openwrtv4/target/linux/rb532/files-2.6.23/drivers/net/korina.c
2008-07-15 17:17:04 +00:00

1167 lines
31 KiB
C

/**************************************************************************
*
* BRIEF MODULE DESCRIPTION
* Driver for the IDT RC32434 on-chip ethernet controller.
*
* Copyright 2004 IDT Inc. (rischelp@idt.com)
* Copyright 2006 Felix Fietkau <nbd@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
**************************************************************************
* May 2004 rkt, neb
*
* Based on the driver developed by B. Maruthanayakam, H. Kou and others.
*
* Aug 2004 Sadik
*
* Added NAPI
*
**************************************************************************
*/
#include <linux/autoconf.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/ctype.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/proc_fs.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <asm/bootinfo.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <asm/pgtable.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/rc32434/rb.h>
#include "rc32434_eth.h"
#define DRIVER_VERSION "(mar2904)"
#define DRIVER_NAME "rc32434 Ethernet driver. " DRIVER_VERSION
#define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
((dev)->dev_addr[1]))
#define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
((dev)->dev_addr[3] << 16) | \
((dev)->dev_addr[4] << 8) | \
((dev)->dev_addr[5]))
#define MII_CLOCK 1250000 /* no more than 2.5MHz */
#define CONFIG_IDT_USE_NAPI 1
static inline void rc32434_abort_tx(struct net_device *dev)
{
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
rc32434_abort_dma(dev, lp->tx_dma_regs);
}
static inline void rc32434_abort_rx(struct net_device *dev)
{
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
rc32434_abort_dma(dev, lp->rx_dma_regs);
}
static inline void rc32434_start_tx(struct rc32434_local *lp, volatile DMAD_t td)
{
rc32434_start_dma(lp->tx_dma_regs, CPHYSADDR(td));
}
static inline void rc32434_start_rx(struct rc32434_local *lp, volatile DMAD_t rd)
{
rc32434_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
}
static inline void rc32434_chain_tx(struct rc32434_local *lp, volatile DMAD_t td)
{
rc32434_chain_dma(lp->tx_dma_regs, CPHYSADDR(td));
}
static inline void rc32434_chain_rx(struct rc32434_local *lp, volatile DMAD_t rd)
{
rc32434_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
}
#ifdef RC32434_PROC_DEBUG
static int rc32434_read_proc(char *buf, char **start, off_t fpos,
int length, int *eof, void *data)
{
struct net_device *dev = (struct net_device *)data;
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
int len = 0;
/* print out header */
len += sprintf(buf + len, "\n\tKorina Ethernet Debug\n\n");
len += sprintf (buf + len,
"DMA halt count = %10d, DMA run count = %10d\n",
lp->dma_halt_cnt, lp->dma_run_cnt);
if (fpos >= len) {
*start = buf;
*eof = 1;
return 0;
}
*start = buf + fpos;
if ((len -= fpos) > length)
return length;
*eof = 1;
return len;
}
#endif
/*
* Restart the RC32434 ethernet controller.
*/
static int rc32434_restart(struct net_device *dev)
{
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
/*
* Disable interrupts
*/
disable_irq(lp->rx_irq);
disable_irq(lp->tx_irq);
#ifdef RC32434_REVISION
disable_irq(lp->ovr_irq);
#endif
disable_irq(lp->und_irq);
/* Mask F E bit in Tx DMA */
__raw_writel(__raw_readl(&lp->tx_dma_regs->dmasm) | DMASM_f_m | DMASM_e_m, &lp->tx_dma_regs->dmasm);
/* Mask D H E bit in Rx DMA */
