openwrtv4/target/linux/generic/files/drivers/net/phy/ar8216.c
Jo-Philipp Wich 29cc927ef5 generic: ar8216: fix invalid bounds check imported from ChromeOS (FS#347)
The priv->vlan_id member is of size AR8X16_MAX_VLANS, not AR8X16_MAX_PORTS,
so check for the proper maximum value in order to avoid capping valid VLAN IDs
to 7 (AR8X16_MAX_PORTS - 1).

Signed-off-by: Jo-Philipp Wich <jo@mein.io>
2016-12-23 19:24:14 +01:00

2313 lines
53 KiB
C

/*
* ar8216.c: AR8216 switch driver
*
* Copyright (C) 2009 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2011-2012 Gabor Juhos <juhosg@openwrt.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/if.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/netlink.h>
#include <linux/bitops.h>
#include <net/genetlink.h>
#include <linux/switch.h>
#include <linux/delay.h>
#include <linux/phy.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/lockdep.h>
#include <linux/ar8216_platform.h>
#include <linux/workqueue.h>
#include <linux/version.h>
#include "ar8216.h"
extern const struct ar8xxx_chip ar8327_chip;
extern const struct ar8xxx_chip ar8337_chip;
#define AR8XXX_MIB_WORK_DELAY 2000 /* msecs */
#define MIB_DESC(_s , _o, _n) \
{ \
.size = (_s), \
.offset = (_o), \
.name = (_n), \
}
static const struct ar8xxx_mib_desc ar8216_mibs[] = {
MIB_DESC(1, AR8216_STATS_RXBROAD, "RxBroad"),
MIB_DESC(1, AR8216_STATS_RXPAUSE, "RxPause"),
MIB_DESC(1, AR8216_STATS_RXMULTI, "RxMulti"),
MIB_DESC(1, AR8216_STATS_RXFCSERR, "RxFcsErr"),
MIB_DESC(1, AR8216_STATS_RXALIGNERR, "RxAlignErr"),
MIB_DESC(1, AR8216_STATS_RXRUNT, "RxRunt"),
MIB_DESC(1, AR8216_STATS_RXFRAGMENT, "RxFragment"),
MIB_DESC(1, AR8216_STATS_RX64BYTE, "Rx64Byte"),
MIB_DESC(1, AR8216_STATS_RX128BYTE, "Rx128Byte"),
MIB_DESC(1, AR8216_STATS_RX256BYTE, "Rx256Byte"),
MIB_DESC(1, AR8216_STATS_RX512BYTE, "Rx512Byte"),
MIB_DESC(1, AR8216_STATS_RX1024BYTE, "Rx1024Byte"),
MIB_DESC(1, AR8216_STATS_RXMAXBYTE, "RxMaxByte"),
MIB_DESC(1, AR8216_STATS_RXTOOLONG, "RxTooLong"),
MIB_DESC(2, AR8216_STATS_RXGOODBYTE, "RxGoodByte"),
MIB_DESC(2, AR8216_STATS_RXBADBYTE, "RxBadByte"),
MIB_DESC(1, AR8216_STATS_RXOVERFLOW, "RxOverFlow"),
MIB_DESC(1, AR8216_STATS_FILTERED, "Filtered"),
MIB_DESC(1, AR8216_STATS_TXBROAD, "TxBroad"),
MIB_DESC(1, AR8216_STATS_TXPAUSE, "TxPause"),
MIB_DESC(1, AR8216_STATS_TXMULTI, "TxMulti"),
MIB_DESC(1, AR8216_STATS_TXUNDERRUN, "TxUnderRun"),
MIB_DESC(1, AR8216_STATS_TX64BYTE, "Tx64Byte"),
MIB_DESC(1, AR8216_STATS_TX128BYTE, "Tx128Byte"),
MIB_DESC(1, AR8216_STATS_TX256BYTE, "Tx256Byte"),
MIB_DESC(1, AR8216_STATS_TX512BYTE, "Tx512Byte"),
MIB_DESC(1, AR8216_STATS_TX1024BYTE, "Tx1024Byte"),
MIB_DESC(1, AR8216_STATS_TXMAXBYTE, "TxMaxByte"),
MIB_DESC(1, AR8216_STATS_TXOVERSIZE, "TxOverSize"),
MIB_DESC(2, AR8216_STATS_TXBYTE, "TxByte"),
MIB_DESC(1, AR8216_STATS_TXCOLLISION, "TxCollision"),
MIB_DESC(1, AR8216_STATS_TXABORTCOL, "TxAbortCol"),
MIB_DESC(1, AR8216_STATS_TXMULTICOL, "TxMultiCol"),
MIB_DESC(1, AR8216_STATS_TXSINGLECOL, "TxSingleCol"),
MIB_DESC(1, AR8216_STATS_TXEXCDEFER, "TxExcDefer"),
MIB_DESC(1, AR8216_STATS_TXDEFER, "TxDefer"),
MIB_DESC(1, AR8216_STATS_TXLATECOL, "TxLateCol"),
};
const struct ar8xxx_mib_desc ar8236_mibs[39] = {
MIB_DESC(1, AR8236_STATS_RXBROAD, "RxBroad"),
MIB_DESC(1, AR8236_STATS_RXPAUSE, "RxPause"),
MIB_DESC(1, AR8236_STATS_RXMULTI, "RxMulti"),
MIB_DESC(1, AR8236_STATS_RXFCSERR, "RxFcsErr"),
MIB_DESC(1, AR8236_STATS_RXALIGNERR, "RxAlignErr"),
MIB_DESC(1, AR8236_STATS_RXRUNT, "RxRunt"),
MIB_DESC(1, AR8236_STATS_RXFRAGMENT, "RxFragment"),
MIB_DESC(1, AR8236_STATS_RX64BYTE, "Rx64Byte"),
MIB_DESC(1, AR8236_STATS_RX128BYTE, "Rx128Byte"),
MIB_DESC(1, AR8236_STATS_RX256BYTE, "Rx256Byte"),
MIB_DESC(1, AR8236_STATS_RX512BYTE, "Rx512Byte"),
MIB_DESC(1, AR8236_STATS_RX1024BYTE, "Rx1024Byte"),
MIB_DESC(1, AR8236_STATS_RX1518BYTE, "Rx1518Byte"),
MIB_DESC(1, AR8236_STATS_RXMAXBYTE, "RxMaxByte"),
MIB_DESC(1, AR8236_STATS_RXTOOLONG, "RxTooLong"),
MIB_DESC(2, AR8236_STATS_RXGOODBYTE, "RxGoodByte"),
MIB_DESC(2, AR8236_STATS_RXBADBYTE, "RxBadByte"),
MIB_DESC(1, AR8236_STATS_RXOVERFLOW, "RxOverFlow"),
MIB_DESC(1, AR8236_STATS_FILTERED, "Filtered"),
MIB_DESC(1, AR8236_STATS_TXBROAD, "TxBroad"),
MIB_DESC(1, AR8236_STATS_TXPAUSE, "TxPause"),
MIB_DESC(1, AR8236_STATS_TXMULTI, "TxMulti"),
MIB_DESC(1, AR8236_STATS_TXUNDERRUN, "TxUnderRun"),
MIB_DESC(1, AR8236_STATS_TX64BYTE, "Tx64Byte"),
MIB_DESC(1, AR8236_STATS_TX128BYTE, "Tx128Byte"),
MIB_DESC(1, AR8236_STATS_TX256BYTE, "Tx256Byte"),
MIB_DESC(1, AR8236_STATS_TX512BYTE, "Tx512Byte"),
MIB_DESC(1, AR8236_STATS_TX1024BYTE, "Tx1024Byte"),
MIB_DESC(1, AR8236_STATS_TX1518BYTE, "Tx1518Byte"),
MIB_DESC(1, AR8236_STATS_TXMAXBYTE, "TxMaxByte"),
MIB_DESC(1, AR8236_STATS_TXOVERSIZE, "TxOverSize"),
MIB_DESC(2, AR8236_STATS_TXBYTE, "TxByte"),
MIB_DESC(1, AR8236_STATS_TXCOLLISION, "TxCollision"),
MIB_DESC(1, AR8236_STATS_TXABORTCOL, "TxAbortCol"),
MIB_DESC(1, AR8236_STATS_TXMULTICOL, "TxMultiCol"),
MIB_DESC(1, AR8236_STATS_TXSINGLECOL, "TxSingleCol"),
MIB_DESC(1, AR8236_STATS_TXEXCDEFER, "TxExcDefer"),
MIB_DESC(1, AR8236_STATS_TXDEFER, "TxDefer"),
MIB_DESC(1, AR8236_STATS_TXLATECOL, "TxLateCol"),
};
static DEFINE_MUTEX(ar8xxx_dev_list_lock);
static LIST_HEAD(ar8xxx_dev_list);
/* inspired by phy_poll_reset in drivers/net/phy/phy_device.c */
static int
ar8xxx_phy_poll_reset(struct mii_bus *bus)
{
unsigned int sleep_msecs = 20;
int ret, elapsed, i;
for (elapsed = sleep_msecs; elapsed <= 600;
elapsed += sleep_msecs) {
msleep(sleep_msecs);
for (i = 0; i < AR8XXX_NUM_PHYS; i++) {
ret = mdiobus_read(bus, i, MII_BMCR);
if (ret < 0)
return ret;
if (ret & BMCR_RESET)
break;
if (i == AR8XXX_NUM_PHYS - 1) {
usleep_range(1000, 2000);
