openwrtv4/target/linux/pistachio/patches-4.9/413-mtd-Introduce-SPI-NAND-framework.patch
Koen Vandeputte 69649a1b45 kernel: update kernel 4.9 to 4.9.34
- Refreshed all patches
- Adapted 1 (0031-mtd-add-SMEM-parser-for-QCOM-platforms.patch)

Compile tested on: brcm2708, cns3xxx, imx6
Run tested on: brcm2708, cns3xxx, imx6

Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
[Compile and run tested on brcm2708]
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
2017-06-27 07:21:03 +02:00

706 lines
18 KiB
Diff

From 082a89a78e29b15008284df90441747cb742f149 Mon Sep 17 00:00:00 2001
From: Ezequiel Garcia <ezequiel.garcia@imgtec.com>
Date: Tue, 2 Dec 2014 09:58:52 -0300
Subject: mtd: Introduce SPI NAND framework
Add a new framework, to support SPI NAND devices. The framework registers
a NAND chip and handles the generic SPI NAND protocol, calling device-specific
hooks for each SPI NAND command.
The following is the stack design, from userspace to hardware. This commit
adds the "SPI NAND core" layer.
Userspace
------------------
MTD
------------------
NAND core
------------------
SPI NAND core
------------------
SPI NAND device
------------------
SPI core
------------------
SPI master
------------------
Hardware
(based on http://lists.infradead.org/pipermail/linux-mtd/2014-December/056763.html)
Signed-off-by: Ionela Voinescu <ionela.voinescu@imgtec.com>
Signed-off-by: Ezequiel Garcia <ezequiel.garcia@imgtec.com>
Signed-off-by: Ian Pozella <Ian.Pozella@imgtec.com>
---
drivers/mtd/Kconfig | 2 +
drivers/mtd/Makefile | 1 +
drivers/mtd/spi-nand/Kconfig | 7 +
drivers/mtd/spi-nand/Makefile | 1 +
drivers/mtd/spi-nand/spi-nand-base.c | 566 +++++++++++++++++++++++++++++++++++
include/linux/mtd/spi-nand.h | 54 ++++
6 files changed, 631 insertions(+)
create mode 100644 drivers/mtd/spi-nand/Kconfig
create mode 100644 drivers/mtd/spi-nand/Makefile
create mode 100644 drivers/mtd/spi-nand/spi-nand-base.c
create mode 100644 include/linux/mtd/spi-nand.h
--- a/drivers/mtd/Kconfig
+++ b/drivers/mtd/Kconfig
@@ -373,6 +373,8 @@ source "drivers/mtd/onenand/Kconfig"
source "drivers/mtd/lpddr/Kconfig"
+source "drivers/mtd/spi-nand/Kconfig"
+
source "drivers/mtd/spi-nor/Kconfig"
source "drivers/mtd/ubi/Kconfig"
--- a/drivers/mtd/Makefile
+++ b/drivers/mtd/Makefile
@@ -36,5 +36,6 @@ inftl-objs := inftlcore.o inftlmount.o
obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/
+obj-$(CONFIG_MTD_SPI_NAND) += spi-nand/
obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/
obj-$(CONFIG_MTD_UBI) += ubi/
--- /dev/null
+++ b/drivers/mtd/spi-nand/Kconfig
@@ -0,0 +1,7 @@
+menuconfig MTD_SPI_NAND
+ tristate "SPI NAND device support"
+ depends on MTD
+ select MTD_NAND
+ help
+ This is the framework for the SPI NAND.
+
--- /dev/null
+++ b/drivers/mtd/spi-nand/Makefile
@@ -0,0 +1 @@
+obj-$(CONFIG_MTD_SPI_NAND) += spi-nand-base.o
--- /dev/null
+++ b/drivers/mtd/spi-nand/spi-nand-base.c
@@ -0,0 +1,566 @@
+/*
+ * Copyright (C) 2014 Imagination Technologies Ltd.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * Notes:
+ * 1. Erase and program operations need to call write_enable() first,
+ * to clear the enable bit. This bit is cleared automatically after
+ * the erase or program operation.