__raw_writel(__raw_readl(&lp->rx_dma_regs->dmasm) | DMASM_d_m | DMASM_h_m | DMASM_e_m, &lp->rx_dma_regs->dmasm);
rc32434_init(dev);
rc32434_multicast_list(dev);
enable_irq(lp->und_irq);
#ifdef RC32434_REVISION
enable_irq(lp->ovr_irq);
#endif
enable_irq(lp->tx_irq);
enable_irq(lp->rx_irq);
return 0;
}
static int rc32434_probe(struct platform_device *pdev)
{
struct korina_device *bif = (struct korina_device *) pdev->dev.platform_data;
struct rc32434_local *lp = NULL;
struct net_device *dev = NULL;
struct resource *r;
int i, retval,err;
dev = alloc_etherdev(sizeof(struct rc32434_local));
if(!dev) {
ERR("Korina_eth: alloc_etherdev failed\n");
return -1;
}
platform_set_drvdata(pdev, dev);
SET_MODULE_OWNER(dev);
bif->dev = dev;
memcpy(dev->dev_addr, bif->mac, 6);
/* Initialize the device structure. */
if (dev->priv == NULL) {
lp = (struct rc32434_local *)kmalloc(sizeof(*lp), GFP_KERNEL);
memset(lp, 0, sizeof(struct rc32434_local));
}
else {
lp = (struct rc32434_local *)dev->priv;
}
lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
dev->base_addr = r->start;
lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
if (!lp->eth_regs) {
ERR("Can't remap eth registers\n");
retval = -ENXIO;
goto probe_err_out;
}
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
if (!lp->rx_dma_regs) {
ERR("Can't remap Rx DMA registers\n");
retval = -ENXIO;
goto probe_err_out;
}
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
if (!lp->tx_dma_regs) {
ERR("Can't remap Tx DMA registers\n");
retval = -ENXIO;
goto probe_err_out;
}
#ifdef RC32434_PROC_DEBUG
lp->ps = create_proc_read_entry (bif->name, 0, proc_net,
rc32434_read_proc, dev);
#endif
lp->td_ring = (DMAD_t)kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
if (!lp->td_ring) {
ERR("Can't allocate descriptors\n");
retval = -ENOMEM;
goto probe_err_out;
}
dma_cache_inv((unsigned long)(lp->td_ring), TD_RING_SIZE + RD_RING_SIZE);
/* now convert TD_RING pointer to KSEG1 */
lp->td_ring = (DMAD_t )KSEG1ADDR(lp->td_ring);
lp->rd_ring = &lp->td_ring[RC32434_NUM_TDS];
spin_lock_init(&lp->lock);
/* just use the rx dma irq */
dev->irq = lp->rx_irq;
dev->priv = lp;
dev->open = rc32434_open;
dev->stop = rc32434_close;
dev->hard_start_xmit = rc32434_send_packet;
dev->get_stats = rc32434_get_stats;
dev->set_multicast_list = &rc32434_multicast_list;
dev->tx_timeout = rc32434_tx_timeout;
dev->watchdog_timeo = RC32434_TX_TIMEOUT;
#ifdef CONFIG_IDT_USE_NAPI
dev->poll = rc32434_poll;
dev->weight = 64;
printk("Using NAPI with weight %d\n",dev->weight);
#else
lp->rx_tasklet = kmalloc(sizeof(struct tasklet_struct), GFP_KERNEL);
tasklet_init(lp->rx_tasklet, rc32434_rx_tasklet, (unsigned long)dev);
#endif
lp->tx_tasklet = kmalloc(sizeof(struct tasklet_struct), GFP_KERNEL);
tasklet_init(lp->tx_tasklet, rc32434_tx_tasklet, (unsigned long)dev);
if ((err = register_netdev(dev))) {
printk(KERN_ERR "rc32434 ethernet. Cannot register net device %d\n", err);
free_netdev(dev);
retval = -EINVAL;
goto probe_err_out;
}
INFO("Rx IRQ %d, Tx IRQ %d, ", lp->rx_irq, lp->tx_irq);
for (i = 0; i < 6; i++) {
printk("%2.2x", dev->dev_addr[i]);
if (i<5)
printk(":");
}
printk("\n");
return 0;
probe_err_out:
rc32434_cleanup_module();
ERR(" failed. Returns %d\n", retval);
return retval;
}
static int rc32434_remove(struct platform_device *pdev)
{
struct korina_device *bif = (struct korina_device *) pdev->dev.platform_data;
if (bif->dev != NULL) {
struct rc32434_local *lp = (struct rc32434_local *)bif->dev->priv;
