.8x (%uM)\n"
"mtd->erasesize = 0x%.8x (%uK)\n"
"mtd->numeraseregions = %d\n",
mtd->name,
mtd->size, mtd->size / (1024*1024),
mtd->erasesize, mtd->erasesize / 1024,
mtd->numeraseregions);
if (mtd->numeraseregions) {
for (result = 0; result < mtd->numeraseregions; result++) {
printk (KERN_DEBUG
"\n\n"
"mtd->eraseregions[%d].offset = 0x%.8x\n"
"mtd->eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
"mtd->eraseregions[%d].numblocks = %d\n",
result,mtd->eraseregions[result].offset,
result,mtd->eraseregions[result].erasesize,mtd->eraseregions[result].erasesize / 1024,
result,mtd->eraseregions[result].numblocks);
}
}
#endif
/* parse redboot partitions */
num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0);
#ifdef SPIFLASH_DEBUG
printk (KERN_DEBUG "Found %d partitions\n", num_parts);
#endif
if (num_parts) {
result = add_mtd_partitions(mtd, spidata->parsed_parts, num_parts);
} else {
#ifdef SPIFLASH_DEBUG
printk (KERN_DEBUG "Did not find any partitions\n");
#endif
kfree(mtd);
kfree(spidata);
return (-ENXIO);
}
spidata->mtd = mtd;
return (result);
}
static int spiflash_remove (struct platform_device *pdev)
{
del_mtd_partitions (spidata->mtd);
kfree(spidata->mtd);
return 0;
}
struct platform_driver spiflash_driver = {
.driver.name = "spiflash",
.probe = spiflash_probe,
.remove = spiflash_remove,
};
int __init
spiflash_init (void)
{
spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL);
if (!spidata)
return (-ENXIO);
spin_lock_init(&spidata->mutex);
platform_driver_register(&spiflash_driver);
return 0;
}
void __exit
spiflash_exit (void)
{
kfree(spidata);
}
module_init (spiflash_init);
module_exit (spiflash_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Atheros Communications Inc");
MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");