return 0;
}
}
}
return -ETIMEDOUT;
}
static int
ar8xxx_phy_check_aneg(struct phy_device *phydev)
{
int ret;
if (phydev->autoneg != AUTONEG_ENABLE)
return 0;
/*
* BMCR_ANENABLE might have been cleared
* by phy_init_hw in certain kernel versions
* therefore check for it
*/
ret = phy_read(phydev, MII_BMCR);
if (ret < 0)
return ret;
if (ret & BMCR_ANENABLE)
return 0;
dev_info(&phydev->dev, "ANEG disabled, re-enabling ...\n");
ret |= BMCR_ANENABLE | BMCR_ANRESTART;
return phy_write(phydev, MII_BMCR, ret);
}
void
ar8xxx_phy_init(struct ar8xxx_priv *priv)
{
int i;
struct mii_bus *bus;
bus = priv->mii_bus;
for (i = 0; i < AR8XXX_NUM_PHYS; i++) {
if (priv->chip->phy_fixup)
priv->chip->phy_fixup(priv, i);
/* initialize the port itself */
mdiobus_write(bus, i, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
if (ar8xxx_has_gige(priv))
mdiobus_write(bus, i, MII_CTRL1000, ADVERTISE_1000FULL);
mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE);
}
ar8xxx_phy_poll_reset(bus);
}
u32
ar8xxx_mii_read32(struct ar8xxx_priv *priv, int phy_id, int regnum)
{
struct mii_bus *bus = priv->mii_bus;
u16 lo, hi;
lo = bus->read(bus, phy_id, regnum);
hi = bus->read(bus, phy_id, regnum + 1);
return (hi << 16) | lo;
}
void
ar8xxx_mii_write32(struct ar8xxx_priv *priv, int phy_id, int regnum, u32 val)
{
struct mii_bus *bus = priv->mii_bus;
u16 lo, hi;
lo = val & 0xffff;
hi = (u16) (val >> 16);
if (priv->chip->mii_lo_first)
{
bus->write(bus, phy_id, regnum, lo);
bus->write(bus, phy_id, regnum + 1, hi);
} else {
bus->write(bus, phy_id, regnum + 1, hi);
bus->write(bus, phy_id, regnum, lo);
}
}
u32
ar8xxx_read(struct ar8xxx_priv *priv, int reg)
{
struct mii_bus *bus = priv->mii_bus;
u16 r1, r2, page;
u32 val;
split_addr((u32) reg, &r1, &r2, &page);
mutex_lock(&bus->mdio_lock);
bus->write(bus, 0x18, 0, page);
wait_for_page_switch();
val = ar8xxx_mii_read32(priv, 0x10 | r2, r1);
mutex_unlock(&bus->mdio_lock);
return val;
}
void
ar8xxx_write(struct ar8xxx_priv *priv, int reg, u32 val)
{
struct mii_bus *bus = priv->mii_bus;
u16 r1, r2, page;
split_addr((u32) reg, &r1, &r2, &page);
mutex_lock(&bus->mdio_lock);
bus->write(bus, 0x18, 0, page);
wait_for_page_switch();
ar8xxx_mii_write32(priv, 0x10 | r2, r1, val);
mutex_unlock(&bus->mdio_lock);
}
u32
ar8xxx_rmw(struct ar8xxx_priv *priv, int reg, u32 mask, u32 val)
{
struct mii_bus *bus = priv->mii_bus;
u16 r1, r2, page;
u32 ret;
split_addr((u32) reg, &r1, &r2, &page);
mutex_lock(&bus->mdio_lock);
bus->write(bus, 0x18, 0, page);
wait_for_page_switch();
ret = ar8xxx_mii_read32(priv, 0x10 | r2, r1);
ret &= ~mask;
ret |= val;
ar8xxx_mii_write32(priv, 0x10 | r2, r1, ret);
mutex_unlock(&bus->mdio_lock);
return ret;
}
void
ar8xxx_phy_dbg_write(struct ar8xxx_priv *priv, int phy_addr,
u16 dbg_addr, u16 dbg_data)
{
struct mii_bus *bus = priv->mii_bus;
mutex_lock(&bus->mdio_lock);
bus->write(bus, phy_addr, MII_ATH_DBG_ADDR, dbg_addr);
bus->write(bus, phy_addr, MII_ATH_DBG_DATA, dbg_data);
mutex_unlock(&bus->mdio_lock);
}
static inline void
ar8xxx_phy_mmd_prep(struct mii_bus *bus, int phy_addr, u16 addr, u16 reg)
{
bus->write(bus, phy_addr, MII_ATH_MMD_ADDR, addr);
bus->write(bus, phy_addr, MII_ATH_MMD_DATA, reg);
bus->write(bus, phy_addr, MII_ATH_MMD_ADDR, addr | 0x4000);
}
void
ar8xxx_phy_mmd_write(struct ar8xxx_priv *priv, int phy_addr, u16 addr, u16 reg, u16 data)
{
struct mii_bus *bus = priv->mii_bus;
mutex_lock(&bus->mdio_lock);
ar8xxx_phy_mmd_prep(bus, phy_addr, addr, reg);
bus->write(bus, phy_addr, MII_ATH_MMD_DATA, data);
mutex_unlock(&bus->mdio_lock);
}
u16
ar8xxx_phy_mmd_read(struct ar8xxx_priv *priv, int phy_addr, u16 addr, u16 reg)
{
struct mii_bus *bus = priv->mii_bus;
u16 data;
mutex_lock(&bus->mdio_lock);
ar8xxx_phy_mmd_prep(bus, phy_addr, addr, reg);
data = bus->read(bus, phy_addr, MII_ATH_MMD_DATA);
mutex_unlock(&bus->mdio_lock);
return data;
}
static int
ar8xxx_reg_wait(struct ar8xxx_priv *priv, u32 reg, u32 mask, u32 val,
unsigned timeout)
{
int i;
for (i = 0; i < timeout; i++) {
u32 t;
t = ar8xxx_read(priv, reg);
if ((t & mask) == val)
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static int
ar8xxx_mib_op(struct ar8xxx_priv *priv, u32 op)
{
unsigned mib_func = priv->chip->mib_func;
int ret;
lockdep_assert_held(&priv->mib_lock);
/* Capture the hardware statistics for all ports */
ar8xxx_rmw(priv, mib_func, AR8216_MIB_FUNC, (op << AR8216_MIB_FUNC_S));
/* Wait for the capturing to complete. */
ret = ar8xxx_reg_wait(priv, mib_func, AR8216_MIB_BUSY, 0, 10);
if (ret)
goto out;
ret = 0;
out:
return ret;
}
static int
ar8xxx_mib_capture(struct ar8xxx_priv *priv)
{
return ar8xxx_mib_op(priv, AR8216_MIB_FUNC_CAPTURE);
}
static int
ar8xxx_mib_flush(struct ar8xxx_priv *priv)
{
return ar8xxx_mib_op(priv, AR8216_MIB_FUNC_FLUSH);
}
static void
ar8xxx_mib_fetch_port_stat(struct ar8xxx_priv *priv, int port, bool flush)
{
unsigned int base;
u64 *mib_stats;
int i;
WARN_ON(port >= priv->dev.ports);
lockdep_assert_held(&priv->mib_lock);
base = priv->chip->reg_port_stats_start +
priv->chip->reg_port_stats_length * port;
mib_stats = &priv->mib_stats[port * priv->chip->num_mibs];
for (i = 0; i < priv->chip->num_mibs; i++) {
const struct ar8xxx_mib_desc *mib;
u64 t;
mib = &priv->chip->mib_decs[i];
t = ar8xxx_read(priv, base + mib->offset);
if (mib->size == 2) {
u64 hi;
hi = ar8xxx_read(priv, base + mib->offset + 4);
t |= hi << 32;
}
if (flush)
mib_stats[i] = 0;
else
mib_stats[i] += t;
}
}
static void
ar8216_read_port_link(struct ar8xxx_priv *priv, int port,
struct switch_port_link *link)
{
u32 status;
u32 speed;
memset(link, '\0', sizeof(*link));
status = priv->chip->read_port_status(priv, port);
link->aneg = !!(status & AR8216_PORT_STATUS_LINK_AUTO);
