/* * YAFFS: Yet Another Flash File System. A NAND-flash specific file system. * * Copyright (C) 2002-2011 Aleph One Ltd. * for Toby Churchill Ltd and Brightstar Engineering * * Created by Charles Manning <charles@aleph1.co.uk> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "yportenv.h" #include "yaffs_trace.h" #include "yaffs_guts.h" #include "yaffs_getblockinfo.h" #include "yaffs_tagscompat.h" #include "yaffs_tagsmarshall.h" #include "yaffs_nand.h" #include "yaffs_yaffs1.h" #include "yaffs_yaffs2.h" #include "yaffs_bitmap.h" #include "yaffs_verify.h" #include "yaffs_nand.h" #include "yaffs_packedtags2.h" #include "yaffs_nameval.h" #include "yaffs_allocator.h" #include "yaffs_attribs.h" #include "yaffs_summary.h" /* Note YAFFS_GC_GOOD_ENOUGH must be <= YAFFS_GC_PASSIVE_THRESHOLD */ #define YAFFS_GC_GOOD_ENOUGH 2 #define YAFFS_GC_PASSIVE_THRESHOLD 4 #include "yaffs_ecc.h" /* Forward declarations */ static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk, const u8 *buffer, int n_bytes, int use_reserve); static void yaffs_fix_null_name(struct yaffs_obj *obj, YCHAR *name, int buffer_size); /* Function to calculate chunk and offset */ void yaffs_addr_to_chunk(struct yaffs_dev *dev, loff_t addr, int *chunk_out, u32 *offset_out) { int chunk; u32 offset; chunk = (u32) (addr >> dev->chunk_shift); if (dev->chunk_div == 1) { /* easy power of 2 case */ offset = (u32) (addr & dev->chunk_mask); } else { /* Non power-of-2 case */ loff_t chunk_base; chunk /= dev->chunk_div; chunk_base = ((loff_t) chunk) * dev->data_bytes_per_chunk; offset = (u32) (addr - chunk_base); } *chunk_out = chunk; *offset_out = offset; } /* Function to return the number of shifts for a power of 2 greater than or * equal to the given number * Note we don't try to cater for all possible numbers and this does not have to * be hellishly efficient. */ static inline u32 calc_shifts_ceiling(u32 x) { int extra_bits; int shifts; shifts = extra_bits = 0; while (x > 1) { if (x & 1) extra_bits++; x >>= 1; shifts++; } if (extra_bits) shifts++; return shifts; } /* Function to return the number of shifts to get a 1 in bit 0 */ static inline u32 calc_shifts(u32 x) { u32 shifts; shifts = 0; if (!x) return 0; while (!(x & 1)) { x >>= 1; shifts++; } return shifts; } /* * Temporary buffer manipulations. */ static int yaffs_init_tmp_buffers(struct yaffs_dev *dev) { int i; u8 *buf = (u8 *) 1; memset(dev->temp_buffer, 0, sizeof(dev->temp_buffer)); for (i = 0; buf && i < YAFFS_N_TEMP_BUFFERS; i++) { dev->temp_buffer[i].in_use = 0; buf = kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS); dev->temp_buffer[i].buffer = buf; } return buf ? YAFFS_OK : YAFFS_FAIL; } u8 *yaffs_get_temp_buffer(struct yaffs_dev * dev) { int i; dev->temp_in_use++; if (dev->temp_in_use > dev->max_temp) dev->max_temp = dev->temp_in_use; for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) { if (dev->temp_buffer[i].in_use == 0) { dev->temp_buffer[i].in_use = 1; return dev->temp_buffer[i].buffer; } } yaffs_trace(YAFFS_TRACE_BUFFERS, "Out of temp buffers"); /* * If we got here then we have to allocate an unmanaged one * This is not good. */ dev->unmanaged_buffer_allocs++; return kmalloc(dev->data_bytes_per_chunk, GFP_NOFS); } void yaffs_release_temp_buffer(struct yaffs_dev *dev, u8 *buffer) { int i; dev->temp_in_use--; for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) { if (dev->temp_buffer[i].buffer == buffer) { dev->temp_buffer[i].in_use = 0; return; } } if (buffer) { /* assume it is an unmanaged one. */ yaffs_trace(YAFFS_TRACE_BUFFERS, "Releasing unmanaged temp buffer"); kfree(buffer); dev->unmanaged_buffer_deallocs++; } } /* * Functions for robustisizing TODO * */ static void yaffs_handle_chunk_wr_ok(struct yaffs_dev *dev, int nand_chunk, const u8 *data, const struct yaffs_ext_tags *tags) { (void) dev; (void) nand_chunk; (void) data; (void) tags; } static void yaffs_handle_chunk_update(struct yaffs_dev *dev, int nand_chunk, const struct yaffs_ext_tags *tags) { (void) dev; (void) nand_chunk; (void) tags; } void yaffs_handle_chunk_error(struct yaffs_dev *dev, struct yaffs_block_info *bi) { if (!bi->gc_prioritise) { bi->gc_prioritise = 1; dev->has_pending_prioritised_gc = 1; bi->chunk_error_strikes++; if (bi->chunk_error_strikes > 3) { bi->needs_retiring = 1; /* Too many stikes, so retire */ yaffs_trace(YAFFS_TRACE_ALWAYS, "yaffs: Block struck out"); } } } static void yaffs_handle_chunk_wr_error(struct yaffs_dev *dev, int nand_chunk, int erased_ok) { int flash_block = nand_chunk / dev->param.chunks_per_block; struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block); yaffs_handle_chunk_error(dev, bi); if (erased_ok) { /* Was an actual write failure, * so mark the block for retirement.*/ bi->needs_retiring = 1; yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS, "**>> Block %d needs retiring", flash_block); } /* Delete the chunk */ yaffs_chunk_del(dev, nand_chunk, 1, __LINE__); yaffs_skip_rest_of_block(dev); } /* * Verification code */ /* * Simple hash function. Needs to have a reasonable spread */ static inline int yaffs_hash_fn(int n) { if (n < 0) n = -n; return n % YAFFS_NOBJECT_BUCKETS; } /* * Access functions to useful fake objects. * Note that root might have a presence in NAND if permissions are set. */ struct yaffs_obj *yaffs_root(struct yaffs_dev *dev) { return dev->root_dir; } struct yaffs_obj *yaffs_lost_n_found(struct yaffs_dev *dev) { return dev->lost_n_found; } /* * Erased NAND checking functions */ int yaffs_check_ff(u8 *buffer, int n_bytes) { /* Horrible, slow implementation */ while (n_bytes--) { if (*buffer != 0xff) return 0; buffer++; } return 1; } static int yaffs_check_chunk_erased(struct yaffs_dev *dev, int nand_chunk) { int retval = YAFFS_OK; u8 *data = yaffs_get_temp_buffer(dev); struct yaffs_ext_tags tags; int result; result = yaffs_rd_chunk_tags_nand(dev, nand_chunk, data, &tags); if (tags.ecc_result > YAFFS_ECC_RESULT_NO_ERROR) retval = YAFFS_FAIL; if (!yaffs_check_ff(data, dev->data_bytes_per_chunk) || tags.chunk_used) { yaffs_trace(YAFFS_TRACE_NANDACCESS, "Chunk %d not erased", nand_chunk); retval = YAFFS_FAIL; } yaffs_release_temp_buffer(dev, data); return retval; } static int yaffs_verify_chunk_written(struct yaffs_dev *dev, int nand_chunk, const u8 *data, struct yaffs_ext_tags *tags) { int retval = YAFFS_OK; struct yaffs_ext_tags temp_tags; u8 *buffer = yaffs_get_temp_buffer(dev); int result; result = yaffs_rd_chunk_tags_nand(dev, nand_chunk, buffer, &temp_tags); if (memcmp(buffer, data, dev->data_bytes_per_chunk) || temp_tags.obj_id != tags->obj_id || temp_tags.chunk_id != tags->chunk_id || temp_tags.n_bytes != tags->n_bytes) retval = YAFFS_FAIL; yaffs_release_temp_buffer(dev, buffer); return retval; } int yaffs_check_alloc_available(struct yaffs_dev *dev, int n_chunks) { int reserved_chunks; int reserved_blocks = dev->param.n_reserved_blocks; int checkpt_blocks; checkpt_blocks = yaffs_calc_checkpt_blocks_required(dev); reserved_chunks = (reserved_blocks + checkpt_blocks) * dev->param.chunks_per_block; return (dev->n_free_chunks > (reserved_chunks + n_chunks)); } static int yaffs_find_alloc_block(struct yaffs_dev *dev) { int i; struct yaffs_block_info *bi; if (dev->n_erased_blocks < 1) { /* Hoosterman we've got a problem. * Can't get space to gc */ yaffs_trace(YAFFS_TRACE_ERROR, "yaffs tragedy: no more erased blocks"); return -1; } /* Find an empty block. */ for (i = dev->internal_start_block; i <= dev->internal_end_block; i++) { dev->alloc_block_finder++; if (dev->alloc_block_finder < dev->internal_start_block || dev->alloc_block_finder > dev->internal_end_block) { dev->alloc_block_finder = dev->internal_start_block; } bi = yaffs_get_block_info(dev, dev->alloc_block_finder); if (bi->block_state == YAFFS_BLOCK_STATE_EMPTY) { bi->block_state = YAFFS_BLOCK_STATE_ALLOCATING; dev->seq_number++; bi->seq_number = dev->seq_number; dev->n_erased_blocks--; yaffs_trace(YAFFS_TRACE_ALLOCATE, "Allocated block %d, seq %d, %d left" , dev->alloc_block_finder, dev->seq_number, dev->n_erased_blocks); return dev->alloc_block_finder; } } yaffs_trace(YAFFS_TRACE_ALWAYS, "yaffs tragedy: no more erased blocks, but there should have been %d", dev->n_erased_blocks); return -1; } static int yaffs_alloc_chunk(struct yaffs_dev *dev, int use_reserver, struct yaffs_block_info **block_ptr) { int ret_val; struct yaffs_block_info *bi; if (dev->alloc_block < 0) { /* Get next block to allocate off */ dev->alloc_block = yaffs_find_alloc_block(dev); dev->alloc_page = 0; } if (!use_reserver && !yaffs_check_alloc_available(dev, 1)) { /* No space unless we're allowed to use the reserve. */ return -1; } if (dev->n_erased_blocks < dev->param.n_reserved_blocks && dev->alloc_page == 0) yaffs_trace(YAFFS_TRACE_ALLOCATE, "Allocating reserve"); /* Next page please.... */ if (dev->alloc_block >= 0) { bi = yaffs_get_block_info(dev, dev->alloc_block); ret_val = (dev->alloc_block * dev->param.chunks_per_block) + dev->alloc_page; bi->pages_in_use++; yaffs_set_chunk_bit(dev, dev->alloc_block, dev->alloc_page); dev->alloc_page++; dev->n_free_chunks--; /* If the block is full set the state to full */ if (dev->alloc_page >= dev->param.chunks_per_block) { bi->block_state = YAFFS_BLOCK_STATE_FULL; dev->alloc_block = -1; } if (block_ptr) *block_ptr = bi; return ret_val; } yaffs_trace(YAFFS_TRACE_ERROR, "!!!!!!!!! Allocator out !!!!!!!!!!!!!!!!!"); return -1; } static int yaffs_get_erased_chunks(struct yaffs_dev *dev) { int n; n = dev->n_erased_blocks * dev->param.chunks_per_block; if (dev->alloc_block > 0) n += (dev->param.chunks_per_block - dev->alloc_page); return n; } /* * yaffs_skip_rest_of_block() skips over the rest of the allocation block * if we don't want to write to it. */ void yaffs_skip_rest_of_block(struct yaffs_dev *dev) { struct yaffs_block_info *bi; if (dev->alloc_block > 0) { bi = yaffs_get_block_info(dev, dev->alloc_block); if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING) { bi->block_state = YAFFS_BLOCK_STATE_FULL; dev->alloc_block = -1; } } } static int yaffs_write_new_chunk(struct yaffs_dev *dev, const u8 *data, struct yaffs_ext_tags *tags, int use_reserver) { int attempts = 0; int write_ok = 0; int chunk; yaffs2_checkpt_invalidate(dev); do { struct yaffs_block_info *bi = 0; int erased_ok = 0; chunk = yaffs_alloc_chunk(dev, use_reserver, &bi); if (chunk < 0) { /* no space */ break; } /* First check this chunk is erased, if it needs * checking. The checking policy (unless forced * always on) is as follows: * * Check the first page we try to write in a block. * If the check passes then we don't need to check any * more. If the check fails, we check again... * If the block has been erased, we don't need to check. * * However, if the block has been prioritised for gc, * then we think there might be something odd about * this block and stop using it. * * Rationale: We should only ever see chunks that have * not been erased if there was a partially written * chunk due to power loss. This checking policy should * catch that case with very few checks and thus save a * lot of checks that are most likely not needed. * * Mods to the above * If an erase check fails or the write fails we skip the * rest of the block. */ /* let's give it a try */ attempts++; if (dev->param.always_check_erased) bi->skip_erased_check = 0; if (!bi->skip_erased_check) { erased_ok = yaffs_check_chunk_erased(dev, chunk); if (erased_ok != YAFFS_OK) { yaffs_trace(YAFFS_TRACE_ERROR, "**>> yaffs chunk %d was not erased", chunk); /* If not erased, delete this one, * skip rest of block and * try another chunk */ yaffs_chunk_del(dev, chunk, 1, __LINE__); yaffs_skip_rest_of_block(dev); continue; } } write_ok = yaffs_wr_chunk_tags_nand(dev, chunk, data, tags); if (!bi->skip_erased_check) write_ok = yaffs_verify_chunk_written(dev, chunk, data, tags); if (write_ok != YAFFS_OK) { /* Clean up aborted write, skip to next block and * try another chunk */ yaffs_handle_chunk_wr_error(dev, chunk, erased_ok); continue; } bi->skip_erased_check = 1; /* Copy the data into the robustification buffer */ yaffs_handle_chunk_wr_ok(dev, chunk, data, tags); } while (write_ok != YAFFS_OK && (yaffs_wr_attempts <= 0 || attempts <= yaffs_wr_attempts)); if (!write_ok) chunk = -1; if (attempts > 1) { yaffs_trace(YAFFS_TRACE_ERROR, "**>> yaffs write required %d attempts", attempts); dev->n_retried_writes += (attempts - 1); } return chunk; } /* * Block retiring for handling a broken block. */ static void yaffs_retire_block(struct yaffs_dev *dev, int flash_block) { struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block); yaffs2_checkpt_invalidate(dev); yaffs2_clear_oldest_dirty_seq(dev, bi); if (yaffs_mark_bad(dev, flash_block) != YAFFS_OK) { if (yaffs_erase_block(dev, flash_block) != YAFFS_OK) { yaffs_trace(YAFFS_TRACE_ALWAYS, "yaffs: Failed to mark bad and erase block %d", flash_block); } else { struct yaffs_ext_tags tags; int chunk_id = flash_block * dev->param.chunks_per_block; u8 *buffer = yaffs_get_temp_buffer(dev); memset(buffer, 0xff, dev->data_bytes_per_chunk); memset(&tags, 0, sizeof(tags)); tags.seq_number = YAFFS_SEQUENCE_BAD_BLOCK; if (dev->tagger.write_chunk_tags_fn(dev, chunk_id - dev->chunk_offset, buffer, &tags) != YAFFS_OK) yaffs_trace(YAFFS_TRACE_ALWAYS, "yaffs: Failed to write bad block marker to block %d", flash_block); yaffs_release_temp_buffer(dev, buffer); } } bi->block_state = YAFFS_BLOCK_STATE_DEAD; bi->gc_prioritise = 0; bi->needs_retiring = 0; dev->n_retired_blocks++; } /*---------------- Name handling functions ------------*/ static u16 yaffs_calc_name_sum(const YCHAR *name) { u16 sum = 0; u16 i = 1; if (!name) return 0; while ((*name) && i < (YAFFS_MAX_NAME_LENGTH / 2)) { /* 0x1f mask is case insensitive */ sum += ((*name) & 0x1f) * i; i++; name++; } return sum; } void yaffs_set_obj_name(struct yaffs_obj *obj, const YCHAR * name) { memset(obj->short_name, 0, sizeof(obj->short_name)); if (name && !name[0]) { yaffs_fix_null_name(obj, obj->short_name, YAFFS_SHORT_NAME_LENGTH); name = obj->short_name; } else if (name && strnlen(name, YAFFS_SHORT_NAME_LENGTH + 1) <= YAFFS_SHORT_NAME_LENGTH) { strcpy(obj->short_name, name); } obj->sum = yaffs_calc_name_sum(name); } void yaffs_set_obj_name_from_oh(struct yaffs_obj *obj, const struct yaffs_obj_hdr *oh) { #ifdef CONFIG_YAFFS_AUTO_UNICODE YCHAR tmp_name[YAFFS_MAX_NAME_LENGTH + 1]; memset(tmp_name, 0, sizeof(tmp_name)); yaffs_load_name_from_oh(obj->my_dev, tmp_name, oh->name, YAFFS_MAX_NAME_LENGTH + 1); yaffs_set_obj_name(obj, tmp_name); #else yaffs_set_obj_name(obj, oh->name); #endif } loff_t yaffs_max_file_size(struct yaffs_dev *dev) { if(sizeof(loff_t) < 8) return YAFFS_MAX_FILE_SIZE_32; else return ((loff_t) YAFFS_MAX_CHUNK_ID) * dev->data_bytes_per_chunk; } /*-------------------- TNODES ------------------- * List of spare tnodes * The list is hooked together using the first pointer * in the tnode. */ struct yaffs_tnode *yaffs_get_tnode(struct yaffs_dev *dev) { struct yaffs_tnode *tn = yaffs_alloc_raw_tnode(dev); if (tn) { memset(tn, 0, dev->tnode_size); dev->n_tnodes++; } dev->checkpoint_blocks_required = 0; /* force recalculation */ return tn; } /* FreeTnode frees up a tnode and puts it back on the free list */ static void yaffs_free_tnode(struct yaffs_dev *dev, struct yaffs_tnode *tn) { yaffs_free_raw_tnode(dev, tn); dev->n_tnodes--; dev->checkpoint_blocks_required = 0; /* force recalculation */ } static void yaffs_deinit_tnodes_and_objs(struct yaffs_dev *dev) { yaffs_deinit_raw_tnodes_and_objs(dev); dev->n_obj = 0; dev->n_tnodes = 0; } static void yaffs_load_tnode_0(struct yaffs_dev *dev, struct yaffs_tnode *tn, unsigned pos, unsigned val) { u32 *map = (u32 *) tn; u32 bit_in_map; u32 bit_in_word; u32 word_in_map; u32 mask; pos &= YAFFS_TNODES_LEVEL0_MASK; val >>= dev->chunk_grp_bits; bit_in_map = pos * dev->tnode_width; word_in_map = bit_in_map / 32; bit_in_word = bit_in_map & (32 - 1); mask = dev->tnode_mask << bit_in_word; map[word_in_map] &= ~mask; map[word_in_map] |= (mask & (val << bit_in_word)); if (dev->tnode_width > (32 - bit_in_word)) { bit_in_word = (32 - bit_in_word); word_in_map++; mask = dev->tnode_mask >> bit_in_word; map[word_in_map] &= ~mask; map[word_in_map] |= (mask & (val >> bit_in_word)); } } u32 yaffs_get_group_base(struct yaffs_dev *dev, struct yaffs_tnode *tn, unsigned pos) { u32 *map = (u32 *) tn; u32 bit_in_map; u32 bit_in_word; u32 word_in_map; u32 val; pos &= YAFFS_TNODES_LEVEL0_MASK; bit_in_map = pos * dev->tnode_width; word_in_map = bit_in_map / 32; bit_in_word = bit_in_map & (32 - 1); val = map[word_in_map] >> bit_in_word; if (dev->tnode_width > (32 - bit_in_word)) { bit_in_word = (32 - bit_in_word); word_in_map++; val |= (map[word_in_map] << bit_in_word); } val &= dev->tnode_mask; val <<= dev->chunk_grp_bits; return val; } /* ------------------- End of individual tnode manipulation -----------------*/ /* ---------Functions to manipulate the look-up tree (made up of tnodes) ------ * The look up tree is represented by the top tnode and the number of top_level * in the tree. 0 means only the level 0 tnode is in the tree. */ /* FindLevel0Tnode finds the level 0 tnode, if one exists. */ struct yaffs_tnode *yaffs_find_tnode_0(struct yaffs_dev *dev, struct yaffs_file_var *file_struct, u32 chunk_id) { struct yaffs_tnode *tn = file_struct->top; u32 i; int required_depth; int level = file_struct->top_level; (void) dev; /* Check sane level and chunk Id */ if (level < 0 || level > YAFFS_TNODES_MAX_LEVEL) return NULL; if (chunk_id > YAFFS_MAX_CHUNK_ID) return NULL; /* First check we're tall enough (ie enough top_level) */ i = chunk_id >> YAFFS_TNODES_LEVEL0_BITS; required_depth = 0; while (i) { i >>= YAFFS_TNODES_INTERNAL_BITS; required_depth++; } if (required_depth > file_struct->top_level) return NULL; /* Not tall enough, so we can't find it */ /* Traverse down to level 0 */ while (level > 0 && tn) { tn = tn->internal[(chunk_id >> (YAFFS_TNODES_LEVEL0_BITS + (level - 1) * YAFFS_TNODES_INTERNAL_BITS)) & YAFFS_TNODES_INTERNAL_MASK]; level--; } return tn; } /* add_find_tnode_0 finds the level 0 tnode if it exists, * otherwise first expands the tree. * This happens in two steps: * 1. If the tree isn't tall enough, then make it taller. * 2. Scan down the tree towards the level 0 tnode adding tnodes if required. * * Used when modifying the tree. * * If the tn argument is NULL, then a fresh tnode will be added otherwise the * specified tn will be plugged into the ttree. */ struct yaffs_tnode *yaffs_add_find_tnode_0(struct yaffs_dev *dev, struct yaffs_file_var *file_struct, u32 chunk_id, struct yaffs_tnode *passed_tn) { int required_depth; int i; int l; struct yaffs_tnode *tn; u32 x; /* Check sane level and page Id */ if (file_struct->top_level < 0 || file_struct->top_level > YAFFS_TNODES_MAX_LEVEL) return NULL; if (chunk_id > YAFFS_MAX_CHUNK_ID) return NULL; /* First check we're tall enough (ie enough top_level) */ x = chunk_id >> YAFFS_TNODES_LEVEL0_BITS; required_depth = 0; while (x) { x >>= YAFFS_TNODES_INTERNAL_BITS; required_depth++; } if (required_depth > file_struct->top_level) { /* Not tall enough, gotta make the tree taller */ for (i = file_struct->top_level; i < required_depth; i++) { tn = yaffs_get_tnode(dev); if (tn) { tn->internal[0] = file_struct->top; file_struct->top = tn; file_struct->top_level++; } else { yaffs_trace(YAFFS_TRACE_ERROR, "yaffs: no more tnodes"); return NULL; } } } /* Traverse down to level 0, adding anything we need */ l = file_struct->top_level; tn = file_struct->top; if (l > 0) { while (l > 0 && tn) { x = (chunk_id >> (YAFFS_TNODES_LEVEL0_BITS + (l - 1) * YAFFS_TNODES_INTERNAL_BITS)) & YAFFS_TNODES_INTERNAL_MASK; if ((l > 1) && !tn->internal[x]) { /* Add missing non-level-zero tnode */ tn->internal[x] = yaffs_get_tnode(dev); if (!tn->internal[x]) return NULL; } else if (l == 1) { /* Looking from level 1 at level 0 */ if (passed_tn) { /* If we already have one, release it */ if (tn->internal[x]) yaffs_free_tnode(dev, tn->internal[x]); tn->internal[x] = passed_tn; } else if (!tn->internal[x]) { /* Don't have one, none passed in */ tn->internal[x] = yaffs_get_tnode(dev); if (!tn->internal[x]) return NULL; } } tn = tn->internal[x]; l--; } } else { /* top is level 0 */ if (passed_tn) { memcpy(tn, passed_tn, (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8); yaffs_free_tnode(dev, passed_tn); } } return tn; } static int yaffs_tags_match(const struct yaffs_ext_tags *tags, int obj_id, int chunk_obj) { return (tags->chunk_id == chunk_obj && tags->obj_id == obj_id && !tags->is_deleted) ? 1 : 0; } static int yaffs_find_chunk_in_group(struct yaffs_dev *dev, int the_chunk, struct yaffs_ext_tags *tags, int obj_id, int inode_chunk) { int j; for (j = 0; the_chunk && j < dev->chunk_grp_size; j++) { if (yaffs_check_chunk_bit (dev, the_chunk / dev->param.chunks_per_block, the_chunk % dev->param.chunks_per_block)) { if (dev->chunk_grp_size == 1) return the_chunk; else { yaffs_rd_chunk_tags_nand(dev, the_chunk, NULL, tags); if (yaffs_tags_match(tags, obj_id, inode_chunk)) { /* found it; */ return the_chunk; } } } the_chunk++; } return -1; } int yaffs_find_chunk_in_file(struct yaffs_obj *in, int inode_chunk, struct yaffs_ext_tags *tags) { /*Get the Tnode, then get the level 0 offset chunk offset */ struct yaffs_tnode *tn; int the_chunk = -1; struct yaffs_ext_tags local_tags; int ret_val = -1; struct yaffs_dev *dev = in->my_dev; if (!tags) { /* Passed a NULL, so use our own tags space */ tags = &local_tags; } tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk); if (!tn) return ret_val; the_chunk = yaffs_get_group_base(dev, tn, inode_chunk); ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id, inode_chunk); return ret_val; } static int yaffs_find_del_file_chunk(struct yaffs_obj *in, int inode_chunk, struct yaffs_ext_tags *tags) { /* Get the Tnode, then get the level 0 offset chunk offset */ struct yaffs_tnode *tn; int the_chunk = -1; struct yaffs_ext_tags local_tags; struct yaffs_dev *dev = in->my_dev; int ret_val = -1; if (!tags) { /* Passed a NULL, so use our own tags space */ tags = &local_tags; } tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk); if (!tn) return ret_val; the_chunk = yaffs_get_group_base(dev, tn, inode_chunk); ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id, inode_chunk); /* Delete the entry in the filestructure (if found) */ if (ret_val != -1) yaffs_load_tnode_0(dev, tn, inode_chunk, 0); return ret_val; } int yaffs_put_chunk_in_file(struct yaffs_obj *in, int inode_chunk, int nand_chunk, int in_scan) { /* NB in_scan is zero unless scanning. * For forward scanning, in_scan is > 0; * for backward scanning in_scan is < 0 * * nand_chunk = 0 is a dummy insert to make sure the tnodes are there. */ struct yaffs_tnode *tn; struct yaffs_dev *dev = in->my_dev; int existing_cunk; struct yaffs_ext_tags existing_tags; struct yaffs_ext_tags new_tags; unsigned existing_serial, new_serial; if (in->variant_type != YAFFS_OBJECT_TYPE_FILE) { /* Just ignore an attempt at putting a chunk into a non-file * during scanning. * If it is not during Scanning then something went wrong! */ if (!in_scan) { yaffs_trace(YAFFS_TRACE_ERROR, "yaffs tragedy:attempt to put data chunk into a non-file" ); BUG(); } yaffs_chunk_del(dev, nand_chunk, 1, __LINE__); return YAFFS_OK; } tn = yaffs_add_find_tnode_0(dev, &in->variant.file_variant, inode_chunk, NULL); if (!tn) return YAFFS_FAIL; if (!nand_chunk) /* Dummy insert, bail now */ return YAFFS_OK; existing_cunk = yaffs_get_group_base(dev, tn, inode_chunk); if (in_scan != 0) { /* If we're scanning then we need to test for duplicates * NB This does not need to be efficient since it should only * happen when the power fails during a write, then only one * chunk should ever be affected. * * Correction for YAFFS2: This could happen quite a lot and we * need to think about efficiency! TODO * Update: For backward scanning we don't need to re-read tags * so this is quite cheap. */ if (existing_cunk > 0) { /* NB Right now existing chunk will not be real * chunk_id if the chunk group size > 1 * thus we have to do a FindChunkInFile to get the * real chunk id. * * We have a duplicate now we need to decide which * one to use: * * Backwards scanning YAFFS2: The old one is what * we use, dump the new one. * YAFFS1: Get both sets of tags and compare serial * numbers. */ if (in_scan > 0) { /* Only do this for forward scanning */ yaffs_rd_chunk_tags_nand(dev, nand_chunk, NULL, &new_tags); /* Do a proper find */ existing_cunk = yaffs_find_chunk_in_file(in, inode_chunk, &existing_tags); } if (existing_cunk <= 0) { /*Hoosterman - how did this happen? */ yaffs_trace(YAFFS_TRACE_ERROR, "yaffs tragedy: existing chunk < 0 in scan" ); } /* NB The deleted flags should be false, otherwise * the chunks will not be loaded during a scan */ if (in_scan > 0) { new_serial = new_tags.serial_number; existing_serial = existing_tags.serial_number; } if ((in_scan > 0) && (existing_cunk <= 0 || ((existing_serial + 1) & 3) == new_serial)) { /* Forward scanning. * Use new * Delete the old one and drop through to * update the tnode */ yaffs_chunk_del(dev, existing_cunk, 1, __LINE__); } else { /* Backward scanning or we want to use the * existing one * Delete the new one and return early so that * the tnode isn't changed */ yaffs_chunk_del(dev, nand_chunk, 1, __LINE__); return YAFFS_OK; } } } if (existing_cunk == 0) in->n_data_chunks++; yaffs_load_tnode_0(dev, tn, inode_chunk, nand_chunk); return YAFFS_OK; } static void yaffs_soft_del_chunk(struct yaffs_dev *dev, int chunk) { struct yaffs_block_info *the_block; unsigned block_no; yaffs_trace(YAFFS_TRACE_DELETION, "soft delete chunk %d", chunk); block_no = chunk / dev->param.chunks_per_block; the_block = yaffs_get_block_info(dev, block_no); if (the_block) { the_block->soft_del_pages++; dev->n_free_chunks++; yaffs2_update_oldest_dirty_seq(dev, block_no, the_block); } } /* SoftDeleteWorker scans backwards through the tnode tree and soft deletes all * the chunks in the file. * All soft deleting does is increment the block's softdelete count and pulls * the chunk out of the tnode. * Thus, essentially this is the same as DeleteWorker except that the chunks * are soft deleted. */ static int yaffs_soft_del_worker(struct yaffs_obj *in, struct yaffs_tnode *tn, u32 level, int chunk_offset) { int i; int the_chunk; int all_done = 1; struct yaffs_dev *dev = in->my_dev; if (!tn) return 1; if (level > 0) { for (i = YAFFS_NTNODES_INTERNAL - 1; all_done && i >= 0; i--) { if (tn->internal[i]) { all_done = yaffs_soft_del_worker(in, tn->internal[i], level - 1, (chunk_offset << YAFFS_TNODES_INTERNAL_BITS) + i); if (all_done) { yaffs_free_tnode(dev, tn->internal[i]); tn->internal[i] = NULL; } else { /* Can this happen? */ } } } return (all_done) ? 1 : 0; } /* level 0 */ for (i = YAFFS_NTNODES_LEVEL0 - 1; i >= 0; i--) { the_chunk = yaffs_get_group_base(dev, tn, i); if (the_chunk) { yaffs_soft_del_chunk(dev, the_chunk); yaffs_load_tnode_0(dev, tn, i, 0); } } return 1; } static void yaffs_remove_obj_from_dir(struct yaffs_obj *obj) { struct yaffs_dev *dev = obj->my_dev; struct yaffs_obj *parent; yaffs_verify_obj_in_dir(obj); parent = obj->parent; yaffs_verify_dir(parent); if (dev && dev->param.remove_obj_fn) dev->param.remove_obj_fn(obj); list_del_init(&obj->siblings); obj->parent = NULL; yaffs_verify_dir(parent); } void yaffs_add_obj_to_dir(struct yaffs_obj *directory, struct yaffs_obj *obj) { if (!directory) { yaffs_trace(YAFFS_TRACE_ALWAYS, "tragedy: Trying to add an object to a null pointer directory" ); BUG(); return; } if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { yaffs_trace(YAFFS_TRACE_ALWAYS, "tragedy: Trying to add an object to a non-directory" ); BUG(); } if (obj->siblings.prev == NULL) { /* Not initialised */ BUG(); } yaffs_verify_dir(directory); yaffs_remove_obj_from_dir(obj); /* Now add it */ list_add(&obj->siblings, &directory->variant.dir_variant.children); obj->parent = directory; if (directory == obj->my_dev->unlinked_dir || directory == obj->my_dev->del_dir) { obj->unlinked = 1; obj->my_dev->n_unlinked_files++; obj->rename_allowed = 0; } yaffs_verify_dir(directory); yaffs_verify_obj_in_dir(obj); } static int yaffs_change_obj_name(struct yaffs_obj *obj, struct yaffs_obj *new_dir, const YCHAR *new_name, int force, int shadows) { int unlink_op; int del_op; struct yaffs_obj *existing_target; if (new_dir == NULL) new_dir = obj->parent; /* use the old directory */ if (new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { yaffs_trace(YAFFS_TRACE_ALWAYS, "tragedy: yaffs_change_obj_name: new_dir is not a directory" ); BUG(); } unlink_op = (new_dir == obj->my_dev->unlinked_dir); del_op = (new_dir == obj->my_dev->del_dir); existing_target = yaffs_find_by_name(new_dir, new_name); /* If the object is a file going into the unlinked directory, * then it is OK to just stuff it in since duplicate names are OK. * else only proceed if the new name does not exist and we're putting * it into a directory. */ if (!