openwrtv4/package/kernel/lantiq/ltq-deu/src/ifxmips_async_aes.c
John Crispin 4ebf19b48f packages: clean up the package folder
Signed-off-by: John Crispin <blogic@openwrt.org>

SVN-Revision: 37007
2013-06-21 16:54:37 +00:00

1137 lines
37 KiB
C

/******************************************************************************
**
** FILE NAME : ifxmips_async_aes.c
** PROJECT : IFX UEIP
** MODULES : DEU Module
**
** DATE : October 11, 2010
** AUTHOR : Mohammad Firdaus
** DESCRIPTION : Data Encryption Unit Driver for AES Algorithm
** COPYRIGHT : Copyright (c) 2010
** Infineon Technologies AG
** Am Campeon 1-12, 85579 Neubiberg, Germany
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** HISTORY
** $Date $Author $Comment
** 08,Sept 2009 Mohammad Firdaus Initial UEIP release
** 11, Oct 2010 Mohammad Firdaus Kernel Port incl. Async. Ablkcipher mode
** 21,March 2011 Mohammad Firdaus Changes for Kernel 2.6.32 and IPSec integration
*******************************************************************************/
/*!
\defgroup IFX_DEU IFX_DEU_DRIVERS
\ingroup API
\brief ifx DEU driver module
*/
/*!
\file ifxmips_async_aes.c
\ingroup IFX_DEU
\brief AES Encryption Driver main file
*/
/*!
\defgroup IFX_AES_FUNCTIONS IFX_AES_FUNCTIONS
\ingroup IFX_DEU
\brief IFX AES driver Functions
*/
#include <linux/wait.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <crypto/ctr.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/scatterwalk.h>
#include <asm/ifx/ifx_regs.h>
#include <asm/ifx/ifx_types.h>
#include <asm/ifx/common_routines.h>
#include <asm/ifx/irq.h>
#include <asm/ifx/ifx_pmu.h>
#include <asm/ifx/ifx_gpio.h>
#include <asm/kmap_types.h>
#include "ifxmips_deu.h"
#if defined(CONFIG_DANUBE)
#include "ifxmips_deu_danube.h"
extern int ifx_danube_pre_1_4;
#elif defined(CONFIG_AR9)
#include "ifxmips_deu_ar9.h"
#elif defined(CONFIG_VR9) || defined(CONFIG_AR10)
#include "ifxmips_deu_vr9.h"
#else
#error "Unkown platform"
#endif
/* DMA related header and variables */
spinlock_t aes_lock;
#define CRTCL_SECT_INIT spin_lock_init(&aes_lock)
#define CRTCL_SECT_START spin_lock_irqsave(&aes_lock, flag)
#define CRTCL_SECT_END spin_unlock_irqrestore(&aes_lock, flag)
/* Definition of constants */
//#define AES_START IFX_AES_CON
#define AES_MIN_KEY_SIZE 16
#define AES_MAX_KEY_SIZE 32
#define AES_BLOCK_SIZE 16
#define CTR_RFC3686_NONCE_SIZE 4
#define CTR_RFC3686_IV_SIZE 8
#define CTR_RFC3686_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE)
#ifdef CRYPTO_DEBUG
extern char debug_level;
#define DPRINTF(level, format, args...) if (level < debug_level) printk(KERN_INFO "[%s %s %d]: " format, __FILE__, __func__, __LINE__, ##args);
#else
#define DPRINTF(level, format, args...)
