openwrtv4/target/linux/ramips/files/drivers/net/ramips.c
2012-02-15 18:33:42 +00:00

979 lines
21 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2009 John Crispin <blogic@openwrt.org>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <ramips_eth_platform.h>
#include "ramips_eth.h"
#define TX_TIMEOUT (20 * HZ / 100)
#define MAX_RX_LENGTH 1600
#ifdef CONFIG_RALINK_RT305X
#include "ramips_esw.c"
#else
static inline int rt305x_esw_init(void) { return 0; }
static inline void rt305x_esw_exit(void) { }
#endif
#define phys_to_bus(a) (a & 0x1FFFFFFF)
#ifdef CONFIG_RAMIPS_ETH_DEBUG
#define RADEBUG(fmt, args...) printk(KERN_DEBUG fmt, ## args)
#else
#define RADEBUG(fmt, args...) do {} while (0)
#endif
static struct net_device * ramips_dev;
static void __iomem *ramips_fe_base = 0;
static inline void
ramips_fe_wr(u32 val, unsigned reg)
{
__raw_writel(val, ramips_fe_base + reg);
}
static inline u32
ramips_fe_rr(unsigned reg)
{
return __raw_readl(ramips_fe_base + reg);
}
static inline void
ramips_fe_int_disable(u32 mask)
{
ramips_fe_wr(ramips_fe_rr(RAMIPS_FE_INT_ENABLE) & ~mask,
RAMIPS_FE_INT_ENABLE);
/* flush write */
ramips_fe_rr(RAMIPS_FE_INT_ENABLE);
}
static inline void
ramips_fe_int_enable(u32 mask)
{
ramips_fe_wr(ramips_fe_rr(RAMIPS_FE_INT_ENABLE) | mask,
RAMIPS_FE_INT_ENABLE);
/* flush write */
ramips_fe_rr(RAMIPS_FE_INT_ENABLE);
}
static inline void
ramips_hw_set_macaddr(unsigned char *mac)
{
ramips_fe_wr((mac[0] << 8) | mac[1], RAMIPS_GDMA1_MAC_ADRH);
ramips_fe_wr((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
RAMIPS_GDMA1_MAC_ADRL);
}
static struct sk_buff *
ramips_alloc_skb(struct raeth_priv *re)
{
struct sk_buff *skb;
skb = netdev_alloc_skb(re->netdev, MAX_RX_LENGTH + NET_IP_ALIGN);
if (!skb)
return NULL;
skb_reserve(skb, NET_IP_ALIGN);
return skb;
}
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT3883)
#define RAMIPS_MDIO_RETRY 1000
static unsigned char *ramips_speed_str(struct raeth_priv *re)
{
switch (re->speed) {
case SPEED_1000:
return "1000";
case SPEED_100:
return "100";
case SPEED_10:
return "10";
}
return "?";
}
static void ramips_link_adjust(struct raeth_priv *re)
{
struct ramips_eth_platform_data *pdata;
u32 mdio_cfg;
pdata = re->parent->platform_data;
if (!re->link) {
netif_carrier_off(re->netdev);
netdev_info(re->netdev, "link down\n");
return;
}
mdio_cfg = RAMIPS_MDIO_CFG_TX_CLK_SKEW_200 |
RAMIPS_MDIO_CFG_TX_CLK_SKEW_200 |
RAMIPS_MDIO_CFG_GP1_FRC_EN;
if (re->duplex == DUPLEX_FULL)
mdio_cfg |= RAMIPS_MDIO_CFG_GP1_DUPLEX;
if (re->tx_fc)
mdio_cfg |= RAMIPS_MDIO_CFG_GP1_FC_TX;
if (re->rx_fc)
mdio_cfg |= RAMIPS_MDIO_CFG_GP1_FC_RX;
switch (re->speed) {
case SPEED_10:
mdio_cfg |= RAMIPS_MDIO_CFG_GP1_SPEED_10;
break;
case SPEED_100:
mdio_cfg |= RAMIPS_MDIO_CFG_GP1_SPEED_100;
break;
case SPEED_1000:
mdio_cfg |= RAMIPS_MDIO_CFG_GP1_SPEED_1000;
break;
default:
BUG();
}
ramips_fe_wr(mdio_cfg, RAMIPS_MDIO_CFG);
netif_carrier_on(re->netdev);
netdev_info(re->netdev, "link up (%sMbps/%s duplex)\n",
ramips_speed_str(re),
(DUPLEX_FULL == re->duplex) ? "Full" : "Half");
}
static int
ramips_mdio_wait_ready(struct raeth_priv *re)
{
int retries;
retries = RAMIPS_MDIO_RETRY;
while (1) {
u32 t;
t = ramips_fe_rr(RAMIPS_MDIO_ACCESS);
if ((t & (0x1 << 31)) == 0)
return 0;
if (retries-- == 0)
break;
udelay(1);
}
dev_err(re->parent, "MDIO operation timed out\n");
return -ETIMEDOUT;
}
static int
ramips_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg)
{
struct raeth_priv *re = bus->priv;
int err;
u32 t;
err = ramips_mdio_wait_ready(re);
if (err)
return 0xffff;
t = (phy_addr << 24) | (phy_reg << 16);
ramips_fe_wr(t, RAMIPS_MDIO_ACCESS);
t |= (1 << 31);
ramips_fe_wr(t, RAMIPS_MDIO_ACCESS);
err = ramips_mdio_wait_ready(re);
if (err)
return 0xffff;
RADEBUG("%s: addr=%04x, reg=%04x, value=%04x\n", __func__,
phy_addr, phy_reg, ramips_fe_rr(RAMIPS_MDIO_ACCESS) & 0xffff);
return ramips_fe_rr(RAMIPS_MDIO_ACCESS) & 0xffff;
}
static int
ramips_mdio_write(struct mii_bus *bus, int phy_addr, int phy_reg, u16 val)
{
struct raeth_priv *re = bus->priv;
int err;
u32 t;
RADEBUG("%s: addr=%04x, reg=%04x, value=%04x\n", __func__,
phy_addr, phy_reg, ramips_fe_rr(RAMIPS_MDIO_ACCESS) & 0xffff);
err = ramips_mdio_wait_ready(re);
if (err)
return err;
t = (1 << 30) | (phy_addr << 24) | (phy_reg << 16) | val;
ramips_fe_wr(t, RAMIPS_MDIO_ACCESS);
t |= (1 << 31);
ramips_fe_wr(t, RAMIPS_MDIO_ACCESS);
return ramips_mdio_wait_ready(re);
}
static int
ramips_mdio_reset(struct mii_bus *bus)
{
/* TODO */
return 0;
}
static int
ramips_mdio_init(struct raeth_priv *re)
{
int err;
int i;
re->mii_bus = mdiobus_alloc();
if (re->mii_bus == NULL)
return -ENOMEM;
re->mii_bus->name = "ramips_mdio";
re->mii_bus->read = ramips_mdio_read;
re->mii_bus->write = ramips_mdio_write;
re->mii_bus->reset = ramips_mdio_reset;
re->mii_bus->irq = re->mii_irq;
re->mii_bus->priv = re;
re->mii_bus->parent = re->parent;
snprintf(re->mii_bus->id, MII_BUS_ID_SIZE, "%s", "ramips_mdio");
re->mii_bus->phy_mask = 0;
for (i = 0; i < PHY_MAX_ADDR; i++)
re->mii_irq[i] = PHY_POLL;
err = mdiobus_register(re->mii_bus);
if (err)
goto err_free_bus;
return 0;
err_free_bus:
kfree(re->mii_bus);
return err;
}
static void
ramips_mdio_cleanup(struct raeth_priv *re)
{
mdiobus_unregister(re->mii_bus);
kfree(re->mii_bus);
}
static void
ramips_phy_link_adjust(struct net_device *dev)
{
struct raeth_priv *re = netdev_priv(dev);
struct phy_device *phydev = re->phy_dev;
unsigned long flags;
int status_change = 0;
spin_lock_irqsave(&re->phy_lock, flags);
if (phydev->link)
if (re->duplex != phydev->duplex ||
re->speed != phydev->speed)
status_change = 1;
if (phydev->link != re->link)
status_change = 1;
re->link = phydev->link;
re->duplex = phydev->duplex;