(unlink_op || del_op || force || shadows > 0 || !existing_target) || new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) return YAFFS_FAIL; yaffs_set_obj_name(obj, new_name); obj->dirty = 1; yaffs_add_obj_to_dir(new_dir, obj); if (unlink_op) obj->unlinked = 1; /* If it is a deletion then we mark it as a shrink for gc */ if (yaffs_update_oh(obj, new_name, 0, del_op, shadows, NULL) >= 0) return YAFFS_OK; return YAFFS_FAIL; } /*------------------------ Short Operations Cache ------------------------------ * In many situations where there is no high level buffering a lot of * reads might be short sequential reads, and a lot of writes may be short * sequential writes. eg. scanning/writing a jpeg file. * In these cases, a short read/write cache can provide a huge perfomance * benefit with dumb-as-a-rock code. * In Linux, the page cache provides read buffering and the short op cache * provides write buffering. * * There are a small number (~10) of cache chunks per device so that we don't * need a very intelligent search. */ static int yaffs_obj_cache_dirty(struct yaffs_obj *obj) { struct yaffs_dev *dev = obj->my_dev; int i; struct yaffs_cache *cache; int n_caches = obj->my_dev->param.n_caches; for (i = 0; i < n_caches; i++) { cache = &dev->cache[i]; if (cache->object == obj && cache->dirty) return 1; } return 0; } static void yaffs_flush_file_cache(struct yaffs_obj *obj) { struct yaffs_dev *dev = obj->my_dev; int lowest = -99; /* Stop compiler whining. */ int i; struct yaffs_cache *cache; int chunk_written = 0; int n_caches = obj->my_dev->param.n_caches; if (n_caches < 1) return; do { cache = NULL; /* Find the lowest dirty chunk for this object */ for (i = 0; i < n_caches; i++) { if (dev->cache[i].object == obj && dev->cache[i].dirty) { if (!cache || dev->cache[i].chunk_id < lowest) { cache = &dev->cache[i]; lowest = cache->chunk_id; } } } if (cache && !cache->locked) { /* Write it out and free it up */ chunk_written = yaffs_wr_data_obj(cache->object, cache->chunk_id, cache->data, cache->n_bytes, 1); cache->dirty = 0; cache->object = NULL; } } while (cache && chunk_written > 0); if (cache) /* Hoosterman, disk full while writing cache out. */ yaffs_trace(YAFFS_TRACE_ERROR, "yaffs tragedy: no space during cache write"); } /*yaffs_flush_whole_cache(dev) * * */ void yaffs_flush_whole_cache(struct yaffs_dev *dev) { struct yaffs_obj *obj; int n_caches = dev->param.n_caches; int i; /* Find a dirty object in the cache and flush it... * until there are no further dirty objects. */ do { obj = NULL; for (i = 0; i < n_caches && !obj; i++) { if (dev->cache[i].object && dev->cache[i].dirty) obj = dev->cache[i].object; } if (obj) yaffs_flush_file_cache(obj); } while (obj); } /* Grab us a cache chunk for use. * First look for an empty one. * Then look for the least recently used non-dirty one. * Then look for the least recently used dirty one...., flush and look again. */ static struct yaffs_cache *yaffs_grab_chunk_worker(struct yaffs_dev *dev) { int i; if (dev->param.n_caches > 0) { for (i = 0; i < dev->param.n_caches; i++) { if (!dev->cache[i].object) return &dev->cache[i]; } } return NULL; } static struct yaffs_cache *yaffs_grab_chunk_cache(struct yaffs_dev *dev) { struct yaffs_cache *cache; struct yaffs_obj *the_obj; int usage; int i; int pushout; if (dev->param.n_caches < 1) return NULL; /* Try find a non-dirty one... */ cache = yaffs_grab_chunk_worker(dev); if (!cache) { /* They were all dirty, find the LRU object and flush * its cache, then find again. * NB what's here is not very accurate, * we actually flush the object with the LRU chunk. */ /* With locking we can't assume we can use entry zero, * Set the_obj to a valid pointer for Coverity. */ the_obj = dev->cache[0].object; usage = -1; cache = NULL; pushout = -1; for (i = 0; i < dev->param.n_caches; i++) { if (dev->cache[i].object && !dev->cache[i].locked && (dev->cache[i].last_use < usage || !cache)) { usage = dev->cache[i].last_use; the_obj = dev->cache[i].object; cache = &dev->cache[i]; pushout = i; } } if (!cache || cache->dirty) { /* Flush and try again */ yaffs_flush_file_cache(the_obj); cache = yaffs_grab_chunk_worker(dev); } } return cache; } /* Find a cached chunk */ static struct yaffs_cache *yaffs_find_chunk_cache(const struct yaffs_obj *obj, int chunk_id) { struct yaffs_dev *dev = obj->my_dev; int i; if (dev->param.n_caches < 1) return NULL; for (i = 0; i < dev->param.n_caches; i++) { if (dev->cache[i].object == obj && dev->cache[i].chunk_id == chunk_id) { dev->cache_hits++; return &dev->cache[i]; } } return NULL; } /* Mark the chunk for the least recently used algorithym */ static void yaffs_use_cache(struct yaffs_dev *dev, struct yaffs_cache *cache, int is_write) { int i; if (dev->param.n_caches < 1) return; if (dev->cache_last_use < 0 || dev->cache_last_use > 100000000) { /* Reset the cache usages */ for (i = 1; i < dev->param.n_caches; i++) dev->cache[i].last_use = 0; dev->cache_last_use = 0; } dev->cache_last_use++; cache->last_use = dev->cache_last_use; if (is_write) cache->dirty = 1; } /* Invalidate a single cache page. * Do this when a whole page gets written, * ie the short cache for this page is no longer valid. */ static void yaffs_invalidate_chunk_cache(struct yaffs_obj *object, int chunk_id) { struct yaffs_cache *cache; if (object->my_dev->param.n_caches > 0) { cache = yaffs_find_chunk_cache(object, chunk_id); if (cache) cache->object = NULL; } } /* Invalidate all the cache pages associated with this object * Do this whenever ther file is deleted or resized. */ static void yaffs_invalidate_whole_cache(struct yaffs_obj *in) { int i; struct yaffs_dev *dev = in->my_dev; if (dev->param.n_caches > 0) { /* Invalidate it. */ for (i = 0; i < dev->param.n_caches; i++) { if (dev->cache[i].object == in) dev->cache[i].object = NULL; } } } static void yaffs_unhash_obj(struct yaffs_obj *obj) { int bucket; struct yaffs_dev *dev = obj->my_dev; /* If it is still linked into the bucket list, free from the list */ if (!list_empty(&obj->hash_link)) { list_del_init(&obj->hash_link); bucket = yaffs_hash_fn(obj->obj_id); dev->obj_bucket[bucket].count--; } } /* FreeObject frees up a Object and puts it back on the free list */ static void yaffs_free_obj(struct yaffs_obj *obj) { struct yaffs_dev *dev; if (!obj) { BUG(); return; } dev = obj->my_dev; yaffs_trace(YAFFS_TRACE_OS, "FreeObject %p inode %p", obj, obj->my_inode); if (obj->parent) BUG(); if (!list_empty(&obj->siblings)) BUG(); if (obj->my_inode) { /* We're still hooked up to a cached inode. * Don't delete now, but mark for later deletion */ obj->defered_free = 1; return; } yaffs_unhash_obj(obj); yaffs_free_raw_obj(dev, obj); dev->n_obj--; dev->checkpoint_blocks_required = 0; /* force recalculation */ } void yaffs_handle_defered_free(struct yaffs_obj *obj) { if (obj->defered_free) yaffs_free_obj(obj); } static int yaffs_generic_obj_del(struct yaffs_obj *in) { /* Iinvalidate the file's data in the cache, without flushing. */ yaffs_invalidate_whole_cache(in); if (in->my_dev->param.is_yaffs2 && in->parent != in->my_dev->del_dir) { /* Move to unlinked directory so we have a deletion record */ yaffs_change_obj_name(in, in->my_dev->del_dir, _Y("deleted"), 0, 0); } yaffs_remove_obj_from_dir(in); yaffs_chunk_del(in->my_dev, in->hdr_chunk, 1, __LINE__); in->hdr_chunk = 0; yaffs_free_obj(in); return YAFFS_OK; } static void yaffs_soft_del_file(struct yaffs_obj *obj) { if (!obj->deleted || obj->variant_type != YAFFS_OBJECT_TYPE_FILE || obj->soft_del) return; if (obj->n_data_chunks <= 0) { /* Empty file with no duplicate object headers, * just delete it immediately */ yaffs_free_tnode(obj->my_dev, obj->variant.file_variant.top); obj->variant.file_variant.top = NULL; yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: Deleting empty file %d", obj->obj_id); yaffs_generic_obj_del(obj); } else { yaffs_soft_del_worker(obj, obj->variant.file_variant.top, obj->variant. file_variant.top_level, 0); obj->soft_del = 1; } } /* Pruning removes any part of the file structure tree that is beyond the * bounds of the file (ie that does not point to chunks). * * A file should only get pruned when its size is reduced. * * Before pruning, the chunks must be pulled from the tree and the * level 0 tnode entries must be zeroed out. * Could also use this for file deletion, but that's probably better handled * by a special case. * * This function is recursive. For levels > 0 the function is called again on * any sub-tree. For level == 0 we just check if the sub-tree has data. * If there is no data in a subtree then it is pruned. */ static struct yaffs_tnode *yaffs_prune_worker(struct yaffs_dev *dev, struct yaffs_tnode *tn, u32 level, int del0) { int i; int has_data; if (!tn) return tn; has_data = 0; if (level > 0) { for (i = 0; i < YAFFS_NTNODES_INTERNAL; i++) { if (tn->internal[i]) { tn->internal[i] = yaffs_prune_worker(dev, tn->internal[i], level - 1, (i == 0) ? del0 : 1); } if (tn->internal[i]) has_data++; } } else { int tnode_size_u32 = dev->tnode_size / sizeof(u32); u32 *map = (u32 *) tn; for (i = 0; !has_data && i < tnode_size_u32; i++) { if (map[i]) has_data++; } } if (has_data == 0 && del0) { /* Free and return NULL */ yaffs_free_tnode(dev, tn); tn = NULL; } return tn; } static int yaffs_prune_tree(struct yaffs_dev *dev, struct yaffs_file_var *file_struct) { int i; int has_data; int done = 0; struct yaffs_tnode *tn; if (file_struct->top_level < 1) return YAFFS_OK; file_struct->top = yaffs_prune_worker(dev, file_struct->top, file_struct->top_level, 0); /* Now we have a tree with all the non-zero branches NULL but * the height is the same as it was. * Let's see if we can trim internal tnodes to shorten the tree. * We can do this if only the 0th element in the tnode is in use * (ie all the non-zero are NULL) */ while (file_struct->top_level && !done) { tn = file_struct->top; has_data = 0; for (i = 1; i < YAFFS_NTNODES_INTERNAL; i++) { if (tn->internal[i]) has_data++; } if (!has_data) { file_struct->top = tn->internal[0]; file_struct->top_level--; yaffs_free_tnode(dev, tn); } else { done = 1; } } return YAFFS_OK; } /*-------------------- End of File Structure functions.-------------------*/ /* alloc_empty_obj gets us a clean Object.*/ static struct yaffs_obj *yaffs_alloc_empty_obj(struct yaffs_dev *dev) { struct yaffs_obj *obj = yaffs_alloc_raw_obj(dev); if (!obj) return obj; dev->n_obj++; /* Now sweeten it up... */ memset(obj, 0, sizeof(struct yaffs_obj)); obj->being_created = 1; obj->my_dev = dev; obj->hdr_chunk = 0; obj->variant_type = YAFFS_OBJECT_TYPE_UNKNOWN; INIT_LIST_HEAD(&(obj->hard_links)); INIT_LIST_HEAD(&(obj->hash_link)); INIT_LIST_HEAD(&obj->siblings); /* Now make the directory sane */ if (dev->root_dir) { obj->parent = dev->root_dir; list_add(&(obj->siblings), &dev->root_dir->variant.dir_variant.children); } /* Add it to the lost and found directory. * NB Can't put root or lost-n-found in lost-n-found so * check if lost-n-found exists first */ if (dev->lost_n_found) yaffs_add_obj_to_dir(dev->lost_n_found, obj); obj->being_created = 0; dev->checkpoint_blocks_required = 0; /* force recalculation */ return obj; } static int yaffs_find_nice_bucket(struct yaffs_dev *dev) { int i; int l = 999; int lowest = 999999; /* Search for the shortest list or one that * isn't too long. */ for (i = 0; i < 10 && lowest > 4; i++) { dev->bucket_finder++; dev->bucket_finder %= YAFFS_NOBJECT_BUCKETS; if (dev->obj_bucket[dev->bucket_finder].count < lowest) { lowest = dev->obj_bucket[dev->bucket_finder].count; l = dev->bucket_finder; } } return l; } static int yaffs_new_obj_id(struct yaffs_dev *dev) { int bucket = yaffs_find_nice_bucket(dev); int found = 0; struct list_head *i; u32 n = (u32) bucket; /* Now find an object value that has not already been taken * by scanning the list. */ while (!found) { found = 1; n += YAFFS_NOBJECT_BUCKETS; if (1 || dev->obj_bucket[bucket].count > 0) { list_for_each(i, &dev->obj_bucket[bucket].list) { /* If there is already one in the list */ if (i && list_entry(i, struct yaffs_obj, hash_link)->obj_id == n) { found = 0; } } } } return n; } static void yaffs_hash_obj(struct yaffs_obj *in) { int bucket = yaffs_hash_fn(in->obj_id); struct yaffs_dev *dev = in->my_dev; list_add(&in->hash_link, &dev->obj_bucket[bucket].list); dev->obj_bucket[bucket].count++; } struct yaffs_obj *yaffs_find_by_number(struct yaffs_dev *dev, u32 number) { int bucket = yaffs_hash_fn(number); struct list_head *i; struct yaffs_obj *in; list_for_each(i, &dev->obj_bucket[bucket].list) { /* Look if it is in the list */ in = list_entry(i, struct yaffs_obj, hash_link); if (in->obj_id == number) { /* Don't show if it is defered free */ if (in->defered_free) return NULL; return in; } } return NULL; } static struct yaffs_obj *yaffs_new_obj(struct yaffs_dev *dev, int number, enum yaffs_obj_type type) { struct yaffs_obj *the_obj = NULL; struct yaffs_tnode *tn = NULL; if (number < 0) number = yaffs_new_obj_id(dev); if (type == YAFFS_OBJECT_TYPE_FILE) { tn = yaffs_get_tnode(dev); if (!tn) return NULL; } the_obj = yaffs_alloc_empty_obj(dev); if (!the_obj) { if (tn) yaffs_free_tnode(dev, tn); return NULL; } the_obj->fake = 0; the_obj->rename_allowed = 1; the_obj->unlink_allowed = 1; the_obj->obj_id = number; yaffs_hash_obj(the_obj); the_obj->variant_type = type; yaffs_load_current_time(the_obj, 1, 1); switch (type) { case YAFFS_OBJECT_TYPE_FILE: the_obj->variant.file_variant.file_size = 0; the_obj->variant.file_variant.scanned_size = 0; the_obj->variant.file_variant.shrink_size = yaffs_max_file_size(dev); the_obj->variant.file_variant.top_level = 0; the_obj->variant.file_variant.top = tn; break; case YAFFS_OBJECT_TYPE_DIRECTORY: INIT_LIST_HEAD(&the_obj->variant.dir_variant.children); INIT_LIST_HEAD(&the_obj->variant.dir_variant.dirty); break; case YAFFS_OBJECT_TYPE_SYMLINK: case YAFFS_OBJECT_TYPE_HARDLINK: case YAFFS_OBJECT_TYPE_SPECIAL: /* No action required */ break; case YAFFS_OBJECT_TYPE_UNKNOWN: /* todo this should not happen */ break; } return the_obj; } static struct yaffs_obj *yaffs_create_fake_dir(struct yaffs_dev *dev, int number, u32 mode) { struct yaffs_obj *obj = yaffs_new_obj(dev, number, YAFFS_OBJECT_TYPE_DIRECTORY); if (!obj) return NULL; obj->fake = 1; /* it is fake so it might not use NAND */ obj->rename_allowed = 0; obj->unlink_allowed = 0; obj->deleted = 0; obj->unlinked = 0; obj->yst_mode = mode; obj->my_dev = dev; obj->hdr_chunk = 0; /* Not a valid chunk. */ return obj; } static void yaffs_init_tnodes_and_objs(struct yaffs_dev *dev) { int i; dev->n_obj = 0; dev->n_tnodes = 0; yaffs_init_raw_tnodes_and_objs(dev); for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) { INIT_LIST_HEAD(&dev->obj_bucket[i].list); dev->obj_bucket[i].count = 0; } } struct yaffs_obj *yaffs_find_or_create_by_number(struct yaffs_dev *dev, int number, enum yaffs_obj_type type) { struct yaffs_obj *the_obj = NULL; if (number > 0) the_obj = yaffs_find_by_number(dev, number); if (!the_obj) the_obj = yaffs_new_obj(dev, number, type); return the_obj; } YCHAR *yaffs_clone_str(const YCHAR *str) { YCHAR *new_str = NULL; int len; if (!str) str = _Y(""); len = strnlen(str, YAFFS_MAX_ALIAS_LENGTH); new_str = kmalloc((len + 1) * sizeof(YCHAR), GFP_NOFS); if (new_str) { strncpy(new_str, str, len); new_str[len] = 0; } return new_str; } /* *yaffs_update_parent() handles fixing a directories mtime and ctime when a new * link (ie. name) is created or deleted in the directory. * * ie. * create dir/a : update dir's mtime/ctime * rm dir/a: update dir's mtime/ctime * modify dir/a: don't update dir's mtimme/ctime * * This can be handled immediately or defered. Defering helps reduce the number * of updates when many files in a directory are changed within a brief period. * * If the directory updating is defered then yaffs_update_dirty_dirs must be * called periodically. */ static void yaffs_update_parent(struct yaffs_obj *obj) { struct yaffs_dev *dev; if (!obj) return; dev = obj->my_dev; obj->dirty = 1; yaffs_load_current_time(obj, 0, 1); if (dev->param.defered_dir_update) { struct list_head *link = &obj->variant.dir_variant.dirty; if (list_empty(link)) { list_add(link, &dev->dirty_dirs); yaffs_trace(YAFFS_TRACE_BACKGROUND, "Added object %d to dirty directories", obj->obj_id); } } else { yaffs_update_oh(obj, NULL, 0, 0, 0, NULL); } } void yaffs_update_dirty_dirs(struct yaffs_dev *dev) { struct list_head *link; struct yaffs_obj *obj; struct yaffs_dir_var *d_s; union yaffs_obj_var *o_v; yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update dirty directories"); while (!list_empty(&dev->dirty_dirs)) { link = dev->dirty_dirs.next; list_del_init(link); d_s = list_entry(link, struct yaffs_dir_var, dirty); o_v = list_entry(d_s, union yaffs_obj_var, dir_variant); obj = list_entry(o_v, struct yaffs_obj, variant); yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update directory %d", obj->obj_id); if (obj->dirty) yaffs_update_oh(obj, NULL, 0, 0, 0, NULL); } } /* * Mknod (create) a new object. * equiv_obj only has meaning for a hard link; * alias_str only has meaning for a symlink. * rdev only has meaning for devices (a subset of special objects) */ static struct yaffs_obj *yaffs_create_obj(enum yaffs_obj_type type, struct yaffs_obj *parent, const YCHAR *name, u32 mode, u32 uid, u32 gid, struct yaffs_obj *equiv_obj, const YCHAR *alias_str, u32 rdev) { struct yaffs_obj *in; YCHAR *str = NULL; struct yaffs_dev *dev = parent->my_dev; /* Check if the entry exists. * If it does then fail the call since we don't want a dup. */ if (yaffs_find_by_name(parent, name)) return NULL; if (type == YAFFS_OBJECT_TYPE_SYMLINK) { str = yaffs_clone_str(alias_str); if (!str) return NULL; } in = yaffs_new_obj(dev, -1, type); if (!in) { kfree(str); return NULL; } in->hdr_chunk = 0; in->valid = 1; in->variant_type = type; in->yst_mode = mode; yaffs_attribs_init(in, gid, uid, rdev); in->n_data_chunks = 0; yaffs_set_obj_name(in, name); in->dirty = 1; yaffs_add_obj_to_dir(parent, in); in->my_dev = parent->my_dev; switch (type) { case YAFFS_OBJECT_TYPE_SYMLINK: in->variant.symlink_variant.alias = str; break; case YAFFS_OBJECT_TYPE_HARDLINK: in->variant.hardlink_variant.equiv_obj = equiv_obj; in->variant.hardlink_variant.equiv_id = equiv_obj->obj_id; list_add(&in->hard_links, &equiv_obj->hard_links); break; case YAFFS_OBJECT_TYPE_FILE: case YAFFS_OBJECT_TYPE_DIRECTORY: case YAFFS_OBJECT_TYPE_SPECIAL: case YAFFS_OBJECT_TYPE_UNKNOWN: /* do nothing */ break; } if (yaffs_update_oh(in, name, 0, 0, 0, NULL) < 0) { /* Could not create the object header, fail */ yaffs_del_obj(in); in = NULL; } if (in) yaffs_update_parent(parent); return in; } struct yaffs_obj *yaffs_create_file(struct yaffs_obj *parent, const YCHAR *name, u32 mode, u32 uid, u32 gid) { return yaffs_create_obj(YAFFS_OBJECT_TYPE_FILE, parent, name, mode, uid, gid, NULL, NULL, 0); } struct yaffs_obj *yaffs_create_dir(struct yaffs_obj *parent, const YCHAR *name, u32 mode, u32 uid, u32 gid) { return yaffs_create_obj(YAFFS_OBJECT_TYPE_DIRECTORY, parent, name, mode, uid, gid, NULL, NULL, 0); } struct yaffs_obj *yaffs_create_special(struct yaffs_obj *parent, const YCHAR *name, u32 mode, u32 uid, u32 gid, u32 rdev) { return yaffs_create_obj(YAFFS_OBJECT_TYPE_SPECIAL, parent, name, mode, uid, gid, NULL, NULL, rdev); } struct yaffs_obj *yaffs_create_symlink(struct yaffs_obj *parent, const YCHAR *name, u32 mode, u32 uid, u32 gid, const YCHAR *alias) { return yaffs_create_obj(YAFFS_OBJECT_TYPE_SYMLINK, parent, name, mode, uid, gid, NULL, alias, 0); } /* yaffs_link_obj returns the object id of the equivalent object.*/ struct yaffs_obj *yaffs_link_obj(struct yaffs_obj *parent, const YCHAR * name, struct yaffs_obj *equiv_obj) { /* Get the real object in case we were fed a hard link obj */ equiv_obj = yaffs_get_equivalent_obj(equiv_obj); if (yaffs_create_obj(YAFFS_OBJECT_TYPE_HARDLINK, parent, name, 0, 0, 0, equiv_obj, NULL, 0)) return equiv_obj; return NULL; } /*---------------------- Block Management and Page Allocation -------------*/ static void yaffs_deinit_blocks(struct yaffs_dev *dev) { if (dev->block_info_alt && dev->block_info) vfree(dev->block_info); else kfree(dev->block_info); dev->block_info_alt = 0; dev->block_info = NULL; if (dev->chunk_bits_alt && dev->chunk_bits) vfree(dev->chunk_bits); else kfree(dev->chunk_bits); dev->chunk_bits_alt = 0; dev->chunk_bits = NULL; } static int yaffs_init_blocks(struct yaffs_dev *dev) { int n_blocks = dev->internal_end_block - dev->internal_start_block + 1; dev->block_info = NULL; dev->chunk_bits = NULL; dev->alloc_block = -1; /* force it to get a new one */ /* If the first allocation strategy fails, thry the alternate one */ dev->block_info = kmalloc(n_blocks * sizeof(struct yaffs_block_info), GFP_NOFS); if (!dev->block_info) { dev->block_info = vmalloc(n_blocks * sizeof(struct yaffs_block_info)); dev->block_info_alt = 1; } else { dev->block_info_alt = 0; } if (!dev->block_info) goto alloc_error; /* Set up dynamic blockinfo stuff. Round up bytes. */ dev->chunk_bit_stride = (dev->param.chunks_per_block + 7) / 8; dev->chunk_bits = kmalloc(dev->chunk_bit_stride * n_blocks, GFP_NOFS); if (!dev->chunk_bits) { dev->chunk_bits = vmalloc(dev->chunk_bit_stride * n_blocks); dev->chunk_bits_alt = 1; } else { dev->chunk_bits_alt = 0; } if (!dev->chunk_bits) goto alloc_error; memset(dev->block_info, 0, n_blocks * sizeof(struct yaffs_block_info)); memset(dev->chunk_bits, 0, dev->chunk_bit_stride * n_blocks); return YAFFS_OK; alloc_error: yaffs_deinit_blocks(dev); return YAFFS_FAIL; } void yaffs_block_became_dirty(struct yaffs_dev *dev, int block_no) { struct yaffs_block_info *bi = yaffs_get_block_info(dev, block_no); int erased_ok = 0; int i; /* If the block is still healthy erase it and mark as clean. * If the block has had a data failure, then retire it. */ yaffs_trace(YAFFS_TRACE_GC | YAFFS_TRACE_ERASE, "yaffs_block_became_dirty block %d state %d %s", block_no, bi->block_state, (bi->needs_retiring) ? "needs retiring" : ""); yaffs2_clear_oldest_dirty_seq(dev, bi); bi->block_state = YAFFS_BLOCK_STATE_DIRTY; /* If this is the block being garbage collected then stop gc'ing */ if (block_no == dev->gc_block) dev->gc_block = 0; /* If this block is currently the best candidate for gc * then drop as a candidate */ if (block_no == dev->gc_dirtiest) { dev->gc_dirtiest = 0; dev->gc_pages_in_use = 0; } if (!bi->needs_retiring) { yaffs2_checkpt_invalidate(dev); erased_ok = yaffs_erase_block(dev, block_no); if (!erased_ok) { dev->n_erase_failures++; yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS, "**>> Erasure failed %d", block_no); } } /* Verify erasure if needed */ if (erased_ok && ((yaffs_trace_mask & YAFFS_TRACE_ERASE) || !yaffs_skip_verification(dev))) { for (i = 0; i < dev->param.chunks_per_block; i++) { if (!yaffs_check_chunk_erased(dev, block_no * dev->param.chunks_per_block + i)) { yaffs_trace(YAFFS_TRACE_ERROR, ">>Block %d erasure supposedly OK, but chunk %d not erased", block_no, i); } } } if (!erased_ok) { /* We lost a block of free space */ dev->n_free_chunks -= dev->param.chunks_per_block; yaffs_retire_block(dev, block_no); yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS, "**>> Block %d retired", block_no); return; } /* Clean it up... */ bi->block_state = YAFFS_BLOCK_STATE_EMPTY; bi->seq_number = 0; dev->n_erased_blocks++; bi->pages_in_use = 0; bi->soft_del_pages = 0; bi->has_shrink_hdr = 0; bi->skip_erased_check = 1; /* Clean, so no need to check */ bi->gc_prioritise = 0; bi->has_summary = 0; yaffs_clear_chunk_bits(dev, block_no); yaffs_trace(YAFFS_TRACE_ERASE, "Erased block %d", block_no); } static inline int yaffs_gc_process_chunk(struct yaffs_dev *dev, struct yaffs_block_info *bi, int old_chunk, u8 *buffer) { int new_chunk; int mark_flash = 1; struct yaffs_ext_tags tags; struct yaffs_obj *object; int matching_chunk; int ret_val = YAFFS_OK; memset(&tags, 0, sizeof(tags)); yaffs_rd_chunk_tags_nand(dev, old_chunk, buffer, &tags); object = yaffs_find_by_number(dev, tags.obj_id); yaffs_trace(YAFFS_TRACE_GC_DETAIL, "Collecting chunk in block %d, %d %d %d ", dev->gc_chunk, tags.obj_id, tags.chunk_id, tags.n_bytes); if (object && !yaffs_skip_verification(dev)) { if (tags.chunk_id == 0) matching_chunk = object->hdr_chunk; else if (object->soft_del) /* Defeat the test */ matching_chunk = old_chunk; else matching_chunk = yaffs_find_chunk_in_file (object, tags.chunk_id, NULL); if (old_chunk != matching_chunk) yaffs_trace(YAFFS_TRACE_ERROR, "gc: page in gc mismatch: %d %d %d %d", old_chunk, matching_chunk, tags.obj_id, tags.chunk_id); } if (!object) { yaffs_trace(YAFFS_TRACE_ERROR, "page %d in gc has no object: %d %d %d ", old_chunk, tags.obj_id, tags.chunk_id, tags.n_bytes); } if (object && object->deleted && object->soft_del && tags.chunk_id != 0) { /* Data chunk in a soft deleted file, * throw it away. * It's a soft deleted data chunk, * No need to copy this, just forget * about it and fix up the object. */ /* Free chunks already includes * softdeleted chunks, how ever this * chunk is going to soon be really * deleted which will increment free * chunks. We have to decrement free * chunks so this works out properly. */ dev->n_free_chunks--; bi->soft_del_pages--; object->n_data_chunks--; if (object->n_data_chunks <= 0) { /* remeber to clean up obj */ dev->gc_cleanup_list[dev->n_clean_ups] = tags.obj_id; dev->n_clean_ups++; } mark_flash = 0; } else if (object) { /* It's either a data chunk in a live * file or an ObjectHeader, so we're * interested in it. * NB Need to keep the ObjectHeaders of * deleted files until the whole file * has been deleted off */ tags.serial_number++; dev->n_gc_copies++; if (tags.chunk_id == 0) { /* It is an object Id, * We need to nuke the * shrinkheader flags since its * work is done. * Also need to clean up * shadowing. */ struct yaffs_obj_hdr *oh; oh = (struct yaffs_obj_hdr *) buffer; oh->is_shrink = 0; tags.extra_is_shrink = 0; oh->shadows_obj = 0; oh->inband_shadowed_obj_id = 0; tags.extra_shadows = 0; /* Update file size */ if (object->variant_type == YAFFS_OBJECT_TYPE_FILE) { yaffs_oh_size_load(oh, object->variant.file_variant.file_size); tags.extra_file_size = object->variant.file_variant.file_size; } yaffs_verify_oh(object, oh, &tags, 1); new_chunk = yaffs_write_new_chunk(dev, (u8 *) oh, &tags, 1); } else { new_chunk = yaffs_write_new_chunk(dev, buffer, &tags, 1); } if (new_chunk < 0) { ret_val = YAFFS_FAIL; } else { /* Now fix up the Tnodes etc. */ if (tags.chunk_id == 0) { /* It's a header */ object->hdr_chunk = new_chunk; object->serial = tags.serial_number; } else { /* It's a data chunk */ yaffs_put_chunk_in_file(object, tags.chunk_id, new_chunk, 0); } } } if (ret_val == YAFFS_OK) yaffs_chunk_del(dev, old_chunk, mark_flash, __LINE__); return ret_val; } static int yaffs_gc_block(struct yaffs_dev *dev, int block, int whole_block) { int old_chunk; int ret_val = YAFFS_OK; int i; int is_checkpt_block; int max_copies; int