#endif /* CRYPTO_DEBUG */
static int disable_multiblock = 0;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
module_param(disable_multiblock, int, 0);
#else
MODULE_PARM_DESC(disable_multiblock, "Disable encryption of whole multiblock buffers");
#endif
static int disable_deudma = 1;
/* Function decleration */
int aes_chip_init(void);
u32 endian_swap(u32 input);
u32 input_swap(u32 input);
u32* memory_alignment(const u8 *arg, u32 *buff_alloc, int in_out, int nbytes);
void aes_dma_memory_copy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes);
int aes_memory_allocate(int value);
int des_memory_allocate(int value);
void memory_release(u32 *addr);
struct aes_ctx {
int key_length;
u32 buf[AES_MAX_KEY_SIZE];
u8 nonce[CTR_RFC3686_NONCE_SIZE];
};
struct aes_container {
u8 *iv;
u8 *src_buf;
u8 *dst_buf;
int mode;
int encdec;
int complete;
int flag;
u32 bytes_processed;
u32 nbytes;
struct ablkcipher_request arequest;
};
aes_priv_t *aes_queue;
extern deu_drv_priv_t deu_dma_priv;
void hexdump(unsigned char *buf, unsigned int len)
{
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1,
buf, len, false);
}
/*! \fn void lq_deu_aes_core (void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg,
size_t nbytes, int encdec, int mode)
* \ingroup IFX_AES_FUNCTIONS
* \brief main interface to AES hardware
* \param ctx_arg crypto algo context
* \param out_arg output bytestream
* \param in_arg input bytestream
* \param iv_arg initialization vector
* \param nbytes length of bytestream
* \param encdec 1 for encrypt; 0 for decrypt
* \param mode operation mode such as ebc, cbc, ctr
*
*/
static int lq_deu_aes_core (void *ctx_arg, u8 *out_arg, const u8 *in_arg,
u8 *iv_arg, size_t nbytes, int encdec, int mode)
{
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
volatile struct aes_t *aes = (volatile struct aes_t *) AES_START;
struct aes_ctx *ctx = (struct aes_ctx *)ctx_arg;
u32 *in_key = ctx->buf;
unsigned long flag;
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
int key_len = ctx->key_length;
volatile struct deu_dma_t *dma = (struct deu_dma_t *) IFX_DEU_DMA_CON;
struct dma_device_info *dma_device = ifx_deu[0].dma_device;
deu_drv_priv_t *deu_priv = (deu_drv_priv_t *)dma_device->priv;
int wlen = 0;
//u32 *outcopy = NULL;
u32 *dword_mem_aligned_in = NULL;
CRTCL_SECT_START;
/* 128, 192 or 256 bit key length */
aes->controlr.K = key_len / 8 - 2;
if (key_len == 128 / 8) {
aes->K3R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 0));
aes->K2R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 1));
aes->K1R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 2));
aes->K0R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 3));
}
else if (key_len == 192 / 8) {
aes->K5R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 0));
aes->K4R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 1));
aes->K3R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 2));
aes->K2R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 3));
aes->K1R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 4));
aes->K0R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 5));
}
else if (key_len == 256 / 8) {
aes->K7R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 0));
aes->K6R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 1));
aes->K5R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 2));
aes->K4R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 3));
aes->K3R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 4));
aes->K2R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 5));