if (lp != NULL) {
if (lp->eth_regs)
iounmap((void*)lp->eth_regs);
if (lp->rx_dma_regs)
iounmap((void*)lp->rx_dma_regs);
if (lp->tx_dma_regs)
iounmap((void*)lp->tx_dma_regs);
if (lp->td_ring)
kfree((void*)KSEG0ADDR(lp->td_ring));
#ifdef RC32434_PROC_DEBUG
if (lp->ps) {
remove_proc_entry(bif->name, proc_net);
}
#endif
kfree(lp);
}
platform_set_drvdata(pdev, NULL);
unregister_netdev(bif->dev);
free_netdev(bif->dev);
kfree(bif->dev);
}
return 0;
}
static int rc32434_open(struct net_device *dev)
{
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
/* Initialize */
if (rc32434_init(dev)) {
ERR("Error: cannot open the Ethernet device\n");
return -EAGAIN;
}
/* Install the interrupt handler that handles the Done Finished Ovr and Und Events */
if (request_irq(lp->rx_irq, &rc32434_rx_dma_interrupt,
SA_SHIRQ | SA_INTERRUPT,
"Korina ethernet Rx", dev)) {
ERR(": unable to get Rx DMA IRQ %d\n",
lp->rx_irq);
return -EAGAIN;
}
if (request_irq(lp->tx_irq, &rc32434_tx_dma_interrupt,
SA_SHIRQ | SA_INTERRUPT,
"Korina ethernet Tx", dev)) {
ERR(": unable to get Tx DMA IRQ %d\n",
lp->tx_irq);
free_irq(lp->rx_irq, dev);
return -EAGAIN;
}
#ifdef RC32434_REVISION
/* Install handler for overrun error. */
if (request_irq(lp->ovr_irq, &rc32434_ovr_interrupt,
SA_SHIRQ | SA_INTERRUPT,
"Ethernet Overflow", dev)) {
ERR(": unable to get OVR IRQ %d\n",
lp->ovr_irq);
free_irq(lp->rx_irq, dev);
free_irq(lp->tx_irq, dev);
return -EAGAIN;
}
#endif
/* Install handler for underflow error. */
if (request_irq(lp->und_irq, &rc32434_und_interrupt,
SA_SHIRQ | SA_INTERRUPT,
"Ethernet Underflow", dev)) {
ERR(": unable to get UND IRQ %d\n",
lp->und_irq);
free_irq(lp->rx_irq, dev);
free_irq(lp->tx_irq, dev);
#ifdef RC32434_REVISION
free_irq(lp->ovr_irq, dev);
#endif
return -EAGAIN;
}
return 0;
}
static int rc32434_close(struct net_device *dev)
{
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
u32 tmp;
/* Disable interrupts */
disable_irq(lp->rx_irq);
disable_irq(lp->tx_irq);
#ifdef RC32434_REVISION
disable_irq(lp->ovr_irq);
#endif
disable_irq(lp->und_irq);
tmp = __raw_readl(&lp->tx_dma_regs->dmasm);
tmp = tmp | DMASM_f_m | DMASM_e_m;
__raw_writel(tmp, &lp->tx_dma_regs->dmasm);
tmp = __raw_readl(&lp->rx_dma_regs->dmasm);
tmp = tmp | DMASM_d_m | DMASM_h_m | DMASM_e_m;
__raw_writel(tmp, &lp->rx_dma_regs->dmasm);
free_irq(lp->rx_irq, dev);
free_irq(lp->tx_irq, dev);
#ifdef RC32434_REVISION
free_irq(lp->ovr_irq, dev);
#endif
free_irq(lp->und_irq, dev);
return 0;
}
/* transmit packet */
static int rc32434_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
unsigned long flags;
u32 length;
DMAD_t td;
spin_lock_irqsave(&lp->lock, flags);
td = &lp->td_ring[lp->tx_chain_tail];
/* stop queue when full, drop pkts if queue already full */
if(lp->tx_count >= (RC32434_NUM_TDS - 2)) {
lp->tx_full = 1;
if(lp->tx_count == (RC32434_NUM_TDS - 2)) {
netif_stop_queue(dev);
}
else {
lp->stats.tx_dropped++;
dev_kfree_skb_any(skb);
spin_unlock_irqrestore(&lp->lock, flags);
return 1;
}
}
lp->tx_count ++;
lp->tx_skb[lp->tx_chain_tail] = skb;
length = skb->len;
dma_cache_wback((u32)skb->data, skb->len);
/* Setup the transmit descriptor. */
dma_cache_inv((u32) td, sizeof(*td));
td->ca = CPHYSADDR(skb->data);
if(__raw_readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
if( lp->tx_chain_status == empty ) {
td->control = DMA_COUNT(length) |DMAD_cof_m |DMAD_iof_m; /* Update tail */
lp->tx_chain_tail = (lp->tx_chain_tail + 1) & RC32434_TDS_MASK; /* Move tail */