if (link->aneg) {
link->link = !!(status & AR8216_PORT_STATUS_LINK_UP);
} else {
link->link = true;
if (priv->get_port_link) {
int err;
err = priv->get_port_link(port);
if (err >= 0)
link->link = !!err;
}
}
if (!link->link)
return;
link->duplex = !!(status & AR8216_PORT_STATUS_DUPLEX);
link->tx_flow = !!(status & AR8216_PORT_STATUS_TXFLOW);
link->rx_flow = !!(status & AR8216_PORT_STATUS_RXFLOW);
if (link->aneg && link->duplex && priv->chip->read_port_eee_status)
link->eee = priv->chip->read_port_eee_status(priv, port);
speed = (status & AR8216_PORT_STATUS_SPEED) >>
AR8216_PORT_STATUS_SPEED_S;
switch (speed) {
case AR8216_PORT_SPEED_10M:
link->speed = SWITCH_PORT_SPEED_10;
break;
case AR8216_PORT_SPEED_100M:
link->speed = SWITCH_PORT_SPEED_100;
break;
case AR8216_PORT_SPEED_1000M:
link->speed = SWITCH_PORT_SPEED_1000;
break;
default:
link->speed = SWITCH_PORT_SPEED_UNKNOWN;
break;
}
}
static struct sk_buff *
ar8216_mangle_tx(struct net_device *dev, struct sk_buff *skb)
{
struct ar8xxx_priv *priv = dev->phy_ptr;
unsigned char *buf;
if (unlikely(!priv))
goto error;
if (!priv->vlan)
goto send;
if (unlikely(skb_headroom(skb) < 2)) {
if (pskb_expand_head(skb, 2, 0, GFP_ATOMIC) < 0)
goto error;
}
buf = skb_push(skb, 2);
buf[0] = 0x10;
buf[1] = 0x80;
send:
return skb;
error:
dev_kfree_skb_any(skb);
return NULL;
}
static void
ar8216_mangle_rx(struct net_device *dev, struct sk_buff *skb)
{
struct ar8xxx_priv *priv;
unsigned char *buf;
int port, vlan;
priv = dev->phy_ptr;
if (!priv)
return;
/* don't strip the header if vlan mode is disabled */
if (!priv->vlan)
return;
/* strip header, get vlan id */
buf = skb->data;
skb_pull(skb, 2);
/* check for vlan header presence */
if ((buf[12 + 2] != 0x81) || (buf[13 + 2] != 0x00))
return;
port = buf[0] & 0x7;
/* no need to fix up packets coming from a tagged source */
if (priv->vlan_tagged & (1 << port))
return;
/* lookup port vid from local table, the switch passes an invalid vlan id */
vlan = priv->vlan_id[priv->pvid[port]];
buf[14 + 2] &= 0xf0;
buf[14 + 2] |= vlan >> 8;
buf[15 + 2] = vlan & 0xff;
}
int
ar8216_wait_bit(struct ar8xxx_priv *priv, int reg, u32 mask, u32 val)
{
int timeout = 20;
u32 t = 0;
while (1) {
t = ar8xxx_read(priv, reg);
if ((t & mask) == val)
return 0;
if (timeout-- <= 0)
break;
udelay(10);
}
pr_err("ar8216: timeout on reg %08x: %08x & %08x != %08x\n",
(unsigned int) reg, t, mask, val);
return -ETIMEDOUT;
}
static void
ar8216_vtu_op(struct ar8xxx_priv *priv, u32 op, u32 val)
{
if (ar8216_wait_bit(priv, AR8216_REG_VTU, AR8216_VTU_ACTIVE, 0))
return;
if ((op & AR8216_VTU_OP) == AR8216_VTU_OP_LOAD) {
val &= AR8216_VTUDATA_MEMBER;
val |= AR8216_VTUDATA_VALID;
ar8xxx_write(priv, AR8216_REG_VTU_DATA, val);
}
op |= AR8216_VTU_ACTIVE;
ar8xxx_write(priv, AR8216_REG_VTU, op);
}
static void
ar8216_vtu_flush(struct ar8xxx_priv *priv)
{
ar8216_vtu_op(priv, AR8216_VTU_OP_FLUSH, 0);
}
static void
ar8216_vtu_load_vlan(struct ar8xxx_priv *priv, u32 vid, u32 port_mask)
{
u32 op;
op = AR8216_VTU_OP_LOAD | (vid << AR8216_VTU_VID_S);
ar8216_vtu_op(priv, op, port_mask);
}
static int
ar8216_atu_flush(struct ar8xxx_priv *priv)
{
int ret;
ret = ar8216_wait_bit(priv, AR8216_REG_ATU_FUNC0, AR8216_ATU_ACTIVE, 0);
if (!ret)
ar8xxx_write(priv, AR8216_REG_ATU_FUNC0, AR8216_ATU_OP_FLUSH |
AR8216_ATU_ACTIVE);
return ret;
}
static int
ar8216_atu_flush_port(struct ar8xxx_priv *priv, int port)
{
u32 t;
int ret;
ret = ar8216_wait_bit(priv, AR8216_REG_ATU_FUNC0, AR8216_ATU_ACTIVE, 0);
if (!ret) {
t = (port << AR8216_ATU_PORT_NUM_S) | AR8216_ATU_OP_FLUSH_PORT;
t |= AR8216_ATU_ACTIVE;
ar8xxx_write(priv, AR8216_REG_ATU_FUNC0, t);
}
return ret;
}
static u32
ar8216_read_port_status(struct ar8xxx_priv *priv, int port)
{
return ar8xxx_read(priv, AR8216_REG_PORT_STATUS(port));
}
static void
ar8216_setup_port(struct ar8xxx_priv *priv, int port, u32 members)
{
u32 header;
u32 egress, ingress;
u32 pvid;
if (priv->vlan) {
pvid = priv->vlan_id[priv->pvid[port]];
if (priv->vlan_tagged & (1 << port))
egress = AR8216_OUT_ADD_VLAN;
else
egress = AR8216_OUT_STRIP_VLAN;
ingress = AR8216_IN_SECURE;
} else {
pvid = port;
egress = AR8216_OUT_KEEP;
ingress = AR8216_IN_PORT_ONLY;
}
if (chip_is_ar8216(priv) && priv->vlan && port == AR8216_PORT_CPU)
header = AR8216_PORT_CTRL_HEADER;
else
header = 0;
ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(port),
AR8216_PORT_CTRL_LEARN | AR8216_PORT_CTRL_VLAN_MODE |
AR8216_PORT_CTRL_SINGLE_VLAN | AR8216_PORT_CTRL_STATE |
AR8216_PORT_CTRL_HEADER | AR8216_PORT_CTRL_LEARN_LOCK,
AR8216_PORT_CTRL_LEARN | header |
(egress << AR8216_PORT_CTRL_VLAN_MODE_S) |
(AR8216_PORT_STATE_FORWARD << AR8216_PORT_CTRL_STATE_S));
ar8xxx_rmw(priv, AR8216_REG_PORT_VLAN(port),
AR8216_PORT_VLAN_DEST_PORTS | AR8216_PORT_VLAN_MODE |
AR8216_PORT_VLAN_DEFAULT_ID,
(members << AR8216_PORT_VLAN_DEST_PORTS_S) |
(ingress << AR8216_PORT_VLAN_MODE_S) |
(pvid << AR8216_PORT_VLAN_DEFAULT_ID_S));
}
static int
ar8216_hw_init(struct ar8xxx_priv *priv)
{
if (priv->initialized)
return 0;
ar8xxx_phy_init(priv);
priv->initialized = true;
return 0;
}
static void
ar8216_init_globals(struct ar8xxx_priv *priv)
{
/* standard atheros magic */
ar8xxx_write(priv, 0x38, 0xc000050e);
ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CTRL,
AR8216_GCTRL_MTU, 1518 + 8 + 2);
}
static void
ar8216_init_port(struct ar8xxx_priv *priv, int port)
{
/* Enable port learning and tx */
ar8xxx_write(priv, AR8216_REG_PORT_CTRL(port),
AR8216_PORT_CTRL_LEARN |
(4 << AR8216_PORT_CTRL_STATE_S));
ar8xxx_write(priv, AR8216_REG_PORT_VLAN(port), 0);
if (port == AR8216_PORT_CPU) {
ar8xxx_write(priv, AR8216_REG_PORT_STATUS(port),
AR8216_PORT_STATUS_LINK_UP |
(ar8xxx_has_gige(priv) ?