re->speed = phydev->speed;
if (status_change)
ramips_link_adjust(re);
spin_unlock_irqrestore(&re->phy_lock, flags);
}
static int
ramips_phy_connect_multi(struct raeth_priv *re)
{
struct net_device *netdev = re->netdev;
struct ramips_eth_platform_data *pdata;
struct phy_device *phydev = NULL;
int phy_addr;
int ret = 0;
pdata = re->parent->platform_data;
for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
if (!(pdata->phy_mask & (1 << phy_addr)))
continue;
if (re->mii_bus->phy_map[phy_addr] == NULL)
continue;
RADEBUG("%s: PHY found at %s, uid=%08x\n",
netdev->name,
dev_name(&re->mii_bus->phy_map[phy_addr]->dev),
re->mii_bus->phy_map[phy_addr]->phy_id);
if (phydev == NULL)
phydev = re->mii_bus->phy_map[phy_addr];
}
if (!phydev) {
netdev_err(netdev, "no PHY found with phy_mask=%08x\n",
pdata->phy_mask);
return -ENODEV;
}
re->phy_dev = phy_connect(netdev, dev_name(&phydev->dev),
ramips_phy_link_adjust, 0,
pdata->phy_if_mode);
if (IS_ERR(re->phy_dev)) {
netdev_err(netdev, "could not connect to PHY at %s\n",
dev_name(&phydev->dev));
return PTR_ERR(re->phy_dev);
}
phydev->supported &= PHY_GBIT_FEATURES;
phydev->advertising = phydev->supported;
RADEBUG("%s: connected to PHY at %s [uid=%08x, driver=%s]\n",
netdev->name, dev_name(&phydev->dev),
phydev->phy_id, phydev->drv->name);
re->link = 0;
re->speed = 0;
re->duplex = -1;
re->rx_fc = 0;
re->tx_fc = 0;
return ret;
}
static int
ramips_phy_connect_fixed(struct raeth_priv *re)
{
struct ramips_eth_platform_data *pdata;
pdata = re->parent->platform_data;
switch (pdata->speed) {
case SPEED_10:
case SPEED_100:
case SPEED_1000:
break;
default:
netdev_err(re->netdev, "invalid speed specified\n");
return -EINVAL;
}
RADEBUG("%s: using fixed link parameters\n", re->netdev->name);
re->speed = pdata->speed;
re->duplex = pdata->duplex;
re->tx_fc = pdata->tx_fc;
re->rx_fc = pdata->tx_fc;
return 0;
}
static int
ramips_phy_connect(struct raeth_priv *re)
{
struct ramips_eth_platform_data *pdata;
pdata = re->parent->platform_data;
if (pdata->phy_mask)
return ramips_phy_connect_multi(re);
return ramips_phy_connect_fixed(re);
}
static void
ramips_phy_disconnect(struct raeth_priv *re)
{
if (re->phy_dev)
phy_disconnect(re->phy_dev);
}
static void
ramips_phy_start(struct raeth_priv *re)
{
unsigned long flags;
if (re->phy_dev) {
phy_start(re->phy_dev);
} else {
spin_lock_irqsave(&re->phy_lock, flags);
re->link = 1;
ramips_link_adjust(re);
spin_unlock_irqrestore(&re->phy_lock, flags);
}
}
static void
ramips_phy_stop(struct raeth_priv *re)
{
unsigned long flags;
if (re->phy_dev)
phy_stop(re->phy_dev);
spin_lock_irqsave(&re->phy_lock, flags);
re->link = 0;
ramips_link_adjust(re);
spin_unlock_irqrestore(&re->phy_lock, flags);
}
#else
static inline int
ramips_mdio_init(struct raeth_priv *re)
{
return 0;
}
static inline void
ramips_mdio_cleanup(struct raeth_priv *re)