__raw_writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), &(lp->tx_dma_regs->dmandptr)); /* Write to NDPTR */
lp->tx_chain_head = lp->tx_chain_tail; /* Move head to tail */
}
else {
td->control = DMA_COUNT(length) |DMAD_cof_m|DMAD_iof_m; /* Update tail */
lp->td_ring[(lp->tx_chain_tail-1)& RC32434_TDS_MASK].control &= ~(DMAD_cof_m); /* Link to prev */
lp->td_ring[(lp->tx_chain_tail-1)& RC32434_TDS_MASK].link = CPHYSADDR(td); /* Link to prev */
lp->tx_chain_tail = (lp->tx_chain_tail + 1) & RC32434_TDS_MASK; /* Move tail */
__raw_writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), &(lp->tx_dma_regs->dmandptr)); /* Write to NDPTR */
lp->tx_chain_head = lp->tx_chain_tail; /* Move head to tail */
lp->tx_chain_status = empty;
}
}
else {
if( lp->tx_chain_status == empty ) {
td->control = DMA_COUNT(length) |DMAD_cof_m |DMAD_iof_m; /* Update tail */
lp->tx_chain_tail = (lp->tx_chain_tail + 1) & RC32434_TDS_MASK; /* Move tail */
lp->tx_chain_status = filled;
}
else {
td->control = DMA_COUNT(length) |DMAD_cof_m |DMAD_iof_m; /* Update tail */
lp->td_ring[(lp->tx_chain_tail-1)& RC32434_TDS_MASK].control &= ~(DMAD_cof_m); /* Link to prev */
lp->td_ring[(lp->tx_chain_tail-1)& RC32434_TDS_MASK].link = CPHYSADDR(td); /* Link to prev */
lp->tx_chain_tail = (lp->tx_chain_tail + 1) & RC32434_TDS_MASK; /* Move tail */
}
}
dma_cache_wback((u32) td, sizeof(*td));
dev->trans_start = jiffies;
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
}
/* Ethernet MII-PHY Handler */
static void rc32434_mii_handler(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
unsigned long flags;
unsigned long duplex_status;
int port_addr = (lp->rx_irq == 0x2c? 1:0) << 8;
spin_lock_irqsave(&lp->lock, flags);
/* Two ports are using the same MII, the difference is the PHY address */
__raw_writel(0, &rc32434_eth0_regs->miimcfg);
__raw_writel(0, &rc32434_eth0_regs->miimcmd);
__raw_writel(port_addr |0x05, &rc32434_eth0_regs->miimaddr);
__raw_writel(MIIMCMD_scn_m, &rc32434_eth0_regs->miimcmd);
while(__raw_readl(&rc32434_eth0_regs->miimind) & MIIMIND_nv_m);
ERR("irq:%x port_addr:%x RDD:%x\n",
lp->rx_irq, port_addr, __raw_readl(&rc32434_eth0_regs->miimrdd));
duplex_status = (__raw_readl(&rc32434_eth0_regs->miimrdd) & 0x140)? ETHMAC2_fd_m: 0;
if(duplex_status != lp->duplex_mode) {
ERR("The MII-PHY is Auto-negotiated to %s-Duplex mode for Eth-%x\n", duplex_status? "Full":"Half", lp->rx_irq == 0x2c? 1:0);
lp->duplex_mode = duplex_status;
rc32434_restart(dev);
}
lp->mii_phy_timer.expires = jiffies + 10 * HZ;
add_timer(&lp->mii_phy_timer);
spin_unlock_irqrestore(&lp->lock, flags);
}
#ifdef RC32434_REVISION
/* Ethernet Rx Overflow interrupt */
static irqreturn_t
rc32434_ovr_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct rc32434_local *lp;
unsigned int ovr;
irqreturn_t retval = IRQ_NONE;
ASSERT(dev != NULL);
lp = (struct rc32434_local *)dev->priv;
spin_lock(&lp->lock);
ovr = __raw_readl(&lp->eth_regs->ethintfc);
if(ovr & ETHINTFC_ovr_m) {
netif_stop_queue(dev);
/* clear OVR bit */
__raw_writel((ovr & ~ETHINTFC_ovr_m), &lp->eth_regs->ethintfc);
/* Restart interface */
rc32434_restart(dev);
retval = IRQ_HANDLED;
}
spin_unlock(&lp->lock);
return retval;
}
#endif
/* Ethernet Tx Underflow interrupt */
static irqreturn_t
rc32434_und_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct rc32434_local *lp;
unsigned int und;
irqreturn_t retval = IRQ_NONE;
ASSERT(dev != NULL);
lp = (struct rc32434_local *)dev->priv;