aes->K1R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 6));
aes->K0R = DEU_ENDIAN_SWAP(*((u32 *) in_key + 7));
}
else {
printk (KERN_ERR "[%s %s %d]: Invalid key_len : %d\n", __FILE__, __func__, __LINE__, key_len);
CRTCL_SECT_END;
return -EINVAL;
}
/* let HW pre-process DEcryption key in any case (even if
ENcryption is used). Key Valid (KV) bit is then only
checked in decryption routine! */
aes->controlr.PNK = 1;
while (aes->controlr.BUS) {
// this will not take long
}
AES_DMA_MISC_CONFIG();
aes->controlr.E_D = !encdec; //encryption
aes->controlr.O = mode; //0 ECB 1 CBC 2 OFB 3 CFB 4 CTR
//aes->controlr.F = 128; //default; only for CFB and OFB modes; change only for customer-specific apps
if (mode > 0) {
aes->IV3R = DEU_ENDIAN_SWAP(*(u32 *) iv_arg);
aes->IV2R = DEU_ENDIAN_SWAP(*((u32 *) iv_arg + 1));
aes->IV1R = DEU_ENDIAN_SWAP(*((u32 *) iv_arg + 2));
aes->IV0R = DEU_ENDIAN_SWAP(*((u32 *) iv_arg + 3));
};
/* Prepare Rx buf length used in dma psuedo interrupt */
deu_priv->deu_rx_buf = (u32 *)out_arg;
deu_priv->deu_rx_len = nbytes;
/* memory alignment issue */
dword_mem_aligned_in = (u32 *) DEU_DWORD_REORDERING(in_arg, aes_buff_in, BUFFER_IN, nbytes);
dma->controlr.ALGO = 1; //AES
dma->controlr.BS = 0;
aes->controlr.DAU = 0;
dma->controlr.EN = 1;
while (aes->controlr.BUS) {
// wait for AES to be ready
};
deu_priv->outcopy = (u32 *) DEU_DWORD_REORDERING(out_arg, aes_buff_out, BUFFER_OUT, nbytes);
deu_priv->event_src = AES_ASYNC_EVENT;
wlen = dma_device_write (dma_device, (u8 *)dword_mem_aligned_in, nbytes, NULL);
if (wlen != nbytes) {
dma->controlr.EN = 0;
CRTCL_SECT_END;
printk (KERN_ERR "[%s %s %d]: dma_device_write fail!\n", __FILE__, __func__, __LINE__);
return -EINVAL;
}
// WAIT_AES_DMA_READY();
CRTCL_SECT_END;
if (mode > 0) {
*((u32 *) iv_arg) = DEU_ENDIAN_SWAP(*((u32 *) iv_arg));
*((u32 *) iv_arg + 1) = DEU_ENDIAN_SWAP(*((u32 *) iv_arg + 1));
*((u32 *) iv_arg + 2) = DEU_ENDIAN_SWAP(*((u32 *) iv_arg + 2));
*((u32 *) iv_arg + 3) = DEU_ENDIAN_SWAP(*((u32 *) iv_arg + 3));
}
return -EINPROGRESS;
}
/* \fn static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
* \ingroup IFX_AES_FUNCTIONS
* \brief Counts and return the number of scatterlists
* \param *sl Function pointer to the scatterlist
* \param total_bytes The total number of bytes that needs to be encrypted/decrypted
* \return The number of scatterlists
*/
static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
{
int i = 0;
do {
total_bytes -= sl[i].length;
i++;
} while (total_bytes > 0);
return i;
}
/* \fn void lq_sg_init(struct scatterlist *src,
* struct scatterlist *dst)
* \ingroup IFX_AES_FUNCTIONS
* \brief Maps the scatterlists into a source/destination page.
* \param *src Pointer to the source scatterlist
* \param *dst Pointer to the destination scatterlist
*/
static void lq_sg_init(struct aes_container *aes_con,struct scatterlist *src,
struct scatterlist *dst)
{
struct page *dst_page, *src_page;
src_page = sg_virt(src);
aes_con->src_buf = (char *) src_page;
dst_page = sg_virt(dst);
aes_con->dst_buf = (char *) dst_page;
}
/* \fn static void lq_sg_complete(struct aes_container *aes_con)
* \ingroup IFX_AES_FUNCTIONS
* \brief Free the used up memory after encryt/decrypt.
*/
static void lq_sg_complete(struct aes_container *aes_con)
{
unsigned long queue_flag;
spin_lock_irqsave(&aes_queue->lock, queue_flag);
kfree(aes_con);
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
}
/* \fn static inline struct aes_container *aes_container_cast (
* struct scatterlist *dst)
* \ingroup IFX_AES_FUNCTIONS
* \brief Locate the structure aes_container in memory.