{
}
static inline int
ramips_phy_connect(struct raeth_priv *re)
{
return 0;
}
static inline void
ramips_phy_disconnect(struct raeth_priv *re)
{
}
static inline void
ramips_phy_start(struct raeth_priv *re)
{
}
static inline void
ramips_phy_stop(struct raeth_priv *re)
{
}
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT3883 */
static void
ramips_cleanup_dma(struct raeth_priv *re)
{
int i;
for (i = 0; i < NUM_RX_DESC; i++)
if (re->rx_skb[i]) {
dma_unmap_single(&re->netdev->dev, re->rx_dma[i],
MAX_RX_LENGTH, DMA_FROM_DEVICE);
dev_kfree_skb_any(re->rx_skb[i]);
}
if (re->rx)
dma_free_coherent(&re->netdev->dev,
NUM_RX_DESC * sizeof(struct ramips_rx_dma),
re->rx, re->rx_desc_dma);
if (re->tx)
dma_free_coherent(&re->netdev->dev,
NUM_TX_DESC * sizeof(struct ramips_tx_dma),
re->tx, re->tx_desc_dma);
}
static int
ramips_alloc_dma(struct raeth_priv *re)
{
int err = -ENOMEM;
int i;
re->skb_free_idx = 0;
/* setup tx ring */
re->tx = dma_alloc_coherent(&re->netdev->dev,
NUM_TX_DESC * sizeof(struct ramips_tx_dma),
&re->tx_desc_dma, GFP_ATOMIC);
if (!re->tx)
goto err_cleanup;
memset(re->tx, 0, NUM_TX_DESC * sizeof(struct ramips_tx_dma));
for (i = 0; i < NUM_TX_DESC; i++) {
re->tx[i].txd2 = TX_DMA_LSO | TX_DMA_DONE;
re->tx[i].txd4 = TX_DMA_QN(3) | TX_DMA_PN(1);
}
/* setup rx ring */
re->rx = dma_alloc_coherent(&re->netdev->dev,
NUM_RX_DESC * sizeof(struct ramips_rx_dma),
&re->rx_desc_dma, GFP_ATOMIC);
if (!re->rx)
goto err_cleanup;
memset(re->rx, 0, sizeof(struct ramips_rx_dma) * NUM_RX_DESC);
for (i = 0; i < NUM_RX_DESC; i++) {
dma_addr_t dma_addr;
struct sk_buff *new_skb;
new_skb = ramips_alloc_skb(re);
if (!new_skb)
goto err_cleanup;
dma_addr = dma_map_single(&re->netdev->dev, new_skb->data,
MAX_RX_LENGTH, DMA_FROM_DEVICE);
re->rx_dma[i] = dma_addr;
re->rx[i].rxd1 = (unsigned int) re->rx_dma[i];
re->rx[i].rxd2 |= RX_DMA_LSO;
re->rx_skb[i] = new_skb;
}
return 0;
err_cleanup:
ramips_cleanup_dma(re);
return err;
}
static void
ramips_setup_dma(struct raeth_priv *re)
{
ramips_fe_wr(re->tx_desc_dma, RAMIPS_TX_BASE_PTR0);
ramips_fe_wr(NUM_TX_DESC, RAMIPS_TX_MAX_CNT0);
ramips_fe_wr(0, RAMIPS_TX_CTX_IDX0);
ramips_fe_wr(RAMIPS_PST_DTX_IDX0, RAMIPS_PDMA_RST_CFG);
ramips_fe_wr(re->rx_desc_dma, RAMIPS_RX_BASE_PTR0);
ramips_fe_wr(NUM_RX_DESC, RAMIPS_RX_MAX_CNT0);
ramips_fe_wr((NUM_RX_DESC - 1), RAMIPS_RX_CALC_IDX0);
ramips_fe_wr(RAMIPS_PST_DRX_IDX0, RAMIPS_PDMA_RST_CFG);
}
static int
ramips_eth_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct raeth_priv *re = netdev_priv(dev);
unsigned long tx;
unsigned int tx_next;
dma_addr_t mapped_addr;
if (re->plat->min_pkt_len) {
if (skb->len < re->plat->min_pkt_len) {
if (skb_padto(skb, re->plat->min_pkt_len)) {
printk(KERN_ERR
"ramips_eth: skb_padto failed\n");
kfree_skb(skb);
return 0;
}
skb_put(skb, re->plat->min_pkt_len - skb->len);
}
}