spin_lock(&lp->lock);
und = __raw_readl(&lp->eth_regs->ethintfc);
if(und & ETHINTFC_und_m) {
netif_stop_queue(dev);
__raw_writel((und & ~ETHINTFC_und_m), &lp->eth_regs->ethintfc);
/* Restart interface */
rc32434_restart(dev);
retval = IRQ_HANDLED;
}
spin_unlock(&lp->lock);
return retval;
}
/* Ethernet Rx DMA interrupt */
static irqreturn_t
rc32434_rx_dma_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct rc32434_local* lp;
volatile u32 dmas,dmasm;
irqreturn_t retval;
ASSERT(dev != NULL);
lp = (struct rc32434_local *)dev->priv;
spin_lock(&lp->lock);
dmas = __raw_readl(&lp->rx_dma_regs->dmas);
if(dmas & (DMAS_d_m|DMAS_h_m|DMAS_e_m)) {
/* Mask D H E bit in Rx DMA */
dmasm = __raw_readl(&lp->rx_dma_regs->dmasm);
__raw_writel(dmasm | (DMASM_d_m | DMASM_h_m | DMASM_e_m), &lp->rx_dma_regs->dmasm);
#ifdef CONFIG_IDT_USE_NAPI
if(netif_rx_schedule_prep(dev))
__netif_rx_schedule(dev);
#else
tasklet_hi_schedule(lp->rx_tasklet);
#endif
if (dmas & DMAS_e_m)
ERR(": DMA error\n");
retval = IRQ_HANDLED;
}
else
retval = IRQ_NONE;
spin_unlock(&lp->lock);
return retval;
}
#ifdef CONFIG_IDT_USE_NAPI
static int rc32434_poll(struct net_device *rx_data_dev, int *budget)
#else
static void rc32434_rx_tasklet(unsigned long rx_data_dev)
#endif
{
struct net_device *dev = (struct net_device *)rx_data_dev;
struct rc32434_local* lp = netdev_priv(dev);
volatile DMAD_t rd = &lp->rd_ring[lp->rx_next_done];
struct sk_buff *skb, *skb_new;
u8* pkt_buf;
u32 devcs, count, pkt_len, pktuncrc_len;
volatile u32 dmas;
#ifdef CONFIG_IDT_USE_NAPI
u32 received = 0;
int rx_work_limit = min(*budget,dev->quota);
#else
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
#endif
dma_cache_inv((u32)rd, sizeof(*rd));
while ( (count = RC32434_RBSIZE - (u32)DMA_COUNT(rd->control)) != 0) {
#ifdef CONFIG_IDT_USE_NAPI
if(--rx_work_limit <0)
{
break;
}
#endif
/* init the var. used for the later operations within the while loop */
skb_new = NULL;
devcs = rd->devcs;
pkt_len = RCVPKT_LENGTH(devcs);
skb = lp->rx_skb[lp->rx_next_done];
if (count < 64) {
lp->stats.rx_errors++;
lp->stats.rx_dropped++;
}
else if ((devcs & ( ETHRX_ld_m)) != ETHRX_ld_m) {
/* check that this is a whole packet */
/* WARNING: DMA_FD bit incorrectly set in Rc32434 (errata ref #077) */
lp->stats.rx_errors++;
lp->stats.rx_dropped++;
}
else if ( (devcs & ETHRX_rok_m) ) {
{
/* must be the (first and) last descriptor then */
pkt_buf = (u8*)lp->rx_skb[lp->rx_next_done]->data;
pktuncrc_len = pkt_len - 4;
/* invalidate the cache */
dma_cache_inv((unsigned long)pkt_buf, pktuncrc_len);
/* Malloc up new buffer. */
skb_new = dev_alloc_skb(RC32434_RBSIZE + 2);
if (skb_new != NULL){
/* Make room */
skb_put(skb, pktuncrc_len);
skb->protocol = eth_type_trans(skb, dev);
/* pass the packet to upper layers */
#ifdef CONFIG_IDT_USE_NAPI
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif
dev->last_rx = jiffies;
lp->stats.rx_packets++;
lp->stats.rx_bytes += pktuncrc_len;
if (IS_RCV_MP(devcs))
lp->stats.multicast++;
/* 16 bit align */
skb_reserve(skb_new, 2);
skb_new->dev = dev;
lp->rx_skb[lp->rx_next_done] = skb_new;
}
else {
ERR("no memory, dropping rx packet.\n");
lp->stats.rx_errors++;
lp->stats.rx_dropped++;
}
}
}
else {
/* This should only happen if we enable accepting broken packets */
lp->stats.rx_errors++;
lp->stats.rx_dropped++;
/* add statistics counters */
if (IS_RCV_CRC_ERR(devcs)) {
DBG(2, "RX CRC error\n");
lp->stats.rx_crc_errors++;
}
else if (IS_RCV_LOR_ERR(devcs)) {