* \param *areq Pointer to memory location where ablkcipher_request is located
* \return *aes_cointainer The function pointer to aes_container
*/
static inline struct aes_container *aes_container_cast (
struct ablkcipher_request *areq)
{
return container_of(areq, struct aes_container, arequest);
}
/* \fn static int process_next_packet(struct aes_container *aes_con, struct ablkcipher_request *areq,
* \ int state)
* \ingroup IFX_AES_FUNCTIONS
* \brief Process next packet to be encrypt/decrypt
* \param *aes_con AES container structure
* \param *areq Pointer to memory location where ablkcipher_request is located
* \param state The state of the current packet (part of scatterlist or new packet)
* \return -EINVAL: error, -EINPROGRESS: Crypto still running, 1: no more scatterlist
*/
static int process_next_packet(struct aes_container *aes_con, struct ablkcipher_request *areq,
int state)
{
u8 *iv;
int mode, dir, err = -EINVAL;
unsigned long queue_flag;
u32 inc, nbytes, remain, chunk_size;
struct scatterlist *src = NULL;
struct scatterlist *dst = NULL;
struct crypto_ablkcipher *cipher;
struct aes_ctx *ctx;
spin_lock_irqsave(&aes_queue->lock, queue_flag);
dir = aes_con->encdec;
mode = aes_con->mode;
iv = aes_con->iv;
if (state & PROCESS_SCATTER) {
src = scatterwalk_sg_next(areq->src);
dst = scatterwalk_sg_next(areq->dst);
if (!src || !dst) {
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
return 1;
}
}
else if (state & PROCESS_NEW_PACKET) {
src = areq->src;
dst = areq->dst;
}
remain = aes_con->bytes_processed;
chunk_size = src->length;
if (remain > DEU_MAX_PACKET_SIZE)
inc = DEU_MAX_PACKET_SIZE;
else if (remain > chunk_size)
inc = chunk_size;
else
inc = remain;
remain -= inc;
aes_con->nbytes = inc;
if (state & PROCESS_SCATTER) {
aes_con->src_buf += aes_con->nbytes;
aes_con->dst_buf += aes_con->nbytes;
}
lq_sg_init(aes_con, src, dst);
nbytes = aes_con->nbytes;
//printk("debug - Line: %d, func: %s, reqsize: %d, scattersize: %d\n",
// __LINE__, __func__, nbytes, chunk_size);
cipher = crypto_ablkcipher_reqtfm(areq);
ctx = crypto_ablkcipher_ctx(cipher);
if (aes_queue->hw_status == AES_IDLE)
aes_queue->hw_status = AES_STARTED;
aes_con->bytes_processed -= aes_con->nbytes;
err = ablkcipher_enqueue_request(&aes_queue->list, &aes_con->arequest);
if (err == -EBUSY) {
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
printk("Failed to enqueue request, ln: %d, err: %d\n",
__LINE__, err);
return -EINVAL;
}
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
err = lq_deu_aes_core(ctx, aes_con->dst_buf, aes_con->src_buf, iv, nbytes, dir, mode);
return err;
}
/* \fn static void process_queue (unsigned long data)
* \ingroup IFX_AES_FUNCTIONS
* \brief tasklet to signal the dequeuing of the next packet to be processed
* \param unsigned long data Not used
* \return void
*/
static void process_queue(unsigned long data)
{
DEU_WAKEUP_EVENT(deu_dma_priv.deu_thread_wait, AES_ASYNC_EVENT,
deu_dma_priv.aes_event_flags);
}
/* \fn static int aes_crypto_thread (void *data)
* \ingroup IFX_AES_FUNCTIONS
* \brief AES thread that handles crypto requests from upper layer & DMA
* \param *data Not used
* \return -EINVAL: DEU failure, -EBUSY: DEU HW busy, 0: exit thread
*/
static int aes_crypto_thread (void *data)
{
struct aes_container *aes_con = NULL;
struct ablkcipher_request *areq = NULL;
int err;
unsigned long queue_flag;
daemonize("lq_aes_thread");
printk("AES Queue Manager Starting\n");
while (1)
{
DEU_WAIT_EVENT(deu_dma_priv.deu_thread_wait, AES_ASYNC_EVENT,
deu_dma_priv.aes_event_flags);
spin_lock_irqsave(&aes_queue->lock, queue_flag);
/* wait to prevent starting a crypto session before
* exiting the dma interrupt thread.