dev->trans_start = jiffies;
mapped_addr = dma_map_single(&re->netdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
spin_lock(&re->page_lock);
tx = ramips_fe_rr(RAMIPS_TX_CTX_IDX0);
tx_next = (tx + 1) % NUM_TX_DESC;
if ((re->tx_skb[tx]) || (re->tx_skb[tx_next]) ||
!(re->tx[tx].txd2 & TX_DMA_DONE) ||
!(re->tx[tx_next].txd2 & TX_DMA_DONE))
goto out;
re->tx[tx].txd1 = (unsigned int) mapped_addr;
re->tx[tx].txd2 &= ~(TX_DMA_PLEN0_MASK | TX_DMA_DONE);
re->tx[tx].txd2 |= TX_DMA_PLEN0(skb->len);
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
re->tx_skb[tx] = skb;
wmb();
ramips_fe_wr(tx_next, RAMIPS_TX_CTX_IDX0);
spin_unlock(&re->page_lock);
return NETDEV_TX_OK;
out:
spin_unlock(&re->page_lock);
dev->stats.tx_dropped++;
kfree_skb(skb);
return NETDEV_TX_OK;
}
static void
ramips_eth_rx_hw(unsigned long ptr)
{
struct net_device *dev = (struct net_device *) ptr;
struct raeth_priv *re = netdev_priv(dev);
int rx;
int max_rx = 16;
while (max_rx) {
struct sk_buff *rx_skb, *new_skb;
int pktlen;
rx = (ramips_fe_rr(RAMIPS_RX_CALC_IDX0) + 1) % NUM_RX_DESC;
if (!(re->rx[rx].rxd2 & RX_DMA_DONE))
break;
max_rx--;
rx_skb = re->rx_skb[rx];
pktlen = RX_DMA_PLEN0(re->rx[rx].rxd2);
new_skb = ramips_alloc_skb(re);
/* Reuse the buffer on allocation failures */
if (new_skb) {
dma_addr_t dma_addr;
dma_unmap_single(&re->netdev->dev, re->rx_dma[rx],
MAX_RX_LENGTH, DMA_FROM_DEVICE);
skb_put(rx_skb, pktlen);
rx_skb->dev = dev;
rx_skb->protocol = eth_type_trans(rx_skb, dev);
rx_skb->ip_summed = CHECKSUM_NONE;
dev->stats.rx_packets++;
dev->stats.rx_bytes += pktlen;
netif_rx(rx_skb);
re->rx_skb[rx] = new_skb;
dma_addr = dma_map_single(&re->netdev->dev,
new_skb->data,
MAX_RX_LENGTH,
DMA_FROM_DEVICE);
re->rx_dma[rx] = dma_addr;
re->rx[rx].rxd1 = (unsigned int) dma_addr;
} else {
dev->stats.rx_dropped++;
}
re->rx[rx].rxd2 &= ~RX_DMA_DONE;
wmb();
ramips_fe_wr(rx, RAMIPS_RX_CALC_IDX0);
}
if (max_rx == 0)
tasklet_schedule(&re->rx_tasklet);
else
ramips_fe_int_enable(RAMIPS_RX_DLY_INT);
}
static void
ramips_eth_tx_housekeeping(unsigned long ptr)
{
struct net_device *dev = (struct net_device*)ptr;
struct raeth_priv *re = netdev_priv(dev);
spin_lock(&re->page_lock);
while ((re->tx[re->skb_free_idx].txd2 & TX_DMA_DONE) &&
(re->tx_skb[re->skb_free_idx])) {
dev_kfree_skb_irq(re->tx_skb[re->skb_free_idx]);
re->tx_skb[re->skb_free_idx] = 0;
re->skb_free_idx++;
if (re->skb_free_idx >= NUM_TX_DESC)
re->skb_free_idx = 0;
}
spin_unlock(&re->page_lock);
ramips_fe_int_enable(RAMIPS_TX_DLY_INT);
}
static void
ramips_eth_timeout(struct net_device *dev)
{
struct raeth_priv *re = netdev_priv(dev);
tasklet_schedule(&re->tx_housekeeping_tasklet);
}
static irqreturn_t
ramips_eth_irq(int irq, void *dev)
{
struct raeth_priv *re = netdev_priv(dev);
unsigned long fe_int = ramips_fe_rr(RAMIPS_FE_INT_STATUS);
ramips_fe_wr(0xFFFFFFFF, RAMIPS_FE_INT_STATUS);