DBG(2, "RX LOR error\n");
lp->stats.rx_length_errors++;
}
else if (IS_RCV_LE_ERR(devcs)) {
DBG(2, "RX LE error\n");
lp->stats.rx_length_errors++;
}
else if (IS_RCV_OVR_ERR(devcs)) {
lp->stats.rx_over_errors++;
}
else if (IS_RCV_CV_ERR(devcs)) {
/* code violation */
DBG(2, "RX CV error\n");
lp->stats.rx_frame_errors++;
}
else if (IS_RCV_CES_ERR(devcs)) {
DBG(2, "RX Preamble error\n");
}
}
rd->devcs = 0;
/* restore descriptor's curr_addr */
if(skb_new)
rd->ca = CPHYSADDR(skb_new->data);
else
rd->ca = CPHYSADDR(skb->data);
rd->control = DMA_COUNT(RC32434_RBSIZE) |DMAD_cod_m |DMAD_iod_m;
lp->rd_ring[(lp->rx_next_done-1)& RC32434_RDS_MASK].control &= ~(DMAD_cod_m);
lp->rx_next_done = (lp->rx_next_done + 1) & RC32434_RDS_MASK;
dma_cache_wback((u32)rd, sizeof(*rd));
rd = &lp->rd_ring[lp->rx_next_done];
__raw_writel( ~DMAS_d_m, &lp->rx_dma_regs->dmas);
}
#ifdef CONFIG_IDT_USE_NAPI
dev->quota -= received;
*budget =- received;
if(rx_work_limit < 0)
goto not_done;
#endif
dmas = __raw_readl(&lp->rx_dma_regs->dmas);
if(dmas & DMAS_h_m) {
__raw_writel( ~(DMAS_h_m | DMAS_e_m), &lp->rx_dma_regs->dmas);
#ifdef RC32434_PROC_DEBUG
lp->dma_halt_cnt++;
#endif
rd->devcs = 0;
skb = lp->rx_skb[lp->rx_next_done];
rd->ca = CPHYSADDR(skb->data);
dma_cache_wback((u32)rd, sizeof(*rd));
rc32434_chain_rx(lp,rd);
}
#ifdef CONFIG_IDT_USE_NAPI
netif_rx_complete(dev);
#endif
/* Enable D H E bit in Rx DMA */
__raw_writel(__raw_readl(&lp->rx_dma_regs->dmasm) & ~(DMASM_d_m | DMASM_h_m |DMASM_e_m), &lp->rx_dma_regs->dmasm);
#ifdef CONFIG_IDT_USE_NAPI
return 0;
not_done:
return 1;
#else
spin_unlock_irqrestore(&lp->lock, flags);
return;
#endif
}
/* Ethernet Tx DMA interrupt */
static irqreturn_t
rc32434_tx_dma_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct rc32434_local *lp;
volatile u32 dmas,dmasm;
irqreturn_t retval;
ASSERT(dev != NULL);
lp = (struct rc32434_local *)dev->priv;
spin_lock(&lp->lock);
dmas = __raw_readl(&lp->tx_dma_regs->dmas);
if (dmas & (DMAS_f_m | DMAS_e_m)) {
dmasm = __raw_readl(&lp->tx_dma_regs->dmasm);
/* Mask F E bit in Tx DMA */
__raw_writel(dmasm | (DMASM_f_m | DMASM_e_m), &lp->tx_dma_regs->dmasm);
tasklet_hi_schedule(lp->tx_tasklet);
if(lp->tx_chain_status == filled && (__raw_readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
__raw_writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), &(lp->tx_dma_regs->dmandptr));
lp->tx_chain_status = empty;
lp->tx_chain_head = lp->tx_chain_tail;
dev->trans_start = jiffies;
}
if (dmas & DMAS_e_m)
ERR(": DMA error\n");
retval = IRQ_HANDLED;
}
else
retval = IRQ_NONE;
spin_unlock(&lp->lock);
return retval;
}
static void rc32434_tx_tasklet(unsigned long tx_data_dev)
{
struct net_device *dev = (struct net_device *)tx_data_dev;
struct rc32434_local* lp = (struct rc32434_local *)dev->priv;
volatile DMAD_t td = &lp->td_ring[lp->tx_next_done];
u32 devcs;
unsigned long flags;
volatile u32 dmas;
spin_lock_irqsave(&lp->lock, flags);
/* process all desc that are done */
while(IS_DMA_FINISHED(td->control)) {
if(lp->tx_full == 1) {
netif_wake_queue(dev);
lp->tx_full = 0;
}
devcs = lp->td_ring[lp->tx_next_done].devcs;
if ((devcs & (ETHTX_fd_m | ETHTX_ld_m)) != (ETHTX_fd_m | ETHTX_ld_m)) {
lp->stats.tx_errors++;
lp->stats.tx_dropped++;
/* should never happen */
DBG(1, __FUNCTION__ ": split tx ignored\n");
}
else if (IS_TX_TOK(devcs)) {
lp->stats.tx_packets++;
lp->stats.tx_bytes+=lp->tx_skb[lp->tx_next_done]->len;
}
else {
lp->stats.tx_errors++;
lp->stats.tx_dropped++;