+ *
+ */
+
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/spi-nand.h>
+#include <linux/of.h>
+#include <linux/slab.h>
+
+/* Registers common to all devices */
+#define SPI_NAND_LOCK_REG 0xa0
+#define SPI_NAND_PROT_UNLOCK_ALL 0x0
+
+#define SPI_NAND_FEATURE_REG 0xb0
+#define SPI_NAND_ECC_EN BIT(4)
+#define SPI_NAND_QUAD_EN BIT(0)
+
+#define SPI_NAND_STATUS_REG 0xc0
+#define SPI_NAND_STATUS_REG_ECC_MASK 0x3
+#define SPI_NAND_STATUS_REG_ECC_SHIFT 4
+#define SPI_NAND_STATUS_REG_PROG_FAIL BIT(3)
+#define SPI_NAND_STATUS_REG_ERASE_FAIL BIT(2)
+#define SPI_NAND_STATUS_REG_WREN BIT(1)
+#define SPI_NAND_STATUS_REG_BUSY BIT(0)
+
+#define SPI_NAND_CMD_BUF_LEN 8
+
+/* Rewind and fill the buffer with 0xff */
+static void spi_nand_clear_buffer(struct spi_nand *snand)
+{
+ snand->buf_start = 0;
+ memset(snand->data_buf, 0xff, snand->buf_size);
+}
+
+static int spi_nand_enable_ecc(struct spi_nand *snand)
+{
+ int ret;
+
+ ret = snand->read_reg(snand, SPI_NAND_FEATURE_REG, snand->buf);
+ if (ret)
+ return ret;
+
+ snand->buf[0] |= SPI_NAND_ECC_EN;
+ ret = snand->write_reg(snand, SPI_NAND_FEATURE_REG, snand->buf);
+ if (ret)
+ return ret;
+ snand->ecc = true;
+
+ return 0;
+}
+
+static int spi_nand_disable_ecc(struct spi_nand *snand)
+{
+ int ret;
+
+ ret = snand->read_reg(snand, SPI_NAND_FEATURE_REG, snand->buf);
+ if (ret)
+ return ret;
+
+ snand->buf[0] &= ~SPI_NAND_ECC_EN;
+ ret = snand->write_reg(snand, SPI_NAND_FEATURE_REG, snand->buf);
+ if (ret)
+ return ret;
+ snand->ecc = false;
+
+ return 0;
+}
+
+static int spi_nand_enable_quad(struct spi_nand *snand)
+{
+ int ret;
+
+ ret = snand->read_reg(snand, SPI_NAND_FEATURE_REG, snand->buf);
+ if (ret)
+ return ret;
+
+ snand->buf[0] |= SPI_NAND_QUAD_EN;
+ ret = snand->write_reg(snand, SPI_NAND_FEATURE_REG, snand->buf);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+/*
+ * Wait until the status register busy bit is cleared.
+ * Returns a negatie errno on error or time out, and a non-negative status
+ * value if the device is ready.
+ */
+static int spi_nand_wait_till_ready(struct spi_nand *snand)
+{
+ unsigned long deadline = jiffies + msecs_to_jiffies(100);
+ bool timeout = false;
+ int ret;
+
+ /*
+ * Perhaps we should set a different timeout for each
+ * operation (reset, read, write, erase).
+ */
+ while (!timeout) {
+ if (time_after_eq(jiffies, deadline))
+ timeout = true;
+
+ ret = snand->read_reg(snand, SPI_NAND_STATUS_REG, snand->buf);
+ if (ret < 0) {
+ dev_err(snand->dev, "error reading status register\n");
+ return ret;
+ } else if (!(snand->buf[0] & SPI_NAND_STATUS_REG_BUSY)) {
+ return snand->buf[0];
+ }
+
+ cond_resched();
+ }
+
+ dev_err(snand->dev, "operation timed out\n");
+
+ return -ETIMEDOUT;
+}
+
+static int spi_nand_reset(struct spi_nand *snand)
+{
+ int ret;
+
+ ret = snand->reset(snand);
+ if (ret < 0) {
+ dev_err(snand->dev, "reset command failed\n");
+ return ret;
+ }
+
+ /*
+ * The NAND core won't wait after a device reset, so we need
+ * to do that here.