if (fe_int & RAMIPS_RX_DLY_INT) {
ramips_fe_int_disable(RAMIPS_RX_DLY_INT);
tasklet_schedule(&re->rx_tasklet);
}
if (fe_int & RAMIPS_TX_DLY_INT) {
ramips_fe_int_disable(RAMIPS_TX_DLY_INT);
tasklet_schedule(&re->tx_housekeeping_tasklet);
}
return IRQ_HANDLED;
}
static int
ramips_eth_open(struct net_device *dev)
{
struct raeth_priv *re = netdev_priv(dev);
int err;
err = request_irq(dev->irq, ramips_eth_irq, IRQF_DISABLED,
dev->name, dev);
if (err)
return err;
err = ramips_alloc_dma(re);
if (err)
goto err_free_irq;
ramips_hw_set_macaddr(dev->dev_addr);
ramips_setup_dma(re);
ramips_fe_wr((ramips_fe_rr(RAMIPS_PDMA_GLO_CFG) & 0xff) |
(RAMIPS_TX_WB_DDONE | RAMIPS_RX_DMA_EN |
RAMIPS_TX_DMA_EN | RAMIPS_PDMA_SIZE_4DWORDS),
RAMIPS_PDMA_GLO_CFG);
ramips_fe_wr((ramips_fe_rr(RAMIPS_FE_GLO_CFG) &
~(RAMIPS_US_CYC_CNT_MASK << RAMIPS_US_CYC_CNT_SHIFT)) |
((re->plat->sys_freq / RAMIPS_US_CYC_CNT_DIVISOR) << RAMIPS_US_CYC_CNT_SHIFT),
RAMIPS_FE_GLO_CFG);
tasklet_init(&re->tx_housekeeping_tasklet, ramips_eth_tx_housekeeping,
(unsigned long)dev);
tasklet_init(&re->rx_tasklet, ramips_eth_rx_hw, (unsigned long)dev);
ramips_phy_start(re);
ramips_fe_wr(RAMIPS_DELAY_INIT, RAMIPS_DLY_INT_CFG);
ramips_fe_wr(RAMIPS_TX_DLY_INT | RAMIPS_RX_DLY_INT, RAMIPS_FE_INT_ENABLE);
ramips_fe_wr(ramips_fe_rr(RAMIPS_GDMA1_FWD_CFG) &
~(RAMIPS_GDM1_ICS_EN | RAMIPS_GDM1_TCS_EN | RAMIPS_GDM1_UCS_EN | 0xffff),
RAMIPS_GDMA1_FWD_CFG);
ramips_fe_wr(ramips_fe_rr(RAMIPS_CDMA_CSG_CFG) &
~(RAMIPS_ICS_GEN_EN | RAMIPS_TCS_GEN_EN | RAMIPS_UCS_GEN_EN),
RAMIPS_CDMA_CSG_CFG);
ramips_fe_wr(RAMIPS_PSE_FQFC_CFG_INIT, RAMIPS_PSE_FQ_CFG);
ramips_fe_wr(1, RAMIPS_FE_RST_GL);
ramips_fe_wr(0, RAMIPS_FE_RST_GL);
netif_start_queue(dev);
return 0;
err_free_irq:
free_irq(dev->irq, dev);
return err;
}
static int
ramips_eth_stop(struct net_device *dev)
{
struct raeth_priv *re = netdev_priv(dev);
ramips_fe_wr(ramips_fe_rr(RAMIPS_PDMA_GLO_CFG) &
~(RAMIPS_TX_WB_DDONE | RAMIPS_RX_DMA_EN | RAMIPS_TX_DMA_EN),
RAMIPS_PDMA_GLO_CFG);
/* disable all interrupts in the hw */
ramips_fe_wr(0, RAMIPS_FE_INT_ENABLE);
ramips_phy_stop(re);
free_irq(dev->irq, dev);
netif_stop_queue(dev);
tasklet_kill(&re->tx_housekeeping_tasklet);
tasklet_kill(&re->rx_tasklet);
ramips_cleanup_dma(re);
RADEBUG("ramips_eth: stopped\n");
return 0;
}
static int __init
ramips_eth_probe(struct net_device *dev)
{
struct raeth_priv *re = netdev_priv(dev);
int err;
BUG_ON(!re->plat->reset_fe);
re->plat->reset_fe();
net_srandom(jiffies);
memcpy(dev->dev_addr, re->plat->mac, ETH_ALEN);
ether_setup(dev);
dev->mtu = 1500;
dev->watchdog_timeo = TX_TIMEOUT;
spin_lock_init(&re->page_lock);
spin_lock_init(&re->phy_lock);
err = ramips_mdio_init(re);
if (err)
return err;
err = ramips_phy_connect(re);
if (err)
goto err_mdio_cleanup;
return 0;
err_mdio_cleanup:
ramips_mdio_cleanup(re);
return err;
}
static void