AR8216_PORT_SPEED_1000M : AR8216_PORT_SPEED_100M) |
AR8216_PORT_STATUS_TXMAC |
AR8216_PORT_STATUS_RXMAC |
(chip_is_ar8316(priv) ? AR8216_PORT_STATUS_RXFLOW : 0) |
(chip_is_ar8316(priv) ? AR8216_PORT_STATUS_TXFLOW : 0) |
AR8216_PORT_STATUS_DUPLEX);
} else {
ar8xxx_write(priv, AR8216_REG_PORT_STATUS(port),
AR8216_PORT_STATUS_LINK_AUTO);
}
}
static void
ar8216_wait_atu_ready(struct ar8xxx_priv *priv, u16 r2, u16 r1)
{
int timeout = 20;
while (ar8xxx_mii_read32(priv, r2, r1) & AR8216_ATU_ACTIVE && --timeout)
udelay(10);
if (!timeout)
pr_err("ar8216: timeout waiting for atu to become ready\n");
}
static void ar8216_get_arl_entry(struct ar8xxx_priv *priv,
struct arl_entry *a, u32 *status, enum arl_op op)
{
struct mii_bus *bus = priv->mii_bus;
u16 r2, page;
u16 r1_func0, r1_func1, r1_func2;
u32 t, val0, val1, val2;
int i;
split_addr(AR8216_REG_ATU_FUNC0, &r1_func0, &r2, &page);
r2 |= 0x10;
r1_func1 = (AR8216_REG_ATU_FUNC1 >> 1) & 0x1e;
r1_func2 = (AR8216_REG_ATU_FUNC2 >> 1) & 0x1e;
switch (op) {
case AR8XXX_ARL_INITIALIZE:
/* all ATU registers are on the same page
* therefore set page only once
*/
bus->write(bus, 0x18, 0, page);
wait_for_page_switch();
ar8216_wait_atu_ready(priv, r2, r1_func0);
ar8xxx_mii_write32(priv, r2, r1_func0, AR8216_ATU_OP_GET_NEXT);
ar8xxx_mii_write32(priv, r2, r1_func1, 0);
ar8xxx_mii_write32(priv, r2, r1_func2, 0);
break;
case AR8XXX_ARL_GET_NEXT:
t = ar8xxx_mii_read32(priv, r2, r1_func0);
t |= AR8216_ATU_ACTIVE;
ar8xxx_mii_write32(priv, r2, r1_func0, t);
ar8216_wait_atu_ready(priv, r2, r1_func0);
val0 = ar8xxx_mii_read32(priv, r2, r1_func0);
val1 = ar8xxx_mii_read32(priv, r2, r1_func1);
val2 = ar8xxx_mii_read32(priv, r2, r1_func2);
*status = (val2 & AR8216_ATU_STATUS) >> AR8216_ATU_STATUS_S;
if (!*status)
break;
i = 0;
t = AR8216_ATU_PORT0;
while (!(val2 & t) && ++i < priv->dev.ports)
t <<= 1;
a->port = i;
a->mac[0] = (val0 & AR8216_ATU_ADDR5) >> AR8216_ATU_ADDR5_S;
a->mac[1] = (val0 & AR8216_ATU_ADDR4) >> AR8216_ATU_ADDR4_S;
a->mac[2] = (val1 & AR8216_ATU_ADDR3) >> AR8216_ATU_ADDR3_S;
a->mac[3] = (val1 & AR8216_ATU_ADDR2) >> AR8216_ATU_ADDR2_S;
a->mac[4] = (val1 & AR8216_ATU_ADDR1) >> AR8216_ATU_ADDR1_S;
a->mac[5] = (val1 & AR8216_ATU_ADDR0) >> AR8216_ATU_ADDR0_S;
break;
}
}
static void
ar8236_setup_port(struct ar8xxx_priv *priv, int port, u32 members)
{
u32 egress, ingress;
u32 pvid;
if (priv->vlan) {
pvid = priv->vlan_id[priv->pvid[port]];
if (priv->vlan_tagged & (1 << port))
egress = AR8216_OUT_ADD_VLAN;
else
egress = AR8216_OUT_STRIP_VLAN;
ingress = AR8216_IN_SECURE;
} else {
pvid = port;
egress = AR8216_OUT_KEEP;
ingress = AR8216_IN_PORT_ONLY;
}
ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(port),
AR8216_PORT_CTRL_LEARN | AR8216_PORT_CTRL_VLAN_MODE |
AR8216_PORT_CTRL_SINGLE_VLAN | AR8216_PORT_CTRL_STATE |
AR8216_PORT_CTRL_HEADER | AR8216_PORT_CTRL_LEARN_LOCK,
AR8216_PORT_CTRL_LEARN |
(egress << AR8216_PORT_CTRL_VLAN_MODE_S) |
(AR8216_PORT_STATE_FORWARD << AR8216_PORT_CTRL_STATE_S));
ar8xxx_rmw(priv, AR8236_REG_PORT_VLAN(port),
AR8236_PORT_VLAN_DEFAULT_ID,
(pvid << AR8236_PORT_VLAN_DEFAULT_ID_S));
ar8xxx_rmw(priv, AR8236_REG_PORT_VLAN2(port),
AR8236_PORT_VLAN2_VLAN_MODE |
AR8236_PORT_VLAN2_MEMBER,
(ingress << AR8236_PORT_VLAN2_VLAN_MODE_S) |
(members << AR8236_PORT_VLAN2_MEMBER_S));
}
static void
ar8236_init_globals(struct ar8xxx_priv *priv)
{
/* enable jumbo frames */
ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CTRL,
AR8316_GCTRL_MTU, 9018 + 8 + 2);
/* enable cpu port to receive arp frames */
ar8xxx_reg_set(priv, AR8216_REG_ATU_CTRL,
AR8236_ATU_CTRL_RES);
/* enable cpu port to receive multicast and broadcast frames */
ar8xxx_reg_set(priv, AR8216_REG_FLOOD_MASK,
AR8236_FM_CPU_BROADCAST_EN | AR8236_FM_CPU_BCAST_FWD_EN);
/* Enable MIB counters */
ar8xxx_rmw(priv, AR8216_REG_MIB_FUNC, AR8216_MIB_FUNC | AR8236_MIB_EN,
(AR8216_MIB_FUNC_NO_OP << AR8216_MIB_FUNC_S) |
AR8236_MIB_EN);
}
static int
ar8316_hw_init(struct ar8xxx_priv *priv)
{
u32 val, newval;
val = ar8xxx_read(priv, AR8316_REG_POSTRIP);
if (priv->phy->interface == PHY_INTERFACE_MODE_RGMII) {
if (priv->port4_phy) {
/* value taken from Ubiquiti RouterStation Pro */
newval = 0x81461bea;
pr_info("ar8316: Using port 4 as PHY\n");
} else {
newval = 0x01261be2;
pr_info("ar8316: Using port 4 as switch port\n");
}
} else if (priv->phy->interface == PHY_INTERFACE_MODE_GMII) {
/* value taken from AVM Fritz!Box 7390 sources */
newval = 0x010e5b71;
} else {
/* no known value for phy interface */
pr_err("ar8316: unsupported mii mode: %d.\n",
priv->phy->interface);
return -EINVAL;
}
if (val == newval)
goto out;
ar8xxx_write(priv, AR8316_REG_POSTRIP, newval);
if (priv->port4_phy &&
priv->phy->interface == PHY_INTERFACE_MODE_RGMII) {
/* work around for phy4 rgmii mode */
ar8xxx_phy_dbg_write(priv, 4, 0x12, 0x480c);
/* rx delay */
ar8xxx_phy_dbg_write(priv, 4, 0x0, 0x824e);
/* tx delay */
ar8xxx_phy_dbg_write(priv, 4, 0x5, 0x3d47);
msleep(1000);
}
ar8xxx_phy_init(priv);
out:
priv->initialized = true;
return 0;
}
static void
ar8316_init_globals(struct ar8xxx_priv *priv)
{
/* standard atheros magic */
ar8xxx_write(priv, 0x38, 0xc000050e);
/* enable cpu port to receive multicast and broadcast frames */
ar8xxx_write(priv, AR8216_REG_FLOOD_MASK, 0x003f003f);
/* enable jumbo frames */
ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CTRL,
AR8316_GCTRL_MTU, 9018 + 8 + 2);
/* Enable MIB counters */
ar8xxx_rmw(priv, AR8216_REG_MIB_FUNC, AR8216_MIB_FUNC | AR8236_MIB_EN,
(AR8216_MIB_FUNC_NO_OP << AR8216_MIB_FUNC_S) |
AR8236_MIB_EN);
}
int
ar8xxx_sw_set_vlan(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
priv->vlan = !!val->value.i;
return 0;
}
int
ar8xxx_sw_get_vlan(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
val->value.i = priv->vlan;
return 0;
}
int
ar8xxx_sw_set_pvid(struct switch_dev *dev, int port, int vlan)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
/* make sure no invalid PVIDs get set */
if (vlan < 0 || vlan >= dev->vlans ||
port < 0 || port >= AR8X16_MAX_PORTS)
return -EINVAL;
priv->pvid[port] = vlan;
return 0;
}
int
ar8xxx_sw_get_pvid(struct switch_dev *dev, int port, int *vlan)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
if (port < 0 || port >= AR8X16_MAX_PORTS)
return -EINVAL;
*vlan = priv->pvid[port];
return 0;
}
static int
ar8xxx_sw_set_vid(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
if (val->port_vlan >= AR8X16_MAX_VLANS)
return -EINVAL;
priv->vlan_id[val->port_vlan] = val->value.i;
return 0;
}
static int
ar8xxx_sw_get_vid(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