*/
if (aes_queue->hw_status == AES_STARTED) {
areq = ablkcipher_dequeue_request(&aes_queue->list);
aes_con = aes_container_cast(areq);
aes_queue->hw_status = AES_BUSY;
}
else if (aes_queue->hw_status == AES_IDLE) {
areq = ablkcipher_dequeue_request(&aes_queue->list);
aes_con = aes_container_cast(areq);
aes_queue->hw_status = AES_STARTED;
}
else if (aes_queue->hw_status == AES_BUSY) {
areq = ablkcipher_dequeue_request(&aes_queue->list);
aes_con = aes_container_cast(areq);
}
else if (aes_queue->hw_status == AES_COMPLETED) {
lq_sg_complete(aes_con);
aes_queue->hw_status = AES_IDLE;
areq->base.complete(&areq->base, 0);
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
return 0;
}
//printk("debug ln: %d, bytes proc: %d\n", __LINE__, aes_con->bytes_processed);
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
if (!aes_con) {
printk("AES_CON return null\n");
goto aes_done;
}
if (aes_con->bytes_processed == 0) {
goto aes_done;
}
/* Process new packet or the next packet in a scatterlist */
if (aes_con->flag & PROCESS_NEW_PACKET) {
aes_con->flag = PROCESS_SCATTER;
err = process_next_packet(aes_con, areq, PROCESS_NEW_PACKET);
}
else
err = process_next_packet(aes_con, areq, PROCESS_SCATTER);
if (err == -EINVAL) {
areq->base.complete(&areq->base, err);
lq_sg_complete(aes_con);
printk("src/dst returned -EINVAL in func: %s\n", __func__);
}
else if (err > 0) {
printk("src/dst returned zero in func: %s\n", __func__);
goto aes_done;
}
continue;
aes_done:
//printk("debug line - %d, func: %s, qlen: %d\n", __LINE__, __func__, aes_queue->list.qlen);
areq->base.complete(&areq->base, 0);
lq_sg_complete(aes_con);
spin_lock_irqsave(&aes_queue->lock, queue_flag);
if (aes_queue->list.qlen > 0) {
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
tasklet_schedule(&aes_queue->aes_task);
}
else {
aes_queue->hw_status = AES_IDLE;
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
}
} //while(1)
return 0;
}
/* \fn static int lq_aes_queue_mgr(struct aes_ctx *ctx, struct ablkcipher_request *areq,
u8 *iv, int dir, int mode)
* \ingroup IFX_AES_FUNCTIONS
* \brief starts the process of queuing DEU requests
* \param *ctx crypto algo contax
* \param *areq Pointer to the balkcipher requests
* \param *iv Pointer to intput vector location
* \param dir Encrypt/Decrypt
* \mode The mode AES algo is running
* \return 0 if success
*/
static int lq_aes_queue_mgr(struct aes_ctx *ctx, struct ablkcipher_request *areq,
u8 *iv, int dir, int mode)
{
int err = -EINVAL;
unsigned long queue_flag;
struct scatterlist *src = areq->src;
struct scatterlist *dst = areq->dst;
struct aes_container *aes_con = NULL;
u32 remain, inc, nbytes = areq->nbytes;
u32 chunk_bytes = src->length;
aes_con = (struct aes_container *)kmalloc(sizeof(struct aes_container),
GFP_KERNEL);
if (!(aes_con)) {
printk("Cannot allocate memory for AES container, fn %s, ln %d\n",
__func__, __LINE__);
return -ENOMEM;
}
/* AES encrypt/decrypt mode */
if (mode == 5) {
nbytes = AES_BLOCK_SIZE;
chunk_bytes = AES_BLOCK_SIZE;
mode = 0;
}
aes_con->bytes_processed = nbytes;
aes_con->arequest = *(areq);
remain = nbytes;
//printk("debug - Line: %d, func: %s, reqsize: %d, scattersize: %d\n",
// __LINE__, __func__, nbytes, chunk_bytes);
if (remain > DEU_MAX_PACKET_SIZE)
inc = DEU_MAX_PACKET_SIZE;
else if (remain > chunk_bytes)
inc = chunk_bytes;
else
inc = remain;
remain -= inc;
lq_sg_init(aes_con, src, dst);
if (remain <= 0)
aes_con->complete = 1;
else
aes_con->complete = 0;
aes_con->nbytes = inc;
aes_con->iv = iv;
aes_con->mode = mode;
aes_con->encdec = dir;
spin_lock_irqsave(&aes_queue->lock, queue_flag);
if (aes_queue->hw_status == AES_STARTED || aes_queue->hw_status == AES_BUSY ||
aes_queue->list.qlen > 0) {