+ */
+ ret = spi_nand_wait_till_ready(snand);
+ if (ret < 0)
+ return ret;
+ return 0;
+}
+
+static int spi_nand_status(struct spi_nand *snand)
+{
+ int ret, status;
+
+ ret = snand->read_reg(snand, SPI_NAND_STATUS_REG, snand->buf);
+ if (ret < 0) {
+ dev_err(snand->dev, "error reading status register\n");
+ return ret;
+ }
+ status = snand->buf[0];
+
+ /* Convert this into standard NAND_STATUS values */
+ if (status & SPI_NAND_STATUS_REG_BUSY)
+ snand->buf[0] = 0;
+ else
+ snand->buf[0] = NAND_STATUS_READY;
+
+ if (status & SPI_NAND_STATUS_REG_PROG_FAIL ||
+ status & SPI_NAND_STATUS_REG_ERASE_FAIL)
+ snand->buf[0] |= NAND_STATUS_FAIL;
+
+ /*
+ * Since we unlock the entire device at initialization, unconditionally
+ * set the WP bit to indicate it's not protected.
+ */
+ snand->buf[0] |= NAND_STATUS_WP;
+ return 0;
+}
+
+static int spi_nand_erase(struct spi_nand *snand, int page_addr)
+{
+ int ret;
+
+ ret = snand->write_enable(snand);
+ if (ret < 0) {
+ dev_err(snand->dev, "write enable command failed\n");
+ return ret;
+ }
+
+ ret = snand->block_erase(snand, page_addr);
+ if (ret < 0) {
+ dev_err(snand->dev, "block erase command failed\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static int spi_nand_write(struct spi_nand *snand)
+{
+ int ret;
+
+ /* Enable quad mode */
+ ret = spi_nand_enable_quad(snand);
+ if (ret) {
+ dev_err(snand->dev, "error %d enabling quad mode\n", ret);
+ return ret;
+ }
+ /* Store the page to cache */
+ ret = snand->store_cache(snand, 0, snand->buf_size, snand->data_buf);
+ if (ret < 0) {
+ dev_err(snand->dev, "error %d storing page 0x%x to cache\n",
+ ret, snand->page_addr);
+ return ret;
+ }
+
+ ret = snand->write_enable(snand);
+ if (ret < 0) {
+ dev_err(snand->dev, "write enable command failed\n");
+ return ret;
+ }
+
+ /* Get page from the device cache into our internal buffer */
+ ret = snand->write_page(snand, snand->page_addr);
+ if (ret < 0) {
+ dev_err(snand->dev, "error %d reading page 0x%x from cache\n",
+ ret, snand->page_addr);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int spi_nand_read_id(struct spi_nand *snand)
+{
+ int ret;
+
+ ret = snand->read_id(snand, snand->data_buf);
+ if (ret < 0) {
+ dev_err(snand->dev, "error %d reading ID\n", ret);
+ return ret;
+ }
+ return 0;
+}
+
+static int spi_nand_read_page(struct spi_nand *snand, unsigned int page_addr,
+ unsigned int page_offset, size_t length)
+{
+ unsigned int corrected = 0, ecc_error = 0;
+ int ret;
+
+ /* Load a page into the cache register */
+ ret = snand->load_page(snand, page_addr);
+ if (ret < 0) {
+ dev_err(snand->dev, "error %d loading page 0x%x to cache\n",
+ ret, page_addr);
+ return ret;
+ }
+
+ ret = spi_nand_wait_till_ready(snand);
+ if (ret < 0)
+ return ret;
+
+ if (snand->ecc) {
+ snand->get_ecc_status(ret, &corrected, &ecc_error);
+ snand->bitflips = corrected;
+
+ /*
+ * If there's an ECC error, print a message and notify MTD
+ * about it. Then complete the read, to load actual data on
+ * the buffer (instead of the status result).