val->value.i = priv->vlan_id[val->port_vlan];
return 0;
}
int
ar8xxx_sw_get_port_link(struct switch_dev *dev, int port,
struct switch_port_link *link)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
ar8216_read_port_link(priv, port, link);
return 0;
}
static int
ar8xxx_sw_get_ports(struct switch_dev *dev, struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
u8 ports;
int i;
if (val->port_vlan >= AR8X16_MAX_VLANS)
return -EINVAL;
ports = priv->vlan_table[val->port_vlan];
val->len = 0;
for (i = 0; i < dev->ports; i++) {
struct switch_port *p;
if (!(ports & (1 << i)))
continue;
p = &val->value.ports[val->len++];
p->id = i;
if (priv->vlan_tagged & (1 << i))
p->flags = (1 << SWITCH_PORT_FLAG_TAGGED);
else
p->flags = 0;
}
return 0;
}
static int
ar8xxx_sw_set_ports(struct switch_dev *dev, struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
u8 *vt = &priv->vlan_table[val->port_vlan];
int i, j;
*vt = 0;
for (i = 0; i < val->len; i++) {
struct switch_port *p = &val->value.ports[i];
if (p->flags & (1 << SWITCH_PORT_FLAG_TAGGED)) {
priv->vlan_tagged |= (1 << p->id);
} else {
priv->vlan_tagged &= ~(1 << p->id);
priv->pvid[p->id] = val->port_vlan;
/* make sure that an untagged port does not
* appear in other vlans */
for (j = 0; j < AR8X16_MAX_VLANS; j++) {
if (j == val->port_vlan)
continue;
priv->vlan_table[j] &= ~(1 << p->id);
}
}
*vt |= 1 << p->id;
}
return 0;
}
static void
ar8216_set_mirror_regs(struct ar8xxx_priv *priv)
{
int port;
/* reset all mirror registers */
ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CPUPORT,
AR8216_GLOBAL_CPUPORT_MIRROR_PORT,
(0xF << AR8216_GLOBAL_CPUPORT_MIRROR_PORT_S));
for (port = 0; port < AR8216_NUM_PORTS; port++) {
ar8xxx_reg_clear(priv, AR8216_REG_PORT_CTRL(port),
AR8216_PORT_CTRL_MIRROR_RX);
ar8xxx_reg_clear(priv, AR8216_REG_PORT_CTRL(port),
AR8216_PORT_CTRL_MIRROR_TX);
}
/* now enable mirroring if necessary */
if (priv->source_port >= AR8216_NUM_PORTS ||
priv->monitor_port >= AR8216_NUM_PORTS ||
priv->source_port == priv->monitor_port) {
return;
}
ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CPUPORT,
AR8216_GLOBAL_CPUPORT_MIRROR_PORT,
(priv->monitor_port << AR8216_GLOBAL_CPUPORT_MIRROR_PORT_S));
if (priv->mirror_rx)
ar8xxx_reg_set(priv, AR8216_REG_PORT_CTRL(priv->source_port),
AR8216_PORT_CTRL_MIRROR_RX);
if (priv->mirror_tx)
ar8xxx_reg_set(priv, AR8216_REG_PORT_CTRL(priv->source_port),
AR8216_PORT_CTRL_MIRROR_TX);
}
static inline u32
ar8xxx_age_time_val(int age_time)
{
return (age_time + AR8XXX_REG_ARL_CTRL_AGE_TIME_SECS / 2) /
AR8XXX_REG_ARL_CTRL_AGE_TIME_SECS;
}
static inline void
ar8xxx_set_age_time(struct ar8xxx_priv *priv, int reg)
{
u32 age_time = ar8xxx_age_time_val(priv->arl_age_time);
ar8xxx_rmw(priv, reg, AR8216_ATU_CTRL_AGE_TIME, age_time << AR8216_ATU_CTRL_AGE_TIME_S);
}
int
ar8xxx_sw_hw_apply(struct switch_dev *dev)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
const struct ar8xxx_chip *chip = priv->chip;
u8 portmask[AR8X16_MAX_PORTS];
int i, j;
mutex_lock(&priv->reg_mutex);
/* flush all vlan translation unit entries */
priv->chip->vtu_flush(priv);
memset(portmask, 0, sizeof(portmask));
if (!priv->init) {
/* calculate the port destination masks and load vlans
* into the vlan translation unit */
for (j = 0; j < AR8X16_MAX_VLANS; j++) {
u8 vp = priv->vlan_table[j];
if (!vp)
continue;
for (i = 0; i < dev->ports; i++) {
u8 mask = (1 << i);
if (vp & mask)
portmask[i] |= vp & ~mask;
}
chip->vtu_load_vlan(priv, priv->vlan_id[j],
priv->vlan_table[j]);
}
} else {
/* vlan disabled:
* isolate all ports, but connect them to the cpu port */
for (i = 0; i < dev->ports; i++) {
if (i == AR8216_PORT_CPU)
continue;
portmask[i] = 1 << AR8216_PORT_CPU;
portmask[AR8216_PORT_CPU] |= (1 << i);
}
}
/* update the port destination mask registers and tag settings */
for (i = 0; i < dev->ports; i++) {
chip->setup_port(priv, i, portmask[i]);
}
chip->set_mirror_regs(priv);
/* set age time */
if (chip->reg_arl_ctrl)
ar8xxx_set_age_time(priv, chip->reg_arl_ctrl);
mutex_unlock(&priv->reg_mutex);
return 0;
}
int
ar8xxx_sw_reset_switch(struct switch_dev *dev)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
const struct ar8xxx_chip *chip = priv->chip;
int i;
mutex_lock(&priv->reg_mutex);
memset(&priv->vlan, 0, sizeof(struct ar8xxx_priv) -
offsetof(struct ar8xxx_priv, vlan));
for (i = 0; i < AR8X16_MAX_VLANS; i++)
priv->vlan_id[i] = i;
/* Configure all ports */
for (i = 0; i < dev->ports; i++)
chip->init_port(priv, i);
priv->mirror_rx = false;
priv->mirror_tx = false;
priv->source_port = 0;
priv->monitor_port = 0;
priv->arl_age_time = AR8XXX_DEFAULT_ARL_AGE_TIME;
chip->init_globals(priv);
mutex_unlock(&priv->reg_mutex);
return chip->sw_hw_apply(dev);
}
int
ar8xxx_sw_set_reset_mibs(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
unsigned int len;
int ret;
if (!ar8xxx_has_mib_counters(priv))
return -EOPNOTSUPP;
mutex_lock(&priv->mib_lock);
len = priv->dev.ports * priv->chip->num_mibs *
sizeof(*priv->mib_stats);
memset(priv->mib_stats, '\0', len);
ret = ar8xxx_mib_flush(priv);
if (ret)
goto unlock;
ret = 0;
unlock:
mutex_unlock(&priv->mib_lock);
return ret;
}
int
ar8xxx_sw_set_mirror_rx_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
mutex_lock(&priv->reg_mutex);
priv->mirror_rx = !!val->value.i;
priv->chip->set_mirror_regs(priv);
mutex_unlock(&priv->reg_mutex);
return 0;
}
int
ar8xxx_sw_get_mirror_rx_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
val->value.i = priv->mirror_rx;
return 0;
}
int
ar8xxx_sw_set_mirror_tx_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
mutex_lock(&priv->reg_mutex);
priv->mirror_tx = !!val->value.i;
priv->chip->set_mirror_regs(priv);
mutex_unlock(&priv->reg_mutex);
return 0;
}
int
ar8xxx_sw_get_mirror_tx_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
val->value.i = priv->mirror_tx;
return 0;
}
int
ar8xxx_sw_set_mirror_monitor_port(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
mutex_lock(&priv->reg_mutex);
priv->monitor_port = val->value.i;
priv->chip->set_mirror_regs(priv);
mutex_unlock(&priv->reg_mutex);
return 0;
}
int
ar8xxx_sw_get_mirror_monitor_port(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
val->value.i = priv->monitor_port;
return 0;
}
int
ar8xxx_sw_set_mirror_source_port(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
mutex_lock(&priv->reg_mutex);
priv->source_port = val->value.i;
priv->chip->set_mirror_regs(priv);
mutex_unlock(&priv->reg_mutex);
return 0;
}
int
ar8xxx_sw_get_mirror_source_port(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