chunks_before = yaffs_get_erased_chunks(dev); int chunks_after; struct yaffs_block_info *bi = yaffs_get_block_info(dev, block); is_checkpt_block = (bi->block_state == YAFFS_BLOCK_STATE_CHECKPOINT); yaffs_trace(YAFFS_TRACE_TRACING, "Collecting block %d, in use %d, shrink %d, whole_block %d", block, bi->pages_in_use, bi->has_shrink_hdr, whole_block); /*yaffs_verify_free_chunks(dev); */ if (bi->block_state == YAFFS_BLOCK_STATE_FULL) bi->block_state = YAFFS_BLOCK_STATE_COLLECTING; bi->has_shrink_hdr = 0; /* clear the flag so that the block can erase */ dev->gc_disable = 1; yaffs_summary_gc(dev, block); if (is_checkpt_block || !yaffs_still_some_chunks(dev, block)) { yaffs_trace(YAFFS_TRACE_TRACING, "Collecting block %d that has no chunks in use", block); yaffs_block_became_dirty(dev, block); } else { u8 *buffer = yaffs_get_temp_buffer(dev); yaffs_verify_blk(dev, bi, block); max_copies = (whole_block) ? dev->param.chunks_per_block : 5; old_chunk = block * dev->param.chunks_per_block + dev->gc_chunk; for (/* init already done */ ; ret_val == YAFFS_OK && dev->gc_chunk < dev->param.chunks_per_block && (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) && max_copies > 0; dev->gc_chunk++, old_chunk++) { if (yaffs_check_chunk_bit(dev, block, dev->gc_chunk)) { /* Page is in use and might need to be copied */ max_copies--; ret_val = yaffs_gc_process_chunk(dev, bi, old_chunk, buffer); } } yaffs_release_temp_buffer(dev, buffer); } yaffs_verify_collected_blk(dev, bi, block); if (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) { /* * The gc did not complete. Set block state back to FULL * because checkpointing does not restore gc. */ bi->block_state = YAFFS_BLOCK_STATE_FULL; } else { /* The gc completed. */ /* Do any required cleanups */ for (i = 0; i < dev->n_clean_ups; i++) { /* Time to delete the file too */ struct yaffs_obj *object = yaffs_find_by_number(dev, dev->gc_cleanup_list[i]); if (object) { yaffs_free_tnode(dev, object->variant.file_variant.top); object->variant.file_variant.top = NULL; yaffs_trace(YAFFS_TRACE_GC, "yaffs: About to finally delete object %d", object->obj_id); yaffs_generic_obj_del(object); object->my_dev->n_deleted_files--; } } chunks_after = yaffs_get_erased_chunks(dev); if (chunks_before >= chunks_after) yaffs_trace(YAFFS_TRACE_GC, "gc did not increase free chunks before %d after %d", chunks_before, chunks_after); dev->gc_block = 0; dev->gc_chunk = 0; dev->n_clean_ups = 0; } dev->gc_disable = 0; return ret_val; } /* * find_gc_block() selects the dirtiest block (or close enough) * for garbage collection. */ static unsigned yaffs_find_gc_block(struct yaffs_dev *dev, int aggressive, int background) { int i; int iterations; unsigned selected = 0; int prioritised = 0; int prioritised_exist = 0; struct yaffs_block_info *bi; int threshold; /* First let's see if we need to grab a prioritised block */ if (dev->has_pending_prioritised_gc && !aggressive) { dev->gc_dirtiest = 0; bi = dev->block_info; for (i = dev->internal_start_block; i <= dev->internal_end_block && !selected; i++) { if (bi->gc_prioritise) { prioritised_exist = 1; if (bi->block_state == YAFFS_BLOCK_STATE_FULL && yaffs_block_ok_for_gc(dev, bi)) { selected = i; prioritised = 1; } } bi++; } /* * If there is a prioritised block and none was selected then * this happened because there is at least one old dirty block * gumming up the works. Let's gc the oldest dirty block. */ if (prioritised_exist && !selected && dev->oldest_dirty_block > 0) selected = dev->oldest_dirty_block; if (!prioritised_exist) /* None found, so we can clear this */ dev->has_pending_prioritised_gc = 0; } /* If we're doing aggressive GC then we are happy to take a less-dirty * block, and search harder. * else (leasurely gc), then we only bother to do this if the * block has only a few pages in use. */ if (!selected) { int pages_used; int n_blocks = dev->internal_end_block - dev->internal_start_block + 1; if (aggressive) { threshold = dev->param.chunks_per_block; iterations = n_blocks; } else { int max_threshold; if (background) max_threshold = dev->param.chunks_per_block / 2; else max_threshold = dev->param.chunks_per_block / 8; if (max_threshold < YAFFS_GC_PASSIVE_THRESHOLD) max_threshold = YAFFS_GC_PASSIVE_THRESHOLD; threshold = background ? (dev->gc_not_done + 2) * 2 : 0; if (threshold < YAFFS_GC_PASSIVE_THRESHOLD) threshold = YAFFS_GC_PASSIVE_THRESHOLD; if (threshold > max_threshold) threshold = max_threshold; iterations = n_blocks / 16 + 1; if (iterations > 100) iterations = 100; } for (i = 0; i < iterations && (dev->gc_dirtiest < 1 || dev->gc_pages_in_use > YAFFS_GC_GOOD_ENOUGH); i++) { dev->gc_block_finder++; if (dev->gc_block_finder < dev->internal_start_block || dev->gc_block_finder > dev->internal_end_block) dev->gc_block_finder = dev->internal_start_block; bi = yaffs_get_block_info(dev, dev->gc_block_finder); pages_used = bi->pages_in_use - bi->soft_del_pages; if (bi->block_state == YAFFS_BLOCK_STATE_FULL && pages_used < dev->param.chunks_per_block && (dev->gc_dirtiest < 1 || pages_used < dev->gc_pages_in_use) && yaffs_block_ok_for_gc(dev, bi)) { dev->gc_dirtiest = dev->gc_block_finder; dev->gc_pages_in_use = pages_used; } } if (dev->gc_dirtiest > 0 && dev->gc_pages_in_use <= threshold) selected = dev->gc_dirtiest; } /* * If nothing has been selected for a while, try the oldest dirty * because that's gumming up the works. */ if (!selected && dev->param.is_yaffs2 && dev->gc_not_done >= (background ? 10 : 20)) { yaffs2_find_oldest_dirty_seq(dev); if (dev->oldest_dirty_block > 0) { selected = dev->oldest_dirty_block; dev->gc_dirtiest = selected; dev->oldest_dirty_gc_count++; bi = yaffs_get_block_info(dev, selected); dev->gc_pages_in_use = bi->pages_in_use - bi->soft_del_pages; } else { dev->gc_not_done = 0; } } if (selected) { yaffs_trace(YAFFS_TRACE_GC, "GC Selected block %d with %d free, prioritised:%d", selected, dev->param.chunks_per_block - dev->gc_pages_in_use, prioritised); dev->n_gc_blocks++; if (background) dev->bg_gcs++; dev->gc_dirtiest = 0; dev->gc_pages_in_use = 0; dev->gc_not_done = 0; if (dev->refresh_skip > 0) dev->refresh_skip--; } else { dev->gc_not_done++; yaffs_trace(YAFFS_TRACE_GC, "GC none: finder %d skip %d threshold %d dirtiest %d using %d oldest %d%s", dev->gc_block_finder, dev->gc_not_done, threshold, dev->gc_dirtiest, dev->gc_pages_in_use, dev->oldest_dirty_block, background ? " bg" : ""); } return selected; } /* New garbage collector * If we're very low on erased blocks then we do aggressive garbage collection * otherwise we do "leasurely" garbage collection. * Aggressive gc looks further (whole array) and will accept less dirty blocks. * Passive gc only inspects smaller areas and only accepts more dirty blocks. * * The idea is to help clear out space in a more spread-out manner. * Dunno if it really does anything useful. */ static int yaffs_check_gc(struct yaffs_dev *dev, int background) { int aggressive = 0; int gc_ok = YAFFS_OK; int max_tries = 0; int min_erased; int erased_chunks; int checkpt_block_adjust; if (dev->param.gc_control_fn && (dev->param.gc_control_fn(dev) & 1) == 0) return YAFFS_OK; if (dev->gc_disable) /* Bail out so we don't get recursive gc */ return YAFFS_OK; /* This loop should pass the first time. * Only loops here if the collection does not increase space. */ do { max_tries++; checkpt_block_adjust = yaffs_calc_checkpt_blocks_required(dev); min_erased = dev->param.n_reserved_blocks + checkpt_block_adjust + 1; erased_chunks = dev->n_erased_blocks * dev->param.chunks_per_block; /* If we need a block soon then do aggressive gc. */ if (dev->n_erased_blocks < min_erased) aggressive = 1; else { if (!background && erased_chunks > (dev->n_free_chunks / 4)) break; if (dev->gc_skip > 20) dev->gc_skip = 20; if (erased_chunks < dev->n_free_chunks / 2 || dev->gc_skip < 1 || background) aggressive = 0; else { dev->gc_skip--; break; } } dev->gc_skip = 5; /* If we don't already have a block being gc'd then see if we * should start another */ if (dev->gc_block < 1 && !aggressive) { dev->gc_block = yaffs2_find_refresh_block(dev); dev->gc_chunk = 0; dev->n_clean_ups = 0; } if (dev->gc_block < 1) { dev->gc_block = yaffs_find_gc_block(dev, aggressive, background); dev->gc_chunk = 0; dev->n_clean_ups = 0; } if (dev->gc_block > 0) { dev->all_gcs++; if (!aggressive) dev->passive_gc_count++; yaffs_trace(YAFFS_TRACE_GC, "yaffs: GC n_erased_blocks %d aggressive %d", dev->n_erased_blocks, aggressive); gc_ok = yaffs_gc_block(dev, dev->gc_block, aggressive); } if (dev->n_erased_blocks < (dev->param.n_reserved_blocks) && dev->gc_block > 0) { yaffs_trace(YAFFS_TRACE_GC, "yaffs: GC !!!no reclaim!!! n_erased_blocks %d after try %d block %d", dev->n_erased_blocks, max_tries, dev->gc_block); } } while ((dev->n_erased_blocks < dev->param.n_reserved_blocks) && (dev->gc_block > 0) && (max_tries < 2)); return aggressive ? gc_ok : YAFFS_OK; } /* * yaffs_bg_gc() * Garbage collects. Intended to be called from a background thread. * Returns non-zero if at least half the free chunks are erased. */ int yaffs_bg_gc(struct yaffs_dev *dev, unsigned urgency) { int erased_chunks = dev->n_erased_blocks * dev->param.chunks_per_block; yaffs_trace(YAFFS_TRACE_BACKGROUND, "Background gc %u", urgency); yaffs_check_gc(dev, 1); return erased_chunks > dev->n_free_chunks / 2; } /*-------------------- Data file manipulation -----------------*/ static int yaffs_rd_data_obj(struct yaffs_obj *in, int inode_chunk, u8 * buffer) { int nand_chunk = yaffs_find_chunk_in_file(in, inode_chunk, NULL); if (nand_chunk >= 0) return yaffs_rd_chunk_tags_nand(in->my_dev, nand_chunk, buffer, NULL); else { yaffs_trace(YAFFS_TRACE_NANDACCESS, "Chunk %d not found zero instead", nand_chunk); /* get sane (zero) data if you read a hole */ memset(buffer, 0, in->my_dev->data_bytes_per_chunk); return 0; } } void yaffs_chunk_del(struct yaffs_dev *dev, int chunk_id, int mark_flash, int lyn) { int block; int page; struct yaffs_ext_tags tags; struct yaffs_block_info *bi; if (chunk_id <= 0) return; dev->n_deletions++; block = chunk_id / dev->param.chunks_per_block; page = chunk_id % dev->param.chunks_per_block; if (!yaffs_check_chunk_bit(dev, block, page)) yaffs_trace(YAFFS_TRACE_VERIFY, "Deleting invalid chunk %d", chunk_id); bi = yaffs_get_block_info(dev, block); yaffs2_update_oldest_dirty_seq(dev, block, bi); yaffs_trace(YAFFS_TRACE_DELETION, "line %d delete of chunk %d", lyn, chunk_id); if (!dev->param.is_yaffs2 && mark_flash && bi->block_state != YAFFS_BLOCK_STATE_COLLECTING) { memset(&tags, 0, sizeof(tags)); tags.is_deleted = 1; yaffs_wr_chunk_tags_nand(dev, chunk_id, NULL, &tags); yaffs_handle_chunk_update(dev, chunk_id, &tags); } else { dev->n_unmarked_deletions++; } /* Pull out of the management area. * If the whole block became dirty, this will kick off an erasure. */ if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING || bi->block_state == YAFFS_BLOCK_STATE_FULL || bi->block_state == YAFFS_BLOCK_STATE_NEEDS_SCAN || bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) { dev->n_free_chunks++; yaffs_clear_chunk_bit(dev, block, page); bi->pages_in_use--; if (bi->pages_in_use == 0 && !bi->has_shrink_hdr && bi->block_state != YAFFS_BLOCK_STATE_ALLOCATING && bi->block_state != YAFFS_BLOCK_STATE_NEEDS_SCAN) { yaffs_block_became_dirty(dev, block); } } } static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk, const u8 *buffer, int n_bytes, int use_reserve) { /* Find old chunk Need to do this to get serial number * Write new one and patch into tree. * Invalidate old tags. */ int prev_chunk_id; struct yaffs_ext_tags prev_tags; int new_chunk_id; struct yaffs_ext_tags new_tags; struct yaffs_dev *dev = in->my_dev; yaffs_check_gc(dev, 0); /* Get the previous chunk at this location in the file if it exists. * If it does not exist then put a zero into the tree. This creates * the tnode now, rather than later when it is harder to clean up. */ prev_chunk_id = yaffs_find_chunk_in_file(in, inode_chunk, &prev_tags); if (prev_chunk_id < 1 && !yaffs_put_chunk_in_file(in, inode_chunk, 0, 0)) return 0; /* Set up new tags */ memset(&new_tags, 0, sizeof(new_tags)); new_tags.chunk_id = inode_chunk; new_tags.obj_id = in->obj_id; new_tags.serial_number = (prev_chunk_id > 0) ? prev_tags.serial_number + 1 : 1; new_tags.n_bytes = n_bytes; if (n_bytes < 1 || n_bytes > dev->param.total_bytes_per_chunk) { yaffs_trace(YAFFS_TRACE_ERROR, "Writing %d bytes to chunk!!!!!!!!!", n_bytes); BUG(); } new_chunk_id = yaffs_write_new_chunk(dev, buffer, &new_tags, use_reserve); if (new_chunk_id > 0) { yaffs_put_chunk_in_file(in, inode_chunk, new_chunk_id, 0); if (prev_chunk_id > 0) yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__); yaffs_verify_file_sane(in); } return new_chunk_id; } static int yaffs_do_xattrib_mod(struct yaffs_obj *obj, int set, const YCHAR *name, const void *value, int size, int flags) { struct yaffs_xattr_mod xmod; int result; xmod.set = set; xmod.name = name; xmod.data = value; xmod.size = size; xmod.flags = flags; xmod.result = -ENOSPC; result = yaffs_update_oh(obj, NULL, 0, 0, 0, &xmod); if (result > 0) return xmod.result; else return -ENOSPC; } static int yaffs_apply_xattrib_mod(struct yaffs_obj *obj, char *buffer, struct yaffs_xattr_mod *xmod) { int retval = 0; int x_offs = sizeof(struct yaffs_obj_hdr); struct yaffs_dev *dev = obj->my_dev; int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr); char *x_buffer = buffer + x_offs; if (xmod->set) retval = nval_set(x_buffer, x_size, xmod->name, xmod->data, xmod->size, xmod->flags); else retval = nval_del(x_buffer, x_size, xmod->name); obj->has_xattr = nval_hasvalues(x_buffer, x_size); obj->xattr_known = 1; xmod->result = retval; return retval; } static int yaffs_do_xattrib_fetch(struct yaffs_obj *obj, const YCHAR *name, void *value, int size) { char *buffer = NULL; int result; struct yaffs_ext_tags tags; struct yaffs_dev *dev = obj->my_dev; int x_offs = sizeof(struct