+ */
+ if (ecc_error) {
+ dev_err(snand->dev,
+ "internal ECC error reading page 0x%x\n",
+ page_addr);
+ snand->nand_chip.mtd.ecc_stats.failed++;
+ } else {
+ snand->nand_chip.mtd.ecc_stats.corrected += corrected;
+ }
+ }
+
+ /* Enable quad mode */
+ ret = spi_nand_enable_quad(snand);
+ if (ret) {
+ dev_err(snand->dev, "error %d enabling quad mode\n", ret);
+ return ret;
+ }
+ /* Get page from the device cache into our internal buffer */
+ ret = snand->read_cache(snand, page_offset, length, snand->data_buf);
+ if (ret < 0) {
+ dev_err(snand->dev, "error %d reading page 0x%x from cache\n",
+ ret, page_addr);
+ return ret;
+ }
+ return 0;
+}
+
+static u8 spi_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct spi_nand *snand = nand_get_controller_data(chip);
+ char val = 0xff;
+
+ if (snand->buf_start < snand->buf_size)
+ val = snand->data_buf[snand->buf_start++];
+ return val;
+}
+
+static void spi_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct spi_nand *snand = nand_get_controller_data(chip);
+ size_t n = min_t(size_t, len, snand->buf_size - snand->buf_start);
+
+ memcpy(snand->data_buf + snand->buf_start, buf, n);
+ snand->buf_start += n;
+}
+
+static void spi_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct spi_nand *snand = nand_get_controller_data(chip);
+ size_t n = min_t(size_t, len, snand->buf_size - snand->buf_start);
+
+ memcpy(buf, snand->data_buf + snand->buf_start, n);
+ snand->buf_start += n;
+}
+
+static int spi_nand_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf, int oob_required,
+ int page)
+{
+ chip->write_buf(mtd, buf, mtd->writesize);
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
+static int spi_nand_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf, int oob_required,
+ int page)
+{
+ struct spi_nand *snand = nand_get_controller_data(chip);
+
+ chip->read_buf(mtd, buf, mtd->writesize);
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return snand->bitflips;
+}
+
+static int spi_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ struct spi_nand *snand = nand_get_controller_data(chip);
+ int ret;
+
+ ret = spi_nand_wait_till_ready(snand);
+
+ if (ret < 0) {
+ return NAND_STATUS_FAIL;
+ } else if (ret & SPI_NAND_STATUS_REG_PROG_FAIL) {
+ dev_err(snand->dev, "page program failed\n");
+ return NAND_STATUS_FAIL;
+ } else if (ret & SPI_NAND_STATUS_REG_ERASE_FAIL) {
+ dev_err(snand->dev, "block erase failed\n");
+ return NAND_STATUS_FAIL;
+ }
+
+ return NAND_STATUS_READY;
+}
+
+static void spi_nand_cmdfunc(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct spi_nand *snand = nand_get_controller_data(chip);
+
+ /*
+ * In case there's any unsupported command, let's make sure
+ * we don't keep garbage around in the buffer.