val->value.i = priv->source_port;
return 0;
}
int
ar8xxx_sw_set_port_reset_mib(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
int port;
int ret;
if (!ar8xxx_has_mib_counters(priv))
return -EOPNOTSUPP;
port = val->port_vlan;
if (port >= dev->ports)
return -EINVAL;
mutex_lock(&priv->mib_lock);
ret = ar8xxx_mib_capture(priv);
if (ret)
goto unlock;
ar8xxx_mib_fetch_port_stat(priv, port, true);
ret = 0;
unlock:
mutex_unlock(&priv->mib_lock);
return ret;
}
static void
ar8xxx_byte_to_str(char *buf, int len, u64 byte)
{
unsigned long b;
const char *unit;
if (byte >= 0x40000000) { /* 1 GiB */
b = byte * 10 / 0x40000000;
unit = "GiB";
} else if (byte >= 0x100000) { /* 1 MiB */
b = byte * 10 / 0x100000;
unit = "MiB";
} else if (byte >= 0x400) { /* 1 KiB */
b = byte * 10 / 0x400;
unit = "KiB";
} else {
b = byte;
unit = "Byte";
}
if (strcmp(unit, "Byte"))
snprintf(buf, len, "%lu.%lu %s", b / 10, b % 10, unit);
else
snprintf(buf, len, "%lu %s", b, unit);
}
int
ar8xxx_sw_get_port_mib(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
const struct ar8xxx_chip *chip = priv->chip;
u64 *mib_stats, mib_data;
unsigned int port;
int ret;
char *buf = priv->buf;
char buf1[64];
const char *mib_name;
int i, len = 0;
bool mib_stats_empty = true;
if (!ar8xxx_has_mib_counters(priv))
return -EOPNOTSUPP;
port = val->port_vlan;
if (port >= dev->ports)
return -EINVAL;
mutex_lock(&priv->mib_lock);
ret = ar8xxx_mib_capture(priv);
if (ret)
goto unlock;
ar8xxx_mib_fetch_port_stat(priv, port, false);
len += snprintf(buf + len, sizeof(priv->buf) - len,
"MIB counters\n");
mib_stats = &priv->mib_stats[port * chip->num_mibs];
for (i = 0; i < chip->num_mibs; i++) {
mib_name = chip->mib_decs[i].name;
mib_data = mib_stats[i];
len += snprintf(buf + len, sizeof(priv->buf) - len,
"%-12s: %llu\n", mib_name, mib_data);
if ((!strcmp(mib_name, "TxByte") ||
!strcmp(mib_name, "RxGoodByte")) &&
mib_data >= 1024) {
ar8xxx_byte_to_str(buf1, sizeof(buf1), mib_data);
--len; /* discard newline at the end of buf */
len += snprintf(buf + len, sizeof(priv->buf) - len,
" (%s)\n", buf1);
}
if (mib_stats_empty && mib_data)
mib_stats_empty = false;
}
if (mib_stats_empty)
len = snprintf(buf, sizeof(priv->buf), "No MIB data");
val->value.s = buf;
val->len = len;
ret = 0;
unlock:
mutex_unlock(&priv->mib_lock);
return ret;
}
int
ar8xxx_sw_set_arl_age_time(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
int age_time = val->value.i;
u32 age_time_val;
if (age_time < 0)
return -EINVAL;
age_time_val = ar8xxx_age_time_val(age_time);
if (age_time_val == 0 || age_time_val > 0xffff)
return -EINVAL;
priv->arl_age_time = age_time;
return 0;
}
int
ar8xxx_sw_get_arl_age_time(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
val->value.i = priv->arl_age_time;
return 0;
}
int
ar8xxx_sw_get_arl_table(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
struct mii_bus *bus = priv->mii_bus;
const struct ar8xxx_chip *chip = priv->chip;
char *buf = priv->arl_buf;
int i, j, k, len = 0;
struct arl_entry *a, *a1;
u32 status;
if (!chip->get_arl_entry)
return -EOPNOTSUPP;
mutex_lock(&priv->reg_mutex);
mutex_lock(&bus->mdio_lock);
chip->get_arl_entry(priv, NULL, NULL, AR8XXX_ARL_INITIALIZE);
for(i = 0; i < AR8XXX_NUM_ARL_RECORDS; ++i) {
a = &priv->arl_table[i];
duplicate:
chip->get_arl_entry(priv, a, &status, AR8XXX_ARL_GET_NEXT);
if (!status)
break;
/* avoid duplicates
* ARL table can include multiple valid entries
* per MAC, just with differing status codes
*/
for (j = 0; j < i; ++j) {
a1 = &priv->arl_table[j];
if (a->port == a1->port && !memcmp(a->mac, a1->mac, sizeof(a->mac)))
goto duplicate;
}
}
mutex_unlock(&bus->mdio_lock);
len += snprintf(buf + len, sizeof(priv->arl_buf) - len,
"address resolution table\n");
if (i == AR8XXX_NUM_ARL_RECORDS)
len += snprintf(buf + len, sizeof(priv->arl_buf) - len,
"Too many entries found, displaying the first %d only!\n",
AR8XXX_NUM_ARL_RECORDS);
for (j = 0; j < priv->dev.ports; ++j) {
for (k = 0; k < i; ++k) {
a = &priv->arl_table[k];
if (a->port != j)
continue;
len += snprintf(buf + len, sizeof(priv->arl_buf) - len,
"Port %d: MAC %02x:%02x:%02x:%02x:%02x:%02x\n",
j,
a->mac[5], a->mac[4], a->mac[3],
a->mac[2], a->mac[1], a->mac[0]);
}
}
val->value.s = buf;
val->len = len;
mutex_unlock(&priv->reg_mutex);
return 0;
}
int
ar8xxx_sw_set_flush_arl_table(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
int ret;
mutex_lock(&priv->reg_mutex);
ret = priv->chip->atu_flush(priv);
mutex_unlock(&priv->reg_mutex);
return ret;
}
int
ar8xxx_sw_set_flush_port_arl_table(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
int port, ret;
port = val->port_vlan;
if (port >= dev->ports)
return -EINVAL;
mutex_lock(&priv->reg_mutex);
ret = priv->chip->atu_flush_port(priv, port);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static const struct switch_attr ar8xxx_sw_attr_globals[] = {
{
.type = SWITCH_TYPE_INT,
.name = "enable_vlan",
.description = "Enable VLAN mode",
.set = ar8xxx_sw_set_vlan,
.get = ar8xxx_sw_get_vlan,
.max = 1
},
{
.type = SWITCH_TYPE_NOVAL,
.name = "reset_mibs",
.description = "Reset all MIB counters",
.set = ar8xxx_sw_set_reset_mibs,
},
{
.type = SWITCH_TYPE_INT,
.name = "enable_mirror_rx",
.description = "Enable mirroring of RX packets",
.set = ar8xxx_sw_set_mirror_rx_enable,
.get = ar8xxx_sw_get_mirror_rx_enable,
.max = 1
},
{
.type = SWITCH_TYPE_INT,
.name = "enable_mirror_tx",
.description = "Enable mirroring of TX packets",
.set = ar8xxx_sw_set_mirror_tx_enable,
.get = ar8xxx_sw_get_mirror_tx_enable,
.max = 1
},
{
.type = SWITCH_TYPE_INT,
.name = "mirror_monitor_port",
.description = "Mirror monitor port",
.set = ar8xxx_sw_set_mirror_monitor_port,
.get = ar8xxx_sw_get_mirror_monitor_port,
.max = AR8216_NUM_PORTS - 1
},
{
.type = SWITCH_TYPE_INT,
.name = "mirror_source_port",
.description = "Mirror source port",
.set = ar8xxx_sw_set_mirror_source_port,
.get = ar8xxx_sw_get_mirror_source_port,
.max = AR8216_NUM_PORTS - 1
},
{
.type = SWITCH_TYPE_STRING,
.name = "arl_table",
.description = "Get ARL table",
.set = NULL,
.get = ar8xxx_sw_get_arl_table,
},
{
.type = SWITCH_TYPE_NOVAL,
.name = "flush_arl_table",
.description = "Flush ARL table",
.set = ar8xxx_sw_set_flush_arl_table,
},
};
const struct switch_attr ar8xxx_sw_attr_port[] = {
{
.type = SWITCH_TYPE_NOVAL,
.name = "reset_mib",
.description = "Reset single port MIB counters",
.set = ar8xxx_sw_set_port_reset_mib,
},
{
.type = SWITCH_TYPE_STRING,
.name = "mib",
.description = "Get port's MIB counters",
.set = NULL,