aes_con->flag = PROCESS_NEW_PACKET;
err = ablkcipher_enqueue_request(&aes_queue->list, &aes_con->arequest);
/* max queue length reached */
if (err == -EBUSY) {
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
printk("Unable to enqueue request ln: %d, err: %d\n", __LINE__, err);
return err;
}
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
return -EINPROGRESS;
}
else if (aes_queue->hw_status == AES_IDLE)
aes_queue->hw_status = AES_STARTED;
aes_con->flag = PROCESS_SCATTER;
aes_con->bytes_processed -= aes_con->nbytes;
/* or enqueue the whole structure so as to get back the info
* at the moment that it's queued. nbytes might be different */
err = ablkcipher_enqueue_request(&aes_queue->list, &aes_con->arequest);
if (err == -EBUSY) {
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
printk("Unable to enqueue request ln: %d, err: %d\n", __LINE__, err);
return err;
}
spin_unlock_irqrestore(&aes_queue->lock, queue_flag);
return lq_deu_aes_core(ctx, aes_con->dst_buf, aes_con->src_buf, iv, inc, dir, mode);
}
/* \fn static int aes_setkey(struct crypto_ablkcipher *tfm, const u8 *in_key,
* unsigned int keylen)
* \ingroup IFX_AES_FUNCTIONS
* \brief Sets AES key
* \param *tfm Pointer to the ablkcipher transform
* \param *in_key Pointer to input keys
* \param key_len Length of the AES keys
* \return 0 is success, -EINVAL if bad key length
*/
static int aes_setkey(struct crypto_ablkcipher *tfm, const u8 *in_key,
unsigned int keylen)
{
struct aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
unsigned long *flags = (unsigned long *) &tfm->base.crt_flags;
DPRINTF(2, "set_key in %s\n", __FILE__);
if (keylen != 16 && keylen != 24 && keylen != 32) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
ctx->key_length = keylen;
DPRINTF(0, "ctx @%p, keylen %d, ctx->key_length %d\n", ctx, keylen, ctx->key_length);
memcpy ((u8 *) (ctx->buf), in_key, keylen);
return 0;
}
/* \fn static int aes_generic_setkey(struct crypto_ablkcipher *tfm, const u8 *in_key,
* unsigned int keylen)
* \ingroup IFX_AES_FUNCTIONS
* \brief Sets AES key
* \param *tfm Pointer to the ablkcipher transform
* \param *key Pointer to input keys
* \param keylen Length of AES keys
* \return 0 is success, -EINVAL if bad key length
*/
static int aes_generic_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
return aes_setkey(tfm, key, keylen);
}
/* \fn static int rfc3686_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *in_key,
* unsigned int keylen)
* \ingroup IFX_AES_FUNCTIONS
* \brief Sets AES key
* \param *tfm Pointer to the ablkcipher transform
* \param *in_key Pointer to input keys
* \param key_len Length of the AES keys
* \return 0 is success, -EINVAL if bad key length
*/
static int rfc3686_aes_setkey(struct crypto_ablkcipher *tfm,
const u8 *in_key, unsigned int keylen)
{
struct aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
unsigned long *flags = (unsigned long *)&tfm->base.crt_flags;
DPRINTF(2, "ctr_rfc3686_aes_set_key in %s\n", __FILE__);
memcpy(ctx->nonce, in_key + (keylen - CTR_RFC3686_NONCE_SIZE),
CTR_RFC3686_NONCE_SIZE);
keylen -= CTR_RFC3686_NONCE_SIZE; // remove 4 bytes of nonce
if (keylen != 16 && keylen != 24 && keylen != 32) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
ctx->key_length = keylen;
memcpy ((u8 *) (ctx->buf), in_key, keylen);
return 0;
}
/* \fn static int aes_encrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Encrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int aes_encrypt (struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, NULL, CRYPTO_DIR_ENCRYPT, 5);
}
/* \fn static int aes_decrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Decrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int aes_decrypt (struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, NULL, CRYPTO_DIR_DECRYPT, 5);