/* underflow */
if (IS_TX_UND_ERR(devcs))
lp->stats.tx_fifo_errors++;
/* oversized frame */
if (IS_TX_OF_ERR(devcs))
lp->stats.tx_aborted_errors++;
/* excessive deferrals */
if (IS_TX_ED_ERR(devcs))
lp->stats.tx_carrier_errors++;
/* collisions: medium busy */
if (IS_TX_EC_ERR(devcs))
lp->stats.collisions++;
/* late collision */
if (IS_TX_LC_ERR(devcs))
lp->stats.tx_window_errors++;
}
/* We must always free the original skb */
if (lp->tx_skb[lp->tx_next_done] != NULL) {
dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
lp->tx_skb[lp->tx_next_done] = NULL;
}
lp->td_ring[lp->tx_next_done].control = DMAD_iof_m;
lp->td_ring[lp->tx_next_done].devcs = ETHTX_fd_m | ETHTX_ld_m;
lp->td_ring[lp->tx_next_done].link = 0;
lp->td_ring[lp->tx_next_done].ca = 0;
lp->tx_count --;
/* go on to next transmission */
lp->tx_next_done = (lp->tx_next_done + 1) & RC32434_TDS_MASK;
td = &lp->td_ring[lp->tx_next_done];
}
dmas = __raw_readl(&lp->tx_dma_regs->dmas);
__raw_writel( ~dmas, &lp->tx_dma_regs->dmas);
/* Enable F E bit in Tx DMA */
__raw_writel(__raw_readl(&lp->tx_dma_regs->dmasm) & ~(DMASM_f_m | DMASM_e_m), &lp->tx_dma_regs->dmasm);
spin_unlock_irqrestore(&lp->lock, flags);
}
static struct net_device_stats * rc32434_get_stats(struct net_device *dev)
{
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
return &lp->stats;
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void rc32434_multicast_list(struct net_device *dev)
{
/* listen to broadcasts always and to treat */
/* IFF bits independantly */
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
unsigned long flags;
u32 recognise = ETHARC_ab_m; /* always accept broadcasts */
if (dev->flags & IFF_PROMISC) /* set promiscuous mode */
recognise |= ETHARC_pro_m;
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15))
recognise |= ETHARC_am_m; /* all multicast & bcast */
else if (dev->mc_count > 0) {
DBG(2, __FUNCTION__ ": mc_count %d\n", dev->mc_count);
recognise |= ETHARC_am_m; /* for the time being */
}
spin_lock_irqsave(&lp->lock, flags);
__raw_writel(recognise, &lp->eth_regs->etharc);
spin_unlock_irqrestore(&lp->lock, flags);
}
static void rc32434_tx_timeout(struct net_device *dev)
{
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
rc32434_restart(dev);
spin_unlock_irqrestore(&lp->lock, flags);
}
/*
* Initialize the RC32434 ethernet controller.
*/
static int rc32434_init(struct net_device *dev)
{
struct rc32434_local *lp = (struct rc32434_local *)dev->priv;
int i, j;
/* Disable DMA */
rc32434_abort_tx(dev);
rc32434_abort_rx(dev);
/* reset ethernet logic */
__raw_writel(0, &lp->eth_regs->ethintfc);
while((__raw_readl(&lp->eth_regs->ethintfc) & ETHINTFC_rip_m))
dev->trans_start = jiffies;
/* Enable Ethernet Interface */
__raw_writel(ETHINTFC_en_m, &lp->eth_regs->ethintfc);
#ifndef CONFIG_IDT_USE_NAPI
tasklet_disable(lp->rx_tasklet);
#endif
tasklet_disable(lp->tx_tasklet);
/* Initialize the transmit Descriptors */
for (i = 0; i < RC32434_NUM_TDS; i++) {
lp->td_ring[i].control = DMAD_iof_m;
lp->td_ring[i].devcs = ETHTX_fd_m | ETHTX_ld_m;
lp->td_ring[i].ca = 0;
lp->td_ring[i].link = 0;
if (lp->tx_skb[i] != NULL) {
dev_kfree_skb_any(lp->tx_skb[i]);
lp->tx_skb[i] = NULL;
}
}
lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail = lp->tx_full = lp->tx_count = 0;
lp-> tx_chain_status = empty;
/*
* Initialize the receive descriptors so that they
* become a circular linked list, ie. let the last
* descriptor point to the first again.