yaffs_obj_hdr); int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr); char *x_buffer; int retval = 0; if (obj->hdr_chunk < 1) return -ENODATA; /* If we know that the object has no xattribs then don't do all the * reading and parsing. */ if (obj->xattr_known && !obj->has_xattr) { if (name) return -ENODATA; else return 0; } buffer = (char *)yaffs_get_temp_buffer(dev); if (!buffer) return -ENOMEM; result = yaffs_rd_chunk_tags_nand(dev, obj->hdr_chunk, (u8 *) buffer, &tags); if (result != YAFFS_OK) retval = -ENOENT; else { x_buffer = buffer + x_offs; if (!obj->xattr_known) { obj->has_xattr = nval_hasvalues(x_buffer, x_size); obj->xattr_known = 1; } if (name) retval = nval_get(x_buffer, x_size, name, value, size); else retval = nval_list(x_buffer, x_size, value, size); } yaffs_release_temp_buffer(dev, (u8 *) buffer); return retval; } int yaffs_set_xattrib(struct yaffs_obj *obj, const YCHAR * name, const void *value, int size, int flags) { return yaffs_do_xattrib_mod(obj, 1, name, value, size, flags); } int yaffs_remove_xattrib(struct yaffs_obj *obj, const YCHAR * name) { return yaffs_do_xattrib_mod(obj, 0, name, NULL, 0, 0); } int yaffs_get_xattrib(struct yaffs_obj *obj, const YCHAR * name, void *value, int size) { return yaffs_do_xattrib_fetch(obj, name, value, size); } int yaffs_list_xattrib(struct yaffs_obj *obj, char *buffer, int size) { return yaffs_do_xattrib_fetch(obj, NULL, buffer, size); } static void yaffs_check_obj_details_loaded(struct yaffs_obj *in) { u8 *buf; struct yaffs_obj_hdr *oh; struct yaffs_dev *dev; struct yaffs_ext_tags tags; int result; int alloc_failed = 0; if (!in || !in->lazy_loaded || in->hdr_chunk < 1) return; dev = in->my_dev; in->lazy_loaded = 0; buf = yaffs_get_temp_buffer(dev); result = yaffs_rd_chunk_tags_nand(dev, in->hdr_chunk, buf, &tags); oh = (struct yaffs_obj_hdr *)buf; in->yst_mode = oh->yst_mode; yaffs_load_attribs(in, oh); yaffs_set_obj_name_from_oh(in, oh); if (in->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) { in->variant.symlink_variant.alias = yaffs_clone_str(oh->alias); if (!in->variant.symlink_variant.alias) alloc_failed = 1; /* Not returned */ } yaffs_release_temp_buffer(dev, buf); } static void yaffs_load_name_from_oh(struct yaffs_dev *dev, YCHAR *name, const YCHAR *oh_name, int buff_size) { #ifdef CONFIG_YAFFS_AUTO_UNICODE if (dev->param.auto_unicode) { if (*oh_name) { /* It is an ASCII name, do an ASCII to * unicode conversion */ const char *ascii_oh_name = (const char *)oh_name; int n = buff_size - 1; while (n > 0 && *ascii_oh_name) { *name = *ascii_oh_name; name++; ascii_oh_name++; n--; } } else { strncpy(name, oh_name + 1, buff_size - 1); } } else { #else (void) dev; { #endif strncpy(name, oh_name, buff_size - 1); } } static void yaffs_load_oh_from_name(struct yaffs_dev *dev, YCHAR *oh_name, const YCHAR *name) { #ifdef CONFIG_YAFFS_AUTO_UNICODE int is_ascii; YCHAR *w; if (dev->param.auto_unicode) { is_ascii = 1; w = name; /* Figure out if the name will fit in ascii character set */ while (is_ascii && *w) { if ((*w) & 0xff00) is_ascii = 0; w++; } if (is_ascii) { /* It is an ASCII name, so convert unicode to ascii */ char *ascii_oh_name = (char *)oh_name; int n = YAFFS_MAX_NAME_LENGTH - 1; while (n > 0 && *name) { *ascii_oh_name = *name; name++; ascii_oh_name++; n--; } } else { /* Unicode name, so save starting at the second YCHAR */ *oh_name = 0; strncpy(oh_name + 1, name, YAFFS_MAX_NAME_LENGTH - 2); } } else { #else dev = dev; { #endif strncpy(oh_name, name, YAFFS_MAX_NAME_LENGTH - 1); } } /* UpdateObjectHeader updates the header on NAND for an object. * If name is not NULL, then that new name is used. */ int yaffs_update_oh(struct yaffs_obj *in, const YCHAR *name, int force, int is_shrink, int shadows, struct yaffs_xattr_mod *xmod) { struct yaffs_block_info *bi; struct yaffs_dev *dev = in->my_dev; int prev_chunk_id; int ret_val = 0; int result = 0; int new_chunk_id; struct yaffs_ext_tags new_tags; struct yaffs_ext_tags old_tags; const YCHAR *alias = NULL; u8 *buffer = NULL; YCHAR old_name[YAFFS_MAX_NAME_LENGTH + 1]; struct yaffs_obj_hdr *oh = NULL; loff_t file_size = 0; strcpy(old_name, _Y("silly old name")); if (in->fake && in != dev->root_dir && !force && !xmod) return ret_val; yaffs_check_gc(dev, 0); yaffs_check_obj_details_loaded(in); buffer = yaffs_get_temp_buffer(in->my_dev); oh = (struct yaffs_obj_hdr *)buffer; prev_chunk_id = in->hdr_chunk; if (prev_chunk_id > 0) { result = yaffs_rd_chunk_tags_nand(dev, prev_chunk_id, buffer, &old_tags); yaffs_verify_oh(in, oh, &old_tags, 0); memcpy(old_name, oh->name, sizeof(oh->name)); memset(buffer, 0xff, sizeof(struct yaffs_obj_hdr)); } else { memset(buffer, 0xff, dev->data_bytes_per_chunk); } oh->type = in->variant_type; oh->yst_mode = in->yst_mode; oh->shadows_obj = oh->inband_shadowed_obj_id = shadows; yaffs_load_attribs_oh(oh, in); if (in->parent) oh->parent_obj_id = in->parent->obj_id; else oh->parent_obj_id = 0; if (name && *name) { memset(oh->name, 0, sizeof(oh->name)); yaffs_load_oh_from_name(dev, oh->name, name); } else if (prev_chunk_id > 0) { memcpy(oh->name, old_name, sizeof(oh->name)); } else { memset(oh->name, 0, sizeof(oh->name)); } oh->is_shrink = is_shrink; switch (in->variant_type) { case YAFFS_OBJECT_TYPE_UNKNOWN: /* Should not happen */ break; case YAFFS_OBJECT_TYPE_FILE: if (oh->parent_obj_id != YAFFS_OBJECTID_DELETED && oh->parent_obj_id != YAFFS_OBJECTID_UNLINKED) file_size = in->variant.file_variant.file_size; yaffs_oh_size_load(oh, file_size); break; case YAFFS_OBJECT_TYPE_HARDLINK: oh->equiv_id = in->variant.hardlink_variant.equiv_id; break; case YAFFS_OBJECT_TYPE_SPECIAL: /* Do nothing */ break; case YAFFS_OBJECT_TYPE_DIRECTORY: /* Do nothing */ break; case YAFFS_OBJECT_TYPE_SYMLINK: alias = in->variant.symlink_variant.alias; if (!alias) alias = _Y("no alias"); strncpy(oh->alias, alias, YAFFS_MAX_ALIAS_LENGTH); oh->alias[YAFFS_MAX_ALIAS_LENGTH] = 0; break; } /* process any xattrib modifications */ if (xmod) yaffs_apply_xattrib_mod(in, (char *)buffer, xmod); /* Tags */ memset(&new_tags, 0, sizeof(new_tags)); in->serial++; new_tags.chunk_id = 0; new_tags.obj_id = in->obj_id; new_tags.serial_number = in->serial; /* Add extra info for file header */ new_tags.extra_available = 1; new_tags.extra_parent_id = oh->parent_obj_id; new_tags.extra_file_size = file_size; new_tags.extra_is_shrink = oh->is_shrink; new_tags.extra_equiv_id = oh->equiv_id; new_tags.extra_shadows = (oh->shadows_obj > 0) ? 1 : 0; new_tags.extra_obj_type = in->variant_type; yaffs_verify_oh(in, oh, &new_tags, 1); /* Create new chunk in NAND */ new_chunk_id = yaffs_write_new_chunk(dev, buffer, &new_tags, (prev_chunk_id > 0) ? 1 : 0); if (buffer) yaffs_release_temp_buffer(dev, buffer); if (new_chunk_id < 0) return new_chunk_id; in->hdr_chunk = new_chunk_id; if (prev_chunk_id > 0) yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__); if (!yaffs_obj_cache_dirty(in)) in->dirty = 0; /* If this was a shrink, then mark the block * that the chunk lives on */ if (is_shrink) { bi = yaffs_get_block_info(in->my_dev, new_chunk_id / in->my_dev->param.chunks_per_block); bi->has_shrink_hdr = 1; } return new_chunk_id; } /*--------------------- File read/write ------------------------ * Read and write have very similar structures. * In general the read/write has three parts to it * An incomplete chunk to start with (if the read/write is not chunk-aligned) * Some complete chunks * An incomplete chunk to end off with * * Curve-balls: the first chunk might also be the last chunk. */ int yaffs_file_rd(struct yaffs_obj *in, u8 * buffer, loff_t offset, int n_bytes) { int chunk; u32 start; int n_copy; int n = n_bytes; int n_done = 0; struct yaffs_cache *cache; struct yaffs_dev *dev; dev = in->my_dev; while (n > 0) { yaffs_addr_to_chunk(dev, offset, &chunk, &start); chunk++; /* OK now check for the curveball where the start and end are in * the same chunk. */ if ((start + n) < dev->data_bytes_per_chunk) n_copy = n; else n_copy = dev->data_bytes_per_chunk - start; cache = yaffs_find_chunk_cache(in, chunk); /* If the chunk is already in the cache or it is less than * a whole chunk or we're using inband tags then use the cache * (if there is caching) else bypass the cache. */ if (cache || n_copy != dev->data_bytes_per_chunk || dev->param.inband_tags) { if (dev->param.n_caches > 0) { /* If we can't find the data in the cache, * then load it up. */ if (!cache) { cache = yaffs_grab_chunk_cache(in->my_dev); cache->object = in; cache->chunk_id = chunk; cache->dirty = 0; cache->locked = 0; yaffs_rd_data_obj(in, chunk, cache->data); cache->n_bytes = 0; } yaffs_use_cache(dev, cache, 0); cache->locked = 1; memcpy(buffer, &cache->data[start], n_copy); cache->locked = 0; } else { /* Read into the local buffer then copy.. */ u8 *local_buffer = yaffs_get_temp_buffer(dev); yaffs_rd_data_obj(in, chunk, local_buffer); memcpy(buffer, &local_buffer[start], n_copy); yaffs_release_temp_buffer(dev, local_buffer); } } else { /* A full chunk. Read directly into the buffer. */ yaffs_rd_data_obj(in, chunk, buffer); } n -= n_copy; offset += n_copy; buffer += n_copy; n_done += n_copy; } return n_done; } int yaffs_do_file_wr(struct yaffs_obj *in, const u8 *buffer, loff_t offset, int n_bytes, int write_through) { int chunk; u32 start; int n_copy; int n = n_bytes; int n_done = 0; int n_writeback; loff_t start_write = offset; int chunk_written = 0; u32 n_bytes_read; loff_t chunk_start; struct yaffs_dev *dev; dev = in->my_dev; while (n > 0 && chunk_written >= 0) { yaffs_addr_to_chunk(dev, offset, &chunk, &start); if (((loff_t)chunk) * dev->data_bytes_per_chunk + start != offset || start >= dev->data_bytes_per_chunk) { yaffs_trace(YAFFS_TRACE_ERROR, "AddrToChunk of offset %lld gives chunk %d start %d", offset, chunk, start); } chunk++; /* File pos to chunk in file offset */ /* OK now check for the curveball where the start and end are in * the same chunk. */ if ((start + n) < dev->data_bytes_per_chunk) { n_copy = n; /* Now calculate how many bytes to write back.... * If we're overwriting and not writing to then end of * file then we need to write back as much as was there * before. */ chunk_start = (((loff_t)(chunk - 1)) * dev->data_bytes_per_chunk); if (chunk_start > in->variant.file_variant.file_size) n_bytes_read = 0; /* Past end of file */ else n_bytes_read = in->variant.file_variant.file_size - chunk_start; if (n_bytes_read > dev->data_bytes_per_chunk) n_bytes_read = dev->data_bytes_per_chunk; n_writeback = (n_bytes_read > (start + n)) ? n_bytes_read : (start + n); if (n_writeback < 0 || n_writeback > dev->data_bytes_per_chunk) BUG(); } else { n_copy = dev->data_bytes_per_chunk - start; n_writeback = dev->data_bytes_per_chunk; } if (n_copy != dev->data_bytes_per_chunk || !dev->param.cache_bypass_aligned || dev->param.inband_tags) { /* An incomplete start or end chunk (or maybe both * start and end chunk), or we're using inband tags, * or we're forcing writes through the cache, * so we want to use the cache buffers. */ if (dev->param.n_caches > 0) { struct yaffs_cache *cache; /* If we can't find the data in the cache, then * load the cache */ cache = yaffs_find_chunk_cache(in, chunk); if (!cache && yaffs_check_alloc_available(dev, 1)) { cache = yaffs_grab_chunk_cache(dev); cache->object = in; cache->chunk_id = chunk; cache->dirty = 0; cache->locked = 0; yaffs_rd_data_obj(in, chunk, cache->data); } else if (cache && !cache->dirty && !yaffs_check_alloc_available(dev, 1)) { /* Drop the cache if it was a read cache * item and no space check has been made * for it. */ cache = NULL; } if (cache) { yaffs_use_cache(dev, cache, 1); cache->locked = 1; memcpy(&cache->data[start], buffer, n_copy); cache->locked = 0; cache->n_bytes = n_writeback; if (write_through) { chunk_written = yaffs_wr_data_obj (cache->object, cache->chunk_id, cache->data, cache->n_bytes, 1); cache->dirty = 0; } } else { chunk_written = -1; /* fail write */ } } else { /* An incomplete start or end chunk (or maybe * both start and end chunk). Read into the * local buffer then copy over and write back. */ u8 *local_buffer = yaffs_get_temp_buffer(dev); yaffs_rd_data_obj(in, chunk, local_buffer); memcpy(&local_buffer[start], buffer, n_copy); chunk_written = yaffs_wr_data_obj(in, chunk, local_buffer, n_writeback, 0); yaffs_release_temp_buffer(dev, local_buffer); } } else { /* A full chunk. Write directly from the buffer. */ chunk_written = yaffs_wr_data_obj(in, chunk, buffer, dev->data_bytes_per_chunk, 0); /* Since we've overwritten the cached data, * we better invalidate it. */ yaffs_invalidate_chunk_cache(in, chunk); } if (chunk_written >= 0) { n -= n_copy; offset += n_copy; buffer += n_copy; n_done += n_copy; } } /* Update file object */ if ((start_write + n_done) > in->variant.file_variant.file_size) in->variant.file_variant.file_size = (start_write + n_done); in->dirty = 1; return n_done; } int yaffs_wr_file(struct yaffs_obj *in, const u8 *buffer, loff_t offset, int n_bytes, int write_through) { yaffs2_handle_hole(in, offset); return yaffs_do_file_wr(in, buffer, offset, n_bytes, write_through); } /* ---------------------- File resizing stuff ------------------ */ static void yaffs_prune_chunks(struct yaffs_obj *in, loff_t new_size) { struct yaffs_dev *dev = in->my_dev; loff_t old_size = in->variant.file_variant.file_size; int i; int chunk_id; u32 dummy; int last_del; int start_del; if (old_size > 0) yaffs_addr_to_chunk(dev, old_size - 1, &last_del, &dummy); else last_del = 0; yaffs_addr_to_chunk(dev, new_size + dev->data_bytes_per_chunk - 1, &start_del, &dummy); last_del++; start_del++; /* Delete backwards so that we don't end up with holes if * power is lost part-way through the operation. */ for (i = last_del; i >= start_del; i--) { /* NB this could be optimised somewhat, * eg. could retrieve the tags and write them without * using yaffs_chunk_del */ chunk_id = yaffs_find_del_file_chunk(in, i, NULL); if (chunk_id < 1) continue; if (chunk_id < (dev->internal_start_block * dev->param.chunks_per_block) || chunk_id >= ((dev->internal_end_block + 1) * dev->param.chunks_per_block)) { yaffs_trace(YAFFS_TRACE_ALWAYS, "Found daft chunk_id %d for %d", chunk_id, i); } else { in->n_data_chunks--; yaffs_chunk_del(dev, chunk_id, 1, __LINE__); } } } void yaffs_resize_file_down(struct yaffs_obj *obj, loff_t new_size) { int new_full; u32 new_partial; struct yaffs_dev *dev = obj->my_dev; yaffs_addr_to_chunk(dev, new_size, &new_full, &new_partial); yaffs_prune_chunks(obj, new_size); if (new_partial != 0) { int last_chunk = 1 + new_full; u8 *local_buffer = yaffs_get_temp_buffer(dev); /* Rewrite the last chunk with its new size and zero pad */ yaffs_rd_data_obj(obj, last_chunk, local_buffer); memset(local_buffer + new_partial, 0, dev->data_bytes_per_chunk - new_partial); yaffs_wr_data_obj(obj, last_chunk, local_buffer, new_partial, 1); yaffs_release_temp_buffer(dev, local_buffer); } obj->variant.file_variant.file_size = new_size; yaffs_prune_tree(dev, &obj->variant.file_variant); } int yaffs_resize_file(struct yaffs_obj *in, loff_t new_size) { struct yaffs_dev *dev = in->my_dev; loff_t old_size = in->variant.file_variant.file_size; yaffs_flush_file_cache(in); yaffs_invalidate_whole_cache(in); yaffs_check_gc(dev, 0); if (in->variant_type != YAFFS_OBJECT_TYPE_FILE) return YAFFS_FAIL; if (new_size == old_size) return YAFFS_OK; if (new_size > old_size) { yaffs2_handle_hole(in, new_size); in->variant.file_variant.file_size = new_size; } else { /* new_size < old_size */ yaffs_resize_file_down(in, new_size); } /* Write a new object header to reflect the resize. * show we've shrunk the file, if need be * Do this only if the file is not in the deleted directories * and is not shadowed. */ if (in->parent && !in->is_shadowed && in->parent->obj_id != YAFFS_OBJECTID_UNLINKED && in->parent->obj_id != YAFFS_OBJECTID_DELETED) yaffs_update_oh(in, NULL, 0, 0, 0, NULL); return YAFFS_OK; } int yaffs_flush_file(struct yaffs_obj *in, int update_time, int data_sync) { if (!in->dirty) return YAFFS_OK; yaffs_flush_file_cache(in); if (data_sync) return YAFFS_OK; if (update_time) yaffs_load_current_time(in, 0, 0); return (yaffs_update_oh(in, NULL, 0, 0, 0, NULL) >= 0) ? YAFFS_OK : YAFFS_FAIL; } /* yaffs_del_file deletes the whole file data * and the inode associated with the file. * It does not delete the links associated with the file. */ static int yaffs_unlink_file_if_needed(struct yaffs_obj *in) { int ret_val; int del_now = 0; struct yaffs_dev *dev = in->my_dev; if (!in->my_inode) del_now = 1; if (del_now) { ret_val = yaffs_change_obj_name(in, in->my_dev->del_dir, _Y("deleted"), 0, 0); yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: immediate deletion of file %d", in->obj_id); in->deleted = 1; in->my_dev->n_deleted_files++; if (dev->param.disable_soft_del || dev->param.is_yaffs2) yaffs_resize_file(in, 0); yaffs_soft_del_file(in); } else { ret_val = yaffs_change_obj_name(in, in->my_dev->unlinked_dir, _Y("unlinked"), 0, 0); } return ret_val; } static int yaffs_del_file(struct yaffs_obj *in) { int ret_val = YAFFS_OK; int deleted; /* Need to cache value on stack if in is freed */ struct yaffs_dev *dev = in->my_dev; if (dev->param.disable_soft_del || dev->param.is_yaffs2) yaffs_resize_file(in, 0); if (in->n_data_chunks > 0) { /* Use soft deletion if there is data in the file. * That won't be the case if it has been resized to zero. */ if (!in->unlinked) ret_val = yaffs_unlink_file_if_needed(in); deleted = in->deleted; if (ret_val == YAFFS_OK && in->unlinked && !in->deleted) { in->deleted = 1; deleted = 1; in->my_dev->n_deleted_files++; yaffs_soft_del_file(in); } return deleted ? YAFFS_OK : YAFFS_FAIL; } else { /* The file has no data chunks so we toss it immediately */ yaffs_free_tnode(in->my_dev, in->variant.file_variant.top); in->variant.file_variant.top = NULL; yaffs_generic_obj_del(in); return YAFFS_OK; } } int yaffs_is_non_empty_dir(struct yaffs_obj *obj) { return (obj && obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY) && !(list_empty(&obj->variant.dir_variant.children)); } static int yaffs_del_dir(struct yaffs_obj *obj) { /* First check that the directory is empty. */ if (yaffs_is_non_empty_dir(obj)) return YAFFS_FAIL; return yaffs_generic_obj_del(obj); } static int yaffs_del_symlink(struct yaffs_obj *in) { kfree(in->variant.symlink_variant.alias); in->variant.symlink_variant.alias = NULL; return yaffs_generic_obj_del(in); } static int yaffs_del_link(struct yaffs_obj *in) { /* remove this hardlink from the list associated with the equivalent * object */ list_del_init(&in->hard_links); return yaffs_generic_obj_del(in); } int yaffs_del_obj(struct yaffs_obj *obj) { int ret_val = -1; switch (obj->variant_type) { case YAFFS_OBJECT_TYPE_FILE: ret_val = yaffs_del_file(obj); break; case YAFFS_OBJECT_TYPE_DIRECTORY: if (!list_empty(&obj->variant.dir_variant.dirty)) { yaffs_trace(YAFFS_TRACE_BACKGROUND, "Remove object %d from dirty directories", obj->obj_id); list_del_init(&obj->variant.dir_variant.dirty); } return yaffs_del_dir(obj); break; case YAFFS_OBJECT_TYPE_SYMLINK: ret_val = yaffs_del_symlink(obj); break; case YAFFS_OBJECT_TYPE_HARDLINK: ret_val = yaffs_del_link(obj); break; case YAFFS_OBJECT_TYPE_SPECIAL: ret_val = yaffs_generic_obj_del(obj); break; case YAFFS_OBJECT_TYPE_UNKNOWN: ret_val = 0; break; /* should not happen. */ } return ret_val; } static int yaffs_unlink_worker(struct yaffs_obj *obj) { int del_now = 0; if (!obj) return YAFFS_FAIL; if (!obj->my_inode) del_now = 1; yaffs_update_parent(obj->parent); if (obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) { return yaffs_del_link(obj); } else if (!list_empty(&obj->hard_links)) { /* Curve ball: We're unlinking an object that has a hardlink. * * This problem arises because we are not strictly following * The Linux link/inode model. * * We can't really delete the object. * Instead, we do the following: * - Select a hardlink. * - Unhook it from the hard links * - Move it from its parent directory so that the rename works. * - Rename the object to the hardlink's name. * - Delete the hardlink */ struct yaffs_obj *hl; struct yaffs_obj *parent; int ret_val; YCHAR name[YAFFS_MAX_NAME_LENGTH + 1]; hl = list_entry(obj->hard_links.next, struct yaffs_obj, hard_links); yaffs_get_obj_name(hl, name, YAFFS_MAX_NAME_LENGTH + 1); parent = hl->parent; list_del_init(&hl->hard_links); yaffs_add_obj_to_dir(obj->my_dev->unlinked_dir, hl); ret_val = yaffs_change_obj_name(obj, parent, name, 0, 0); if (ret_val == YAFFS_OK) ret_val = yaffs_generic_obj_del(hl); return ret_val; } else if (del_now) { switch (obj->variant_type) { case YAFFS_OBJECT_TYPE_FILE: return yaffs_del_file(obj); break; case YAFFS_OBJECT_TYPE_DIRECTORY: list_del_init(&obj->variant.dir_variant.dirty); return yaffs_del_dir(obj); break; case YAFFS_OBJECT_TYPE_SYMLINK: return yaffs_del_symlink(obj); break; case YAFFS_OBJECT_TYPE_SPECIAL: return yaffs_generic_obj_del(obj); break; case YAFFS_OBJECT_TYPE_HARDLINK: case YAFFS_OBJECT_TYPE_UNKNOWN: default: return YAFFS_FAIL; } } else if (yaffs_is_non_empty_dir(obj)) { return YAFFS_FAIL; } else { return yaffs_change_obj_name(obj, obj->my_dev->unlinked_dir, _Y("unlinked"), 0, 0); } } static int yaffs_unlink_obj(struct yaffs_obj *obj) { if (obj && obj->unlink_allowed) return yaffs_unlink_worker(obj); return YAFFS_FAIL; } int yaffs_unlinker(struct yaffs_obj *dir, const YCHAR *name) { struct yaffs_obj *obj; obj = yaffs_find_by_name(dir, name); return yaffs_unlink_obj(obj); } /* Note: * If old_name is NULL then we take old_dir as the object to be renamed. */ int yaffs_rename_obj(struct yaffs_obj *old_dir, const YCHAR *old_name, struct yaffs_obj *new_dir, const YCHAR *new_name) { struct yaffs_obj *obj = NULL; struct yaffs_obj *existing_target = NULL; int force = 0; int result; struct yaffs_dev *dev; if (!old_dir || old_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { BUG(); return YAFFS_FAIL; } if (!new_dir || new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { BUG(); return YAFFS_FAIL; } dev = old_dir->my_dev; #ifdef CONFIG_YAFFS_CASE_INSENSITIVE /* Special case for case insemsitive systems. * While look-up is case insensitive, the name isn't. * Therefore we might want to change x.txt to X.txt */ if (old_dir == new_dir && old_name && new_name && strcmp(old_name, new_name) == 0) force = 1; #endif if (strnlen(new_name, YAFFS_MAX_NAME_LENGTH + 1) > YAFFS_MAX_NAME_LENGTH) /* ENAMETOOLONG */ return YAFFS_FAIL; if (old_name) obj = yaffs_find_by_name(old_dir, old_name); else{ obj = old_dir; old_dir = obj->parent; } if (obj && obj->rename_allowed) { /* Now handle an existing target, if there is one */ existing_target = yaffs_find_by_name(new_dir, new_name); if (yaffs_is_non_empty_dir(existing_target)) { return YAFFS_FAIL; /* ENOTEMPTY */ } else if (existing_target && existing_target != obj) { /* Nuke the target first, using shadowing, * but only if it isn't the same object. * * Note we must disable gc here otherwise it can mess * up the shadowing. * */ dev->gc_disable = 1; yaffs_change_obj_name(obj, new_dir, new_name, force, existing_target->obj_id); existing_target->is_shadowed = 1; yaffs_unlink_obj(existing_target); dev->gc_disable = 0; } result = yaffs_change_obj_name(obj, new_dir, new_name, 1, 0); yaffs_update_parent(old_dir); if (new_dir != old_dir) yaffs_update_parent(new_dir); return result; } return YAFFS_FAIL; } /*----------------------- Initialisation Scanning ---------------------- */ void yaffs_handle_shadowed_obj(struct yaffs_dev *dev, int obj_id, int backward_scanning) { struct yaffs_obj *obj; if (backward_scanning) { /* Handle YAFFS2 case (backward scanning) * If the shadowed object exists then ignore. */ obj = yaffs_find_by_number(dev, obj_id); if (obj) return; } /* Let's create it (if it does not exist) assuming it is a file so that * it can do shrinking etc. * We put it in unlinked dir to be cleaned up after the scanning */ obj = yaffs_find_or_create_by_number(dev, obj_id, YAFFS_OBJECT_TYPE_FILE); if (!obj) return; obj->is_shadowed = 1; yaffs_add_obj_to_dir(dev->unlinked_dir, obj); obj->variant.file_variant.shrink_size = 0; obj->valid = 1; /* So that we don't read any other info. */ } void yaffs_link_fixup(struct yaffs_dev *dev, struct list_head *hard_list) { struct list_head *lh; struct list_head *save; struct yaffs_obj *hl; struct yaffs_obj *in; list_for_each_safe(lh, save, hard_list) { hl = list_entry(lh, struct yaffs_obj, hard_links); in = yaffs_find_by_number(dev, hl->variant.hardlink_variant.equiv_id); if (in) { /* Add the hardlink pointers */ hl->variant.hardlink_variant.equiv_obj = in; list_add(&hl->hard_links, &in->hard_links); } else { /* Todo Need to report/handle this better. * Got a problem... hardlink to a non-existant object */ hl->variant.hardlink_variant.equiv_obj = NULL; INIT_LIST_HEAD(&hl->hard_links); } } } static void yaffs_strip_deleted_objs(struct yaffs_dev *dev) { /* * Sort out state of unlinked and deleted objects after scanning. */ struct list_head *i; struct list_head *n; struct yaffs_obj *l; if (dev->read_only) return; /* Soft delete all the unlinked files */ list_for_each_safe(i, n, &dev->unlinked_dir->variant.dir_variant.children) { l = list_entry(i, struct yaffs_obj, siblings); yaffs_del_obj(l); } list_for_each_safe(i, n, &dev->del_dir->variant.dir_variant.children) { l = list_entry(i, struct yaffs_obj, siblings); yaffs_del_obj(l); } } /* * This code iterates through all the objects making sure that they are rooted. * Any unrooted objects are re-rooted in lost+found. * An object needs to be in one of: * - Directly under deleted, unlinked * - Directly or indirectly under root. * * Note: * This code assumes that we don't ever change the current relationships * between directories: * root_dir->parent == unlinked_dir->parent == del_dir->parent == NULL * lost-n-found->parent == root_dir * * This fixes the problem where directories might have inadvertently been * deleted leaving the object "hanging" without being rooted in the * directory tree. */ static int yaffs_has_null_parent(struct yaffs_dev *dev, struct yaffs_obj *obj) { return (obj == dev->del_dir || obj == dev->unlinked_dir || obj == dev->root_dir); } static void yaffs_fix_hanging_objs(struct yaffs_dev *dev) { struct yaffs_obj *obj; struct yaffs_obj *parent; int i; struct list_head *lh; struct list_head *n; int depth_limit; int hanging; if (dev->read_only) return; /* Iterate through the objects in each hash entry, * looking at each object. * Make sure it is rooted. */ for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) { list_for_each_safe(lh, n, &dev->obj_bucket[i].list) { obj = list_entry(lh, struct yaffs_obj, hash_link); parent = obj->parent; if (yaffs_has_null_parent(dev, obj)) { /* These directories are not hanging */ hanging = 0; } else if (!parent || parent->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { hanging = 1; } else if (yaffs_has_null_parent(dev, parent)) { hanging = 0; } else { /* * Need to follow the parent chain to * see if it is hanging. */ hanging = 0; depth_limit = 100; while (parent != dev->root_dir && parent->parent && parent->parent->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY && depth_limit > 0) { parent = parent->parent; depth_limit--; } if (parent != dev->root_dir) hanging = 1; } if (hanging) { yaffs_trace(YAFFS_TRACE_SCAN, "Hanging object %d moved to lost and found", obj->obj_id); yaffs_add_obj_to_dir(dev->lost_n_found, obj); } } } } /* * Delete directory contents for cleaning up lost and found. */ static void yaffs_del_dir_contents(struct yaffs_obj *dir) { struct yaffs_obj *obj; struct list_head *lh; struct list_head *n; if (dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) BUG(); list_for_each_safe(lh, n, &dir->variant.dir_variant.children) { obj = list_entry(lh, struct yaffs_obj, siblings); if (obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY) yaffs_del_dir_contents(obj); yaffs_trace(YAFFS_TRACE_SCAN, "Deleting lost_found object %d", obj->obj_id); yaffs_unlink_obj(obj); } } static