}
/* \fn static int ecb_aes_decrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Encrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int ecb_aes_encrypt (struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_ENCRYPT, 0);
}
/* \fn static int ecb_aes_decrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Decrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int ecb_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_DECRYPT, 0);
}
/* \fn static int cbc_aes_encrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Encrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int cbc_aes_encrypt (struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_ENCRYPT, 1);
}
/* \fn static int cbc_aes_decrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Decrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int cbc_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_DECRYPT, 1);
}
#if 0
static int ofb_aes_encrypt (struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_ENCRYPT, 2);
}
static int ofb_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_DECRYPT, 2);
}
static int cfb_aes_encrypt (struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_ENCRYPT, 3);
}
static int cfb_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_DECRYPT, 3);
}
#endif
/* \fn static int ctr_aes_encrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Encrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int ctr_aes_encrypt (struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_ENCRYPT, 4);
}
/* \fn static int ctr_aes_decrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Decrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int ctr_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
return lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_DECRYPT, 4);
}
/* \fn static int rfc3686_aes_encrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Encrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int rfc3686_aes_encrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
int ret;
u8 *info = areq->info;
u8 rfc3686_iv[16];
memcpy(rfc3686_iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
memcpy(rfc3686_iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
/* initialize counter portion of counter block */
*(__be32 *)(rfc3686_iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
cpu_to_be32(1);
areq->info = rfc3686_iv;
ret = lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_ENCRYPT, 4);
areq->info = info;
return ret;
}
/* \fn static int rfc3686_aes_decrypt(struct ablkcipher_request *areq)
* \ingroup IFX_AES_FUNCTIONS
* \brief Decrypt function for AES algo
* \param *areq Pointer to ablkcipher request in memory
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
static int rfc3686_aes_decrypt(struct ablkcipher_request *areq)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
struct aes_ctx *ctx = crypto_ablkcipher_ctx(cipher);
int ret;
u8 *info = areq->info;
u8 rfc3686_iv[16];
/* set up counter block */
memcpy(rfc3686_iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
memcpy(rfc3686_iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
/* initialize counter portion of counter block */
*(__be32 *)(rfc3686_iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
cpu_to_be32(1);
areq->info = rfc3686_iv;
ret = lq_aes_queue_mgr(ctx, areq, areq->info, CRYPTO_DIR_DECRYPT, 4);
areq->info = info;
return ret;
}
struct lq_aes_alg {
struct crypto_alg alg;
};
/* AES supported algo array */
static struct lq_aes_alg aes_drivers_alg[] = {
{
.alg = {
.cra_name = "aes",
.cra_driver_name = "ifxdeu-aes",