.get = ar8xxx_sw_get_port_mib,
},
{
.type = SWITCH_TYPE_NOVAL,
.name = "flush_arl_table",
.description = "Flush port's ARL table entries",
.set = ar8xxx_sw_set_flush_port_arl_table,
},
};
const struct switch_attr ar8xxx_sw_attr_vlan[1] = {
{
.type = SWITCH_TYPE_INT,
.name = "vid",
.description = "VLAN ID (0-4094)",
.set = ar8xxx_sw_set_vid,
.get = ar8xxx_sw_get_vid,
.max = 4094,
},
};
static const struct switch_dev_ops ar8xxx_sw_ops = {
.attr_global = {
.attr = ar8xxx_sw_attr_globals,
.n_attr = ARRAY_SIZE(ar8xxx_sw_attr_globals),
},
.attr_port = {
.attr = ar8xxx_sw_attr_port,
.n_attr = ARRAY_SIZE(ar8xxx_sw_attr_port),
},
.attr_vlan = {
.attr = ar8xxx_sw_attr_vlan,
.n_attr = ARRAY_SIZE(ar8xxx_sw_attr_vlan),
},
.get_port_pvid = ar8xxx_sw_get_pvid,
.set_port_pvid = ar8xxx_sw_set_pvid,
.get_vlan_ports = ar8xxx_sw_get_ports,
.set_vlan_ports = ar8xxx_sw_set_ports,
.apply_config = ar8xxx_sw_hw_apply,
.reset_switch = ar8xxx_sw_reset_switch,
.get_port_link = ar8xxx_sw_get_port_link,
};
static const struct ar8xxx_chip ar8216_chip = {
.caps = AR8XXX_CAP_MIB_COUNTERS,
.reg_port_stats_start = 0x19000,
.reg_port_stats_length = 0xa0,
.reg_arl_ctrl = AR8216_REG_ATU_CTRL,
.name = "Atheros AR8216",
.ports = AR8216_NUM_PORTS,
.vlans = AR8216_NUM_VLANS,
.swops = &ar8xxx_sw_ops,
.hw_init = ar8216_hw_init,
.init_globals = ar8216_init_globals,
.init_port = ar8216_init_port,
.setup_port = ar8216_setup_port,
.read_port_status = ar8216_read_port_status,
.atu_flush = ar8216_atu_flush,
.atu_flush_port = ar8216_atu_flush_port,
.vtu_flush = ar8216_vtu_flush,
.vtu_load_vlan = ar8216_vtu_load_vlan,
.set_mirror_regs = ar8216_set_mirror_regs,
.get_arl_entry = ar8216_get_arl_entry,
.sw_hw_apply = ar8xxx_sw_hw_apply,
.num_mibs = ARRAY_SIZE(ar8216_mibs),
.mib_decs = ar8216_mibs,
.mib_func = AR8216_REG_MIB_FUNC
};
static const struct ar8xxx_chip ar8236_chip = {
.caps = AR8XXX_CAP_MIB_COUNTERS,
.reg_port_stats_start = 0x20000,
.reg_port_stats_length = 0x100,
.reg_arl_ctrl = AR8216_REG_ATU_CTRL,
.name = "Atheros AR8236",
.ports = AR8216_NUM_PORTS,
.vlans = AR8216_NUM_VLANS,
.swops = &ar8xxx_sw_ops,
.hw_init = ar8216_hw_init,
.init_globals = ar8236_init_globals,
.init_port = ar8216_init_port,
.setup_port = ar8236_setup_port,
.read_port_status = ar8216_read_port_status,
.atu_flush = ar8216_atu_flush,
.atu_flush_port = ar8216_atu_flush_port,
.vtu_flush = ar8216_vtu_flush,
.vtu_load_vlan = ar8216_vtu_load_vlan,
.set_mirror_regs = ar8216_set_mirror_regs,
.get_arl_entry = ar8216_get_arl_entry,
.sw_hw_apply = ar8xxx_sw_hw_apply,
.num_mibs = ARRAY_SIZE(ar8236_mibs),
.mib_decs = ar8236_mibs,
.mib_func = AR8216_REG_MIB_FUNC
};
static const struct ar8xxx_chip ar8316_chip = {
.caps = AR8XXX_CAP_GIGE | AR8XXX_CAP_MIB_COUNTERS,
.reg_port_stats_start = 0x20000,
.reg_port_stats_length = 0x100,
.reg_arl_ctrl = AR8216_REG_ATU_CTRL,
.name = "Atheros AR8316",
.ports = AR8216_NUM_PORTS,
.vlans = AR8X16_MAX_VLANS,
.swops = &ar8xxx_sw_ops,
.hw_init = ar8316_hw_init,
.init_globals = ar8316_init_globals,
.init_port = ar8216_init_port,
.setup_port = ar8216_setup_port,
.read_port_status = ar8216_read_port_status,
.atu_flush = ar8216_atu_flush,
.atu_flush_port = ar8216_atu_flush_port,
.vtu_flush = ar8216_vtu_flush,
.vtu_load_vlan = ar8216_vtu_load_vlan,
.set_mirror_regs = ar8216_set_mirror_regs,
.get_arl_entry = ar8216_get_arl_entry,
.sw_hw_apply = ar8xxx_sw_hw_apply,
.num_mibs = ARRAY_SIZE(ar8236_mibs),
.mib_decs = ar8236_mibs,
.mib_func = AR8216_REG_MIB_FUNC
};
static int
ar8xxx_id_chip(struct ar8xxx_priv *priv)
{
u32 val;
u16 id;
int i;
val = ar8xxx_read(priv, AR8216_REG_CTRL);
if (val == ~0)
return -ENODEV;
id = val & (AR8216_CTRL_REVISION | AR8216_CTRL_VERSION);
for (i = 0; i < AR8X16_PROBE_RETRIES; i++) {
u16 t;
val = ar8xxx_read(priv, AR8216_REG_CTRL);
if (val == ~0)
return -ENODEV;
t = val & (AR8216_CTRL_REVISION | AR8216_CTRL_VERSION);
if (t != id)
return -ENODEV;
}
priv->chip_ver = (id & AR8216_CTRL_VERSION) >> AR8216_CTRL_VERSION_S;
priv->chip_rev = (id & AR8216_CTRL_REVISION);
switch (priv->chip_ver) {
case AR8XXX_VER_AR8216:
priv->chip = &ar8216_chip;
break;
case AR8XXX_VER_AR8236:
priv->chip = &ar8236_chip;
break;
case AR8XXX_VER_AR8316:
priv->chip = &ar8316_chip;
break;
case AR8XXX_VER_AR8327:
priv->chip = &ar8327_chip;
break;
case AR8XXX_VER_AR8337:
priv->chip = &ar8337_chip;
break;
default:
pr_err("ar8216: Unknown Atheros device [ver=%d, rev=%d]\n",
priv->chip_ver, priv->chip_rev);
return -ENODEV;
}
return 0;
}
static void
ar8xxx_mib_work_func(struct work_struct *work)
{
struct ar8xxx_priv *priv;
int err;
priv = container_of(work, struct ar8xxx_priv, mib_work.work);
mutex_lock(&priv->mib_lock);
err = ar8xxx_mib_capture(priv);
if (err)
goto next_port;
ar8xxx_mib_fetch_port_stat(priv, priv->mib_next_port, false);
next_port:
priv->mib_next_port++;
if (priv->mib_next_port >= priv->dev.ports)
priv->mib_next_port = 0;
mutex_unlock(&priv->mib_lock);
schedule_delayed_work(&priv->mib_work,
msecs_to_jiffies(AR8XXX_MIB_WORK_DELAY));
}
static int
ar8xxx_mib_init(struct ar8xxx_priv *priv)
{
unsigned int len;
if (!ar8xxx_has_mib_counters(priv))
return 0;
BUG_ON(!priv->chip->mib_decs || !priv->chip->num_mibs);
len = priv->dev.ports * priv->chip->num_mibs *
sizeof(*priv->mib_stats);
priv->mib_stats = kzalloc(len, GFP_KERNEL);
if (!priv->mib_stats)
return -ENOMEM;
return 0;
}
static void
ar8xxx_mib_start(struct ar8xxx_priv *priv)
{
if (!ar8xxx_has_mib_counters(priv))
return;
schedule_delayed_work(&priv->mib_work,
msecs_to_jiffies(AR8XXX_MIB_WORK_DELAY));
}
static void
ar8xxx_mib_stop(struct ar8xxx_priv *priv)
{
if (!ar8xxx_has_mib_counters(priv))
return;
cancel_delayed_work_sync(&priv->mib_work);
}
static struct ar8xxx_priv *
ar8xxx_create(void)
{
struct ar8xxx_priv *priv;
priv = kzalloc(sizeof(struct ar8xxx_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
mutex_init(&priv->reg_mutex);
mutex_init(&priv->mib_lock);
INIT_DELAYED_WORK(&priv->mib_work, ar8xxx_mib_work_func);
return priv;
}
static void
ar8xxx_free(struct ar8xxx_priv *priv)
{
if (priv->chip && priv->chip->cleanup)
priv->chip->cleanup(priv);
kfree(priv->chip_data);
kfree(priv->mib_stats);
kfree(priv);
}
static int
ar8xxx_probe_switch(struct ar8xxx_priv *priv)
{
const struct ar8xxx_chip *chip;
struct switch_dev *swdev;
int ret;
ret = ar8xxx_id_chip(priv);
if (ret)
return ret;
chip = priv->chip;
swdev = &priv->dev;
swdev->cpu_port = AR8216_PORT_CPU;
swdev->name = chip->name;
swdev->vlans = chip->vlans;
swdev->ports = chip->ports;
swdev->ops = chip->swops;
ret = ar8xxx_mib_init(priv);