ramips_eth_uninit(struct net_device *dev)
{
struct raeth_priv *re = netdev_priv(dev);
ramips_phy_disconnect(re);
ramips_mdio_cleanup(re);
}
static const struct net_device_ops ramips_eth_netdev_ops = {
.ndo_init = ramips_eth_probe,
.ndo_uninit = ramips_eth_uninit,
.ndo_open = ramips_eth_open,
.ndo_stop = ramips_eth_stop,
.ndo_start_xmit = ramips_eth_hard_start_xmit,
.ndo_tx_timeout = ramips_eth_timeout,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static int
ramips_eth_plat_probe(struct platform_device *plat)
{
struct raeth_priv *re;
struct ramips_eth_platform_data *data = plat->dev.platform_data;
struct resource *res;
int err;
if (!data) {
dev_err(&plat->dev, "no platform data specified\n");
return -EINVAL;
}
res = platform_get_resource(plat, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&plat->dev, "no memory resource found\n");
return -ENXIO;
}
ramips_fe_base = ioremap_nocache(res->start, res->end - res->start + 1);
if (!ramips_fe_base)
return -ENOMEM;
ramips_dev = alloc_etherdev(sizeof(struct raeth_priv));
if (!ramips_dev) {
dev_err(&plat->dev, "alloc_etherdev failed\n");
err = -ENOMEM;
goto err_unmap;
}
strcpy(ramips_dev->name, "eth%d");
ramips_dev->irq = platform_get_irq(plat, 0);
if (ramips_dev->irq < 0) {
dev_err(&plat->dev, "no IRQ resource found\n");
err = -ENXIO;
goto err_free_dev;
}
ramips_dev->addr_len = ETH_ALEN;
ramips_dev->base_addr = (unsigned long)ramips_fe_base;
ramips_dev->netdev_ops = &ramips_eth_netdev_ops;
re = netdev_priv(ramips_dev);
re->netdev = ramips_dev;
re->parent = &plat->dev;
re->speed = data->speed;
re->duplex = data->duplex;
re->rx_fc = data->rx_fc;
re->tx_fc = data->tx_fc;
re->plat = data;
err = register_netdev(ramips_dev);
if (err) {
dev_err(&plat->dev, "error bringing up device\n");
goto err_free_dev;
}
RADEBUG("ramips_eth: loaded\n");
return 0;
err_free_dev:
kfree(ramips_dev);
err_unmap:
iounmap(ramips_fe_base);
return err;
}
static int
ramips_eth_plat_remove(struct platform_device *plat)
{
unregister_netdev(ramips_dev);
free_netdev(ramips_dev);
RADEBUG("ramips_eth: unloaded\n");
return 0;
}
static struct platform_driver ramips_eth_driver = {
.probe = ramips_eth_plat_probe,
.remove = ramips_eth_plat_remove,
.driver = {
.name = "ramips_eth",
.owner = THIS_MODULE,
},
};
static int __init
ramips_eth_init(void)
{
int ret;
ret = rt305x_esw_init();
if (ret)
return ret;
ret = platform_driver_register(&ramips_eth_driver);
if (ret) {
printk(KERN_ERR
"ramips_eth: Error registering platfom driver!\n");
goto esw_cleanup;
}
return 0;
esw_cleanup:
rt305x_esw_exit();
return ret;
}
static void __exit
ramips_eth_cleanup(void)
{
platform_driver_unregister(&ramips_eth_driver);
rt305x_esw_exit();
}
module_init(ramips_eth_init);
module_exit(ramips_eth_cleanup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("ethernet driver for ramips boards");