*/
for (i=0; i<RC32434_NUM_RDS; i++) {
struct sk_buff *skb = lp->rx_skb[i];
if (lp->rx_skb[i] == NULL) {
skb = dev_alloc_skb(RC32434_RBSIZE + 2);
if (skb == NULL) {
ERR("No memory in the system\n");
for (j = 0; j < RC32434_NUM_RDS; j ++)
if (lp->rx_skb[j] != NULL)
dev_kfree_skb_any(lp->rx_skb[j]);
return 1;
}
else {
skb->dev = dev;
skb_reserve(skb, 2);
lp->rx_skb[i] = skb;
lp->rd_ring[i].ca = CPHYSADDR(skb->data);
}
}
lp->rd_ring[i].control = DMAD_iod_m | DMA_COUNT(RC32434_RBSIZE);
lp->rd_ring[i].devcs = 0;
lp->rd_ring[i].ca = CPHYSADDR(skb->data);
lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
}
/* loop back */
lp->rd_ring[RC32434_NUM_RDS-1].link = CPHYSADDR(&lp->rd_ring[0]);
lp->rx_next_done = 0;
lp->rd_ring[RC32434_NUM_RDS-1].control |= DMAD_cod_m;
lp->rx_chain_head = 0;
lp->rx_chain_tail = 0;
lp->rx_chain_status = empty;
__raw_writel(0, &lp->rx_dma_regs->dmas);
/* Start Rx DMA */
rc32434_start_rx(lp, &lp->rd_ring[0]);
/* Enable F E bit in Tx DMA */
__raw_writel(__raw_readl(&lp->tx_dma_regs->dmasm) & ~(DMASM_f_m | DMASM_e_m), &lp->tx_dma_regs->dmasm);
/* Enable D H E bit in Rx DMA */
__raw_writel(__raw_readl(&lp->rx_dma_regs->dmasm) & ~(DMASM_d_m | DMASM_h_m | DMASM_e_m), &lp->rx_dma_regs->dmasm);
/* Accept only packets destined for this Ethernet device address */
__raw_writel(ETHARC_ab_m, &lp->eth_regs->etharc);
/* Set all Ether station address registers to their initial values */
__raw_writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
__raw_writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
__raw_writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
__raw_writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
__raw_writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
__raw_writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
__raw_writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
__raw_writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
__raw_writel(ETHMAC2_pe_m | ETHMAC2_cen_m | ETHMAC2_fd_m, &lp->eth_regs->ethmac2);
//ETHMAC2_flc_m ETHMAC2_fd_m lp->duplex_mode
/* Back to back inter-packet-gap */
__raw_writel(0x15, &lp->eth_regs->ethipgt);
/* Non - Back to back inter-packet-gap */
__raw_writel(0x12, &lp->eth_regs->ethipgr);
/* Management Clock Prescaler Divisor */
/* Clock independent setting */
__raw_writel(((idt_cpu_freq)/MII_CLOCK+1) & ~1,
&lp->eth_regs->ethmcp);
/* don't transmit until fifo contains 48b */
__raw_writel(48, &lp->eth_regs->ethfifott);
__raw_writel(ETHMAC1_re_m, &lp->eth_regs->ethmac1);
#ifndef CONFIG_IDT_USE_NAPI
tasklet_enable(lp->rx_tasklet);
#endif
tasklet_enable(lp->tx_tasklet);
netif_start_queue(dev);
return 0;
}
static struct platform_driver korina_driver = {
.driver.name = "korina",
.probe = rc32434_probe,
.remove = rc32434_remove,
};
static int __init rc32434_init_module(void)
{
return platform_driver_register(&korina_driver);
}
static void rc32434_cleanup_module(void)
{
return platform_driver_unregister(&korina_driver);
}
module_init(rc32434_init_module);
module_exit(rc32434_cleanup_module);