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aes_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_priority = 300,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = aes_setkey,
.encrypt = aes_encrypt,
.decrypt = aes_decrypt,
.geniv = "eseqiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
}
}
},{
.alg = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ifxdeu-ecb(aes)",
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aes_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_priority = 300,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = aes_generic_setkey,
.encrypt = ecb_aes_encrypt,
.decrypt = ecb_aes_decrypt,
.geniv = "eseqiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
}
}
},{
.alg = {
.cra_name = "cbc(aes)",
.cra_driver_name = "ifxdeu-cbc(aes)",
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aes_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_priority = 300,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = aes_generic_setkey,
.encrypt = cbc_aes_encrypt,
.decrypt = cbc_aes_decrypt,
.geniv = "eseqiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
}
}
},{
.alg = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ifxdeu-ctr(aes)",
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aes_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_priority = 300,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = aes_generic_setkey,
.encrypt = ctr_aes_encrypt,
.decrypt = ctr_aes_decrypt,
.geniv = "eseqiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
}
}
},{
.alg = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "ifxdeu-rfc3686(ctr(aes))",
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aes_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_priority = 300,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = rfc3686_aes_setkey,
.encrypt = rfc3686_aes_encrypt,
.decrypt = rfc3686_aes_decrypt,
.geniv = "eseqiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = CTR_RFC3686_MAX_KEY_SIZE,
//.max_keysize = AES_MAX_KEY_SIZE,
//.ivsize = CTR_RFC3686_IV_SIZE,
.ivsize = AES_BLOCK_SIZE, // else cannot reg
}
}
}
};
/* \fn int __init lqdeu_async_aes_init (void)
* \ingroup IFX_AES_FUNCTIONS
* \brief Initializes the Async. AES driver
* \return 0 is success, -EINPROGRESS if encryting, EINVAL if failure
*/
int __init lqdeu_async_aes_init (void)
{
int i, j, ret = -EINVAL;
#define IFX_DEU_DRV_VERSION "2.0.0"
printk(KERN_INFO "Lantiq Technologies DEU Driver version %s\n", IFX_DEU_DRV_VERSION);
for (i = 0; i < ARRAY_SIZE(aes_drivers_alg); i++) {
ret = crypto_register_alg(&aes_drivers_alg[i].alg);
printk("driver: %s\n", aes_drivers_alg[i].alg.cra_name);
if (ret)
goto aes_err;
}
aes_chip_init();
CRTCL_SECT_INIT;
printk (KERN_NOTICE "Lantiq DEU AES initialized %s %s.\n",
disable_multiblock ? "" : " (multiblock)", disable_deudma ? "" : " (DMA)");
return ret;
aes_err:
for (j = 0; j < i; j++)
crypto_unregister_alg(&aes_drivers_alg[j].alg);
printk(KERN_ERR "Lantiq %s driver initialization failed!\n", (char *)&aes_drivers_alg[i].alg.cra_driver_name);
return ret;
ctr_rfc3686_aes_err:
for (i = 0; i < ARRAY_SIZE(aes_drivers_alg); i++) {
if (!strcmp((char *)&aes_drivers_alg[i].alg.cra_name, "rfc3686(ctr(aes))"))
crypto_unregister_alg(&aes_drivers_alg[j].alg);
}
printk (KERN_ERR "Lantiq ctr_rfc3686_aes initialization failed!\n");
return ret;
}
/*! \fn void __exit ifxdeu_fini_aes (void)
* \ingroup IFX_AES_FUNCTIONS
* \brief unregister aes driver
*/
void __exit lqdeu_fini_async_aes (void)
{
int i;
for (i = 0; i < ARRAY_SIZE(aes_drivers_alg); i++)
crypto_unregister_alg(&aes_drivers_alg[i].alg);
aes_queue->hw_status = AES_COMPLETED;
DEU_WAKEUP_EVENT(deu_dma_priv.deu_thread_wait, AES_ASYNC_EVENT,
deu_dma_priv.aes_event_flags);
kfree(aes_queue);
}