if (ret)
return ret;
return 0;
}
static int
ar8xxx_start(struct ar8xxx_priv *priv)
{
int ret;
priv->init = true;
ret = priv->chip->hw_init(priv);
if (ret)
return ret;
ret = ar8xxx_sw_reset_switch(&priv->dev);
if (ret)
return ret;
priv->init = false;
ar8xxx_mib_start(priv);
return 0;
}
static int
ar8xxx_phy_config_init(struct phy_device *phydev)
{
struct ar8xxx_priv *priv = phydev->priv;
struct net_device *dev = phydev->attached_dev;
int ret;
if (WARN_ON(!priv))
return -ENODEV;
if (priv->chip->config_at_probe)
return ar8xxx_phy_check_aneg(phydev);
priv->phy = phydev;
if (phydev->addr != 0) {
if (chip_is_ar8316(priv)) {
/* switch device has been initialized, reinit */
priv->dev.ports = (AR8216_NUM_PORTS - 1);
priv->initialized = false;
priv->port4_phy = true;
ar8316_hw_init(priv);
return 0;
}
return 0;
}
ret = ar8xxx_start(priv);
if (ret)
return ret;
/* VID fixup only needed on ar8216 */
if (chip_is_ar8216(priv)) {
dev->phy_ptr = priv;
dev->priv_flags |= IFF_NO_IP_ALIGN;
dev->eth_mangle_rx = ar8216_mangle_rx;
dev->eth_mangle_tx = ar8216_mangle_tx;
}
return 0;
}
static bool
ar8xxx_check_link_states(struct ar8xxx_priv *priv)
{
bool link_new, changed = false;
u32 status;
int i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < priv->dev.ports; i++) {
status = priv->chip->read_port_status(priv, i);
link_new = !!(status & AR8216_PORT_STATUS_LINK_UP);
if (link_new == priv->link_up[i])
continue;
priv->link_up[i] = link_new;
changed = true;
/* flush ARL entries for this port if it went down*/
if (!link_new)
priv->chip->atu_flush_port(priv, i);
dev_info(&priv->phy->dev, "Port %d is %s\n",
i, link_new ? "up" : "down");
}
mutex_unlock(&priv->reg_mutex);
return changed;
}
static int
ar8xxx_phy_read_status(struct phy_device *phydev)
{
struct ar8xxx_priv *priv = phydev->priv;
struct switch_port_link link;
/* check for switch port link changes */
if (phydev->state == PHY_CHANGELINK)
ar8xxx_check_link_states(priv);
if (phydev->addr != 0)
return genphy_read_status(phydev);
ar8216_read_port_link(priv, phydev->addr, &link);
phydev->link = !!link.link;
if (!phydev->link)
return 0;
switch (link.speed) {
case SWITCH_PORT_SPEED_10:
phydev->speed = SPEED_10;
break;
case SWITCH_PORT_SPEED_100:
phydev->speed = SPEED_100;
break;
case SWITCH_PORT_SPEED_1000:
phydev->speed = SPEED_1000;
break;
default:
phydev->speed = 0;
}
phydev->duplex = link.duplex ? DUPLEX_FULL : DUPLEX_HALF;
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
return 0;
}
static int
ar8xxx_phy_config_aneg(struct phy_device *phydev)
{
if (phydev->addr == 0)
return 0;
return genphy_config_aneg(phydev);
}
static const u32 ar8xxx_phy_ids[] = {
0x004dd033,
0x004dd034, /* AR8327 */
0x004dd036, /* AR8337 */
0x004dd041,
0x004dd042,
0x004dd043, /* AR8236 */
};
static bool
ar8xxx_phy_match(u32 phy_id)
{
int i;
for (i = 0; i < ARRAY_SIZE(ar8xxx_phy_ids); i++)
if (phy_id == ar8xxx_phy_ids[i])
return true;
return false;
}
static bool
ar8xxx_is_possible(struct mii_bus *bus)
{
unsigned int i, found_phys = 0;
for (i = 0; i < 5; i++) {
u32 phy_id;
phy_id = mdiobus_read(bus, i, MII_PHYSID1) << 16;
phy_id |= mdiobus_read(bus, i, MII_PHYSID2);
if (ar8xxx_phy_match(phy_id)) {
found_phys++;
} else if (phy_id) {
pr_debug("ar8xxx: unknown PHY at %s:%02x id:%08x\n",
dev_name(&bus->dev), i, phy_id);
}
}
return !!found_phys;
}
static int
ar8xxx_phy_probe(struct phy_device *phydev)
{
struct ar8xxx_priv *priv;
struct switch_dev *swdev;
int ret;
/* skip PHYs at unused adresses */
if (phydev->addr != 0 && phydev->addr != 4)
return -ENODEV;
if (!ar8xxx_is_possible(phydev->bus))
return -ENODEV;
mutex_lock(&ar8xxx_dev_list_lock);
list_for_each_entry(priv, &ar8xxx_dev_list, list)
if (priv->mii_bus == phydev->bus)
goto found;
priv = ar8xxx_create();
if (priv == NULL) {
ret = -ENOMEM;
goto unlock;
}
priv->mii_bus = phydev->bus;
ret = ar8xxx_probe_switch(priv);
if (ret)
goto free_priv;
swdev = &priv->dev;
swdev->alias = dev_name(&priv->mii_bus->dev);
ret = register_switch(swdev, NULL);
if (ret)
goto free_priv;
pr_info("%s: %s rev. %u switch registered on %s\n",
swdev->devname, swdev->name, priv->chip_rev,
dev_name(&priv->mii_bus->dev));
list_add(&priv->list, &ar8xxx_dev_list);
found:
priv->use_count++;
if (phydev->addr == 0) {
if (ar8xxx_has_gige(priv)) {
phydev->supported = SUPPORTED_1000baseT_Full;
phydev->advertising = ADVERTISED_1000baseT_Full;
} else {
phydev->supported = SUPPORTED_100baseT_Full;
phydev->advertising = ADVERTISED_100baseT_Full;
}
if (priv->chip->config_at_probe) {
priv->phy = phydev;
ret = ar8xxx_start(priv);
if (ret)
goto err_unregister_switch;
}
} else {
if (ar8xxx_has_gige(priv)) {
phydev->supported |= SUPPORTED_1000baseT_Full;
phydev->advertising |= ADVERTISED_1000baseT_Full;
}
}
phydev->priv = priv;
mutex_unlock(&ar8xxx_dev_list_lock);
return 0;
err_unregister_switch:
if (--priv->use_count)
goto unlock;
unregister_switch(&priv->dev);
free_priv:
ar8xxx_free(priv);
unlock:
mutex_unlock(&ar8xxx_dev_list_lock);
return ret;
}
static void
ar8xxx_phy_detach(struct phy_device *phydev)
{
struct net_device *dev = phydev->attached_dev;
if (!dev)
return;
dev->phy_ptr = NULL;
dev->priv_flags &= ~IFF_NO_IP_ALIGN;
dev->eth_mangle_rx = NULL;
dev->eth_mangle_tx = NULL;
}
static void
ar8xxx_phy_remove(struct phy_device *phydev)
{
struct ar8xxx_priv *priv = phydev->priv;
if (WARN_ON(!priv))
return;
phydev->priv = NULL;
mutex_lock(&ar8xxx_dev_list_lock);
if (--priv->use_count > 0) {
mutex_unlock(&ar8xxx_dev_list_lock);
return;
}
list_del(&priv->list);
mutex_unlock(&ar8xxx_dev_list_lock);
unregister_switch(&priv->dev);
ar8xxx_mib_stop(priv);
ar8xxx_free(priv);
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,14,0)
static int
ar8xxx_phy_soft_reset(struct phy_device *phydev)
{
/* we don't need an extra reset */
return 0;
}
#endif
static struct phy_driver ar8xxx_phy_driver = {
.phy_id = 0x004d0000,
.name = "Atheros AR8216/AR8236/AR8316",
.phy_id_mask = 0xffff0000,
.features = PHY_BASIC_FEATURES,
.probe = ar8xxx_phy_probe,
.remove = ar8xxx_phy_remove,
.detach = ar8xxx_phy_detach,
.config_init = ar8xxx_phy_config_init,
.config_aneg = ar8xxx_phy_config_aneg,
.read_status = ar8xxx_phy_read_status,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,14,0)
.soft_reset = ar8xxx_phy_soft_reset,
#endif
.driver = { .owner = THIS_MODULE },
};
int __init
ar8xxx_init(void)
{
return phy_driver_register(&ar8xxx_phy_driver);
}
void __exit
ar8xxx_exit(void)
{
phy_driver_unregister(&ar8xxx_phy_driver);
}
module_init(ar8xxx_init);
module_exit(ar8xxx_exit);
MODULE_LICENSE("GPL");