+ */
+ if (command != NAND_CMD_PAGEPROG) {
+ spi_nand_clear_buffer(snand);
+ snand->page_addr = 0;
+ }
+
+ switch (command) {
+ case NAND_CMD_READ0:
+ spi_nand_read_page(snand, page_addr, 0, mtd->writesize);
+ break;
+ case NAND_CMD_READOOB:
+ spi_nand_disable_ecc(snand);
+ spi_nand_read_page(snand, page_addr, mtd->writesize,
+ mtd->oobsize);
+ spi_nand_enable_ecc(snand);
+ break;
+ case NAND_CMD_READID:
+ spi_nand_read_id(snand);
+ break;
+ case NAND_CMD_ERASE1:
+ spi_nand_erase(snand, page_addr);
+ break;
+ case NAND_CMD_ERASE2:
+ /* There's nothing to do here, as the erase is one-step */
+ break;
+ case NAND_CMD_SEQIN:
+ snand->buf_start = column;
+ snand->page_addr = page_addr;
+ break;
+ case NAND_CMD_PAGEPROG:
+ spi_nand_write(snand);
+ break;
+ case NAND_CMD_STATUS:
+ spi_nand_status(snand);
+ break;
+ case NAND_CMD_RESET:
+ spi_nand_reset(snand);
+ break;
+ default:
+ dev_err(&mtd->dev, "unknown command 0x%x\n", command);
+ }
+}
+
+static void spi_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ /* We need this to override the default */
+}
+
+int spi_nand_check(struct spi_nand *snand)
+{
+ if (!snand->dev)
+ return -ENODEV;
+ if (!snand->read_cache)
+ return -ENODEV;
+ if (!snand->load_page)
+ return -ENODEV;
+ if (!snand->store_cache)
+ return -ENODEV;
+ if (!snand->write_page)
+ return -ENODEV;
+ if (!snand->write_reg)
+ return -ENODEV;
+ if (!snand->read_reg)
+ return -ENODEV;
+ if (!snand->block_erase)
+ return -ENODEV;
+ if (!snand->reset)
+ return -ENODEV;
+ if (!snand->write_enable)
+ return -ENODEV;
+ if (!snand->write_disable)
+ return -ENODEV;
+ if (!snand->get_ecc_status)
+ return -ENODEV;
+ return 0;
+}
+
+int spi_nand_register(struct spi_nand *snand, struct nand_flash_dev *flash_ids)
+{
+ struct nand_chip *chip = &snand->nand_chip;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct device_node *np = snand->dev->of_node;
+ const char __maybe_unused *of_mtd_name = NULL;
+ int ret;
+
+ /* Let's check all the hooks are in-place so we don't panic later */
+ ret = spi_nand_check(snand);
+ if (ret)
+ return ret;
+
+ nand_set_controller_data(chip, snand);
+ nand_set_flash_node(chip, np);
+ chip->read_buf = spi_nand_read_buf;
+ chip->write_buf = spi_nand_write_buf;
+ chip->read_byte = spi_nand_read_byte;
+ chip->cmdfunc = spi_nand_cmdfunc;
+ chip->waitfunc = spi_nand_waitfunc;
+ chip->select_chip = spi_nand_select_chip;
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
+ chip->bits_per_cell = 1;
+
+ mtd_set_ooblayout(mtd, snand->ooblayout);
+ chip->ecc.read_page = spi_nand_read_page_hwecc;
+ chip->ecc.write_page = spi_nand_write_page_hwecc;
+ chip->ecc.mode = NAND_ECC_HW;
+
+ if (of_property_read_bool(np, "nand-on-flash-bbt"))
+ chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+
+#ifdef CONFIG_MTD_OF_PARTS
+ of_property_read_string(np, "linux,mtd-name", &of_mtd_name);
+#endif
+ if (of_mtd_name)
+ mtd->name = of_mtd_name;
+ else
+ mtd->name = snand->name;
+ mtd->owner = THIS_MODULE;
+
+ /* Allocate buffer to be used to read/write the internal registers */
+ snand->buf = kmalloc(SPI_NAND_CMD_BUF_LEN, GFP_KERNEL);
+ if (!snand->buf)
+ return -ENOMEM;
+
+ /* This is enabled at device power up but we'd better make sure */
+ ret = spi_nand_enable_ecc(snand);
+ if (ret)
+ return ret;
+
+ /* Preallocate buffer for flash identification (NAND_CMD_READID) */
+ snand->buf_size = SPI_NAND_CMD_BUF_LEN;
+ snand->data_buf = kmalloc(snand->buf_size, GFP_KERNEL);
+
+ ret = nand_scan_ident(mtd, 1, flash_ids);
+ if (ret)
+ return ret;
+
+ /*
+ * SPI NAND has on-die ECC, which means we can correct as much as
+ * we are required to. This must be done after identification of
+ * the device.
+ */
+ chip->ecc.strength = chip->ecc_strength_ds;
+ chip->ecc.size = chip->ecc_step_ds;
+
+ /*
+ * Unlock all the device before calling nand_scan_tail. This is needed
+ * in case the in-flash bad block table needs to be created.
+ * We could override __nand_unlock(), but since it's not currently used
+ * by the NAND core we call this explicitly.
+ */
+ snand->buf[0] = SPI_NAND_PROT_UNLOCK_ALL;
+ ret = snand->write_reg(snand, SPI_NAND_LOCK_REG, snand->buf);
+ if (ret)
+ return ret;
+
+ /* Free the buffer and allocate a good one, to fit a page plus OOB */
+ kfree(snand->data_buf);
+
+ snand->buf_size = mtd->writesize + mtd->oobsize;
+ snand->data_buf = kmalloc(snand->buf_size, GFP_KERNEL);
+ if (!snand->data_buf)
+ return -ENOMEM;
+
+ ret = nand_scan_tail(mtd);
+ if (ret)
+ return ret;
+
+ return mtd_device_register(mtd, NULL, 0);
+}
+EXPORT_SYMBOL_GPL(spi_nand_register);
+
+void spi_nand_unregister(struct spi_nand *snand)
+{
+ kfree(snand->buf);
+ kfree(snand->data_buf);
+}
+EXPORT_SYMBOL_GPL(spi_nand_unregister);
+
+MODULE_AUTHOR("Ezequiel Garcia <ezequiel.garcia@imgtec.com>");
+MODULE_DESCRIPTION("Framework for SPI NAND");
+MODULE_LICENSE("GPL v2");
--- /dev/null
+++ b/include/linux/mtd/spi-nand.h
@@ -0,0 +1,54 @@
+/*
+ * Copyright (C) 2014 Imagination Technologies Ltd.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ */
+
+#ifndef __LINUX_MTD_SPI_NAND_H
+#define __LINUX_MTD_SPI_NAND_H
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+
+struct spi_nand {
+ struct nand_chip nand_chip;
+ struct device *dev;
+ const char *name;
+
+ u8 *buf, *data_buf;
+ size_t buf_size;
+ off_t buf_start;
+ unsigned int page_addr;
+ unsigned int bitflips;
+ bool ecc;
+ struct mtd_ooblayout_ops *ooblayout;
+
+ int (*reset)(struct spi_nand *snand);
+ int (*read_id)(struct spi_nand *snand, u8 *buf);
+
+ int (*write_disable)(struct spi_nand *snand);
+ int (*write_enable)(struct spi_nand *snand);
+
+ int (*read_reg)(struct spi_nand *snand, u8 opcode, u8 *buf);
+ int (*write_reg)(struct spi_nand *snand, u8 opcode, u8 *buf);
+ void (*get_ecc_status)(unsigned int status,
+ unsigned int *corrected,
+ unsigned int *ecc_errors);
+
+ int (*store_cache)(struct spi_nand *snand, unsigned int page_offset,
+ size_t length, u8 *write_buf);
+ int (*write_page)(struct spi_nand *snand, unsigned int page_addr);
+ int (*load_page)(struct spi_nand *snand, unsigned int page_addr);
+ int (*read_cache)(struct spi_nand *snand, unsigned int page_offset,
+ size_t length, u8 *read_buf);
+ int (*block_erase)(struct spi_nand *snand, unsigned int page_addr);
+
+ void *priv;
+};
+
+int spi_nand_register(struct spi_nand *snand, struct nand_flash_dev *flash_ids);
+void spi_nand_unregister(struct spi_nand *snand);
+
+#endif