void yaffs_empty_l_n_f(struct yaffs_dev *dev) { yaffs_del_dir_contents(dev->lost_n_found); } struct yaffs_obj *yaffs_find_by_name(struct yaffs_obj *directory, const YCHAR *name) { int sum; struct list_head *i; YCHAR buffer[YAFFS_MAX_NAME_LENGTH + 1]; struct yaffs_obj *l; if (!name) return NULL; if (!directory) { yaffs_trace(YAFFS_TRACE_ALWAYS, "tragedy: yaffs_find_by_name: null pointer directory" ); BUG(); return NULL; } if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) { yaffs_trace(YAFFS_TRACE_ALWAYS, "tragedy: yaffs_find_by_name: non-directory" ); BUG(); } sum = yaffs_calc_name_sum(name); list_for_each(i, &directory->variant.dir_variant.children) { l = list_entry(i, struct yaffs_obj, siblings); if (l->parent != directory) BUG(); yaffs_check_obj_details_loaded(l); /* Special case for lost-n-found */ if (l->obj_id == YAFFS_OBJECTID_LOSTNFOUND) { if (!strcmp(name, YAFFS_LOSTNFOUND_NAME)) return l; } else if (l->sum == sum || l->hdr_chunk <= 0) { /* LostnFound chunk called Objxxx * Do a real check */ yaffs_get_obj_name(l, buffer, YAFFS_MAX_NAME_LENGTH + 1); if (!strncmp(name, buffer, YAFFS_MAX_NAME_LENGTH)) return l; } } return NULL; } /* GetEquivalentObject dereferences any hard links to get to the * actual object. */ struct yaffs_obj *yaffs_get_equivalent_obj(struct yaffs_obj *obj) { if (obj && obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) { obj = obj->variant.hardlink_variant.equiv_obj; yaffs_check_obj_details_loaded(obj); } return obj; } /* * A note or two on object names. * * If the object name is missing, we then make one up in the form objnnn * * * ASCII names are stored in the object header's name field from byte zero * * Unicode names are historically stored starting from byte zero. * * Then there are automatic Unicode names... * The purpose of these is to save names in a way that can be read as * ASCII or Unicode names as appropriate, thus allowing a Unicode and ASCII * system to share files. * * These automatic unicode are stored slightly differently... * - If the name can fit in the ASCII character space then they are saved as * ascii names as per above. * - If the name needs Unicode then the name is saved in Unicode * starting at oh->name[1]. */ static void yaffs_fix_null_name(struct yaffs_obj *obj, YCHAR *name, int buffer_size) { /* Create an object name if we could not find one. */ if (strnlen(name, YAFFS_MAX_NAME_LENGTH) == 0) { YCHAR local_name[20]; YCHAR num_string[20]; YCHAR *x = &num_string[19]; unsigned v = obj->obj_id; num_string[19] = 0; while (v > 0) { x--; *x = '0' + (v % 10); v /= 10; } /* make up a name */ strcpy(local_name, YAFFS_LOSTNFOUND_PREFIX); strcat(local_name, x); strncpy(name, local_name, buffer_size - 1); } } int yaffs_get_obj_name(struct yaffs_obj *obj, YCHAR *name, int buffer_size) { memset(name, 0, buffer_size * sizeof(YCHAR)); yaffs_check_obj_details_loaded(obj); if (obj->obj_id == YAFFS_OBJECTID_LOSTNFOUND) { strncpy(name, YAFFS_LOSTNFOUND_NAME, buffer_size - 1); } else if (obj->short_name[0]) { strcpy(name, obj->short_name); } else if (obj->hdr_chunk > 0) { int result; u8 *buffer = yaffs_get_temp_buffer(obj->my_dev); struct yaffs_obj_hdr *oh = (struct yaffs_obj_hdr *)buffer; memset(buffer, 0, obj->my_dev->data_bytes_per_chunk); if (obj->hdr_chunk > 0) { result = yaffs_rd_chunk_tags_nand(obj->my_dev, obj->hdr_chunk, buffer, NULL); } yaffs_load_name_from_oh(obj->my_dev, name, oh->name, buffer_size); yaffs_release_temp_buffer(obj->my_dev, buffer); } yaffs_fix_null_name(obj, name, buffer_size); return strnlen(name, YAFFS_MAX_NAME_LENGTH); } loff_t yaffs_get_obj_length(struct yaffs_obj *obj) { /* Dereference any hard linking */ obj = yaffs_get_equivalent_obj(obj); if (obj->variant_type == YAFFS_OBJECT_TYPE_FILE) return obj->variant.file_variant.file_size; if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) { if (!obj->variant.symlink_variant.alias) return 0; return strnlen(obj->variant.symlink_variant.alias, YAFFS_MAX_ALIAS_LENGTH); } else { /* Only a directory should drop through to here */ return obj->my_dev->data_bytes_per_chunk; } } int yaffs_get_obj_link_count(struct yaffs_obj *obj) { int count = 0; struct list_head *i; if (!obj->unlinked) count++; /* the object itself */ list_for_each(i, &obj->hard_links) count++; /* add the hard links; */ return count; } int yaffs_get_obj_inode(struct yaffs_obj *obj) { obj = yaffs_get_equivalent_obj(obj); return obj->obj_id; } unsigned yaffs_get_obj_type(struct yaffs_obj *obj) { obj = yaffs_get_equivalent_obj(obj); switch (obj->variant_type) { case YAFFS_OBJECT_TYPE_FILE: return DT_REG; break; case YAFFS_OBJECT_TYPE_DIRECTORY: return DT_DIR; break; case YAFFS_OBJECT_TYPE_SYMLINK: return DT_LNK; break; case YAFFS_OBJECT_TYPE_HARDLINK: return DT_REG; break; case YAFFS_OBJECT_TYPE_SPECIAL: if (S_ISFIFO(obj->yst_mode)) return DT_FIFO; if (S_ISCHR(obj->yst_mode)) return DT_CHR; if (S_ISBLK(obj->yst_mode)) return DT_BLK; if (S_ISSOCK(obj->yst_mode)) return DT_SOCK; return DT_REG; break; default: return DT_REG; break; } } YCHAR *yaffs_get_symlink_alias(struct yaffs_obj *obj) { obj = yaffs_get_equivalent_obj(obj); if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) return yaffs_clone_str(obj->variant.symlink_variant.alias); else return yaffs_clone_str(_Y("")); } /*--------------------------- Initialisation code -------------------------- */ static int yaffs_check_dev_fns(struct yaffs_dev *dev) { struct yaffs_driver *drv = &dev->drv; struct yaffs_tags_handler *tagger = &dev->tagger; /* Common functions, gotta have */ if (!drv->drv_read_chunk_fn || !drv->drv_write_chunk_fn || !drv->drv_erase_fn) return 0; if (dev->param.is_yaffs2 && (!drv->drv_mark_bad_fn || !drv->drv_check_bad_fn)) return 0; /* Install the default tags marshalling functions if needed. */ yaffs_tags_compat_install(dev); yaffs_tags_marshall_install(dev); /* Check we now have the marshalling functions required. */ if (!tagger->write_chunk_tags_fn || !tagger->read_chunk_tags_fn || !tagger->query_block_fn || !tagger->mark_bad_fn) return 0; return 1; } static int yaffs_create_initial_dir(struct yaffs_dev *dev) { /* Initialise the unlinked, deleted, root and lost+found directories */ dev->lost_n_found = dev->root_dir = NULL; dev->unlinked_dir = dev->del_dir = NULL; dev->unlinked_dir = yaffs_create_fake_dir(dev, YAFFS_OBJECTID_UNLINKED, S_IFDIR); dev->del_dir = yaffs_create_fake_dir(dev, YAFFS_OBJECTID_DELETED, S_IFDIR); dev->root_dir = yaffs_create_fake_dir(dev, YAFFS_OBJECTID_ROOT, YAFFS_ROOT_MODE | S_IFDIR); dev->lost_n_found = yaffs_create_fake_dir(dev, YAFFS_OBJECTID_LOSTNFOUND, YAFFS_LOSTNFOUND_MODE | S_IFDIR); if (dev->lost_n_found && dev->root_dir && dev->unlinked_dir && dev->del_dir) { yaffs_add_obj_to_dir(dev->root_dir, dev->lost_n_found); return YAFFS_OK; } return YAFFS_FAIL; } /* Low level init. * Typically only used by yaffs_guts_initialise, but also used by the * Low level yaffs driver tests. */ int yaffs_guts_ll_init(struct yaffs_dev *dev) { yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: yaffs_ll_init()"); if (!dev) { yaffs_trace(YAFFS_TRACE_ALWAYS, "yaffs: Need a device" ); return YAFFS_FAIL; } if (dev->ll_init) return YAFFS_OK; dev->internal_start_block = dev->param.start_block; dev->internal_end_block = dev->param.end_block; dev->block_offset = 0; dev->chunk_offset = 0; dev->n_free_chunks = 0; dev->gc_block = 0; if (dev->param.start_block == 0) { dev->internal_start_block = dev->param.start_block + 1; dev->internal_end_block = dev->param.end_block + 1; dev->block_offset = 1; dev->chunk_offset = dev->param.chunks_per_block; } /* Check geometry parameters. */ if ((!dev->param.inband_tags && dev->param.is_yaffs2 && dev->param.total_bytes_per_chunk < 1024) || (!dev->param.is_yaffs2 && dev->param.total_bytes_per_chunk < 512) || (dev->param.inband_tags && !dev->param.is_yaffs2) || dev->param.chunks_per_block < 2 || dev->param.n_reserved_blocks < 2 || dev->internal_start_block <= 0 || dev->internal_end_block <= 0 || dev->internal_end_block <= (dev->internal_start_block + dev->param.n_reserved_blocks + 2) ) { /* otherwise it is too small */ yaffs_trace(YAFFS_TRACE_ALWAYS, "NAND geometry problems: chunk size %d, type is yaffs%s, inband_tags %d ", dev->param.total_bytes_per_chunk, dev->param.is_yaffs2 ? "2" : "", dev->param.inband_tags); return YAFFS_FAIL; } /* Sort out space for inband tags, if required */ if (dev->param.inband_tags) dev->data_bytes_per_chunk = dev->param.total_bytes_per_chunk - sizeof(struct yaffs_packed_tags2_tags_only); else dev->data_bytes_per_chunk = dev->param.total_bytes_per_chunk; /* Got the right mix of functions? */ if (!yaffs_check_dev_fns(dev)) { /* Function missing */ yaffs_trace(YAFFS_TRACE_ALWAYS, "device function(s) missing or wrong"); return YAFFS_FAIL; } if (yaffs_init_nand(dev) != YAFFS_OK) { yaffs_trace(YAFFS_TRACE_ALWAYS, "InitialiseNAND failed"); return YAFFS_FAIL; } return YAFFS_OK; } int yaffs_format_dev(struct yaffs_dev *dev) { int i; enum yaffs_block_state state; u32 dummy; if(yaffs_guts_ll_init(dev) != YAFFS_OK) return YAFFS_FAIL; if(dev->is_mounted) return YAFFS_FAIL; for (i = dev->internal_start_block; i <= dev->internal_end_block; i++) { yaffs_query_init_block_state(dev, i, &state, &dummy); if (state != YAFFS_BLOCK_STATE_DEAD) yaffs_erase_block(dev, i); } return YAFFS_OK; } int yaffs_guts_initialise(struct yaffs_dev *dev) { int init_failed = 0; unsigned x; int bits; if(yaffs_guts_ll_init(dev) != YAFFS_OK) return YAFFS_FAIL; if (dev->is_mounted) { yaffs_trace(YAFFS_TRACE_ALWAYS, "device already mounted"); return YAFFS_FAIL; } dev->is_mounted = 1; /* OK now calculate a few things for the device */ /* * Calculate all the chunk size manipulation numbers: */ x = dev->data_bytes_per_chunk; /* We always use dev->chunk_shift and dev->chunk_div */ dev->chunk_shift = calc_shifts(x); x >>= dev->chunk_shift; dev->chunk_div = x; /* We only use chunk mask if chunk_div is 1 */ dev->chunk_mask = (1 << dev->chunk_shift) - 1; /* * Calculate chunk_grp_bits. * We need to find the next power of 2 > than internal_end_block */ x = dev->param.chunks_per_block * (dev->internal_end_block + 1); bits = calc_shifts_ceiling(x); /* Set up tnode width if wide tnodes are enabled. */ if (!dev->param.wide_tnodes_disabled) { /* bits must be even so that we end up with 32-bit words */ if (bits & 1) bits++; if (bits < 16) dev->tnode_width = 16; else dev->tnode_width = bits; } else { dev->tnode_width = 16; } dev->tnode_mask = (1 << dev->tnode_width) - 1; /* Level0 Tnodes are 16 bits or wider (if wide tnodes are enabled), * so if the bitwidth of the * chunk range we're using is greater than 16 we need * to figure out chunk shift and chunk_grp_size */ if (bits <= dev->tnode_width) dev->chunk_grp_bits = 0; else dev->chunk_grp_bits = bits - dev->tnode_width; dev->tnode_size = (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8; if (dev->tnode_size < sizeof(struct yaffs_tnode)) dev->tnode_size = sizeof(struct yaffs_tnode); dev->chunk_grp_size = 1 << dev->chunk_grp_bits; if (dev->param.chunks_per_block < dev->chunk_grp_size) { /* We have a problem because the soft delete won't work if * the chunk group size > chunks per block. * This can be remedied by using larger "virtual blocks". */ yaffs_trace(YAFFS_TRACE_ALWAYS, "chunk group too large"); return YAFFS_FAIL; } /* Finished verifying the device, continue with initialisation */ /* More device initialisation */ dev->all_gcs = 0; dev->passive_gc_count = 0; dev->oldest_dirty_gc_count = 0; dev->bg_gcs = 0; dev->gc_block_finder = 0; dev->buffered_block = -1; dev->doing_buffered_block_rewrite = 0; dev->n_deleted_files = 0; dev->n_bg_deletions = 0; dev->n_unlinked_files = 0; dev->n_ecc_fixed = 0; dev->n_ecc_unfixed = 0; dev->n_tags_ecc_fixed = 0; dev->n_tags_ecc_unfixed = 0; dev->n_erase_failures = 0; dev->n_erased_blocks = 0; dev->gc_disable = 0; dev->has_pending_prioritised_gc = 1; /* Assume the worst for now, will get fixed on first GC */ INIT_LIST_HEAD(&dev->dirty_dirs); dev->oldest_dirty_seq = 0; dev->oldest_dirty_block = 0; /* Initialise temporary buffers and caches. */ if (!yaffs_init_tmp_buffers(dev)) init_failed = 1; dev->cache = NULL; dev->gc_cleanup_list = NULL; if (!init_failed && dev->param.n_caches > 0) { int i; void *buf; int cache_bytes = dev->param.n_caches * sizeof(struct yaffs_cache); if (dev->param.n_caches > YAFFS_MAX_SHORT_OP_CACHES) dev->param.n_caches = YAFFS_MAX_SHORT_OP_CACHES; dev->cache = kmalloc(cache_bytes, GFP_NOFS); buf = (u8 *) dev->cache; if (dev->cache) memset(dev->cache, 0, cache_bytes); for (i = 0; i < dev->param.n_caches && buf; i++) { dev->cache[i].object = NULL; dev->cache[i].last_use = 0; dev->cache[i].dirty = 0; dev->cache[i].data = buf = kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS); } if (!buf) init_failed = 1; dev->cache_last_use = 0; } dev->cache_hits = 0; if (!init_failed) { dev->gc_cleanup_list = kmalloc(dev->param.chunks_per_block * sizeof(u32), GFP_NOFS); if (!dev->gc_cleanup_list) init_failed = 1; } if (dev->param.is_yaffs2) dev->param.use_header_file_size = 1; if (!init_failed && !yaffs_init_blocks(dev)) init_failed = 1; yaffs_init_tnodes_and_objs(dev); if (!init_failed && !yaffs_create_initial_dir(dev)) init_failed = 1; if (!init_failed && dev->param.is_yaffs2 && !dev->param.disable_summary && !yaffs_summary_init(dev)) init_failed = 1; if (!init_failed) { /* Now scan the flash. */ if (dev->param.is_yaffs2) { if (yaffs2_checkpt_restore(dev)) { yaffs_check_obj_details_loaded(dev->root_dir); yaffs_trace(YAFFS_TRACE_CHECKPOINT | YAFFS_TRACE_MOUNT, "yaffs: restored from checkpoint" ); } else { /* Clean up the mess caused by an aborted * checkpoint load then scan backwards. */ yaffs_deinit_blocks(dev); yaffs_deinit_tnodes_and_objs(dev); dev->n_erased_blocks = 0; dev->n_free_chunks = 0; dev->alloc_block = -1; dev->alloc_page = -1; dev->n_deleted_files = 0; dev->n_unlinked_files = 0; dev->n_bg_deletions = 0; if (!init_failed && !yaffs_init_blocks(dev)) init_failed = 1; yaffs_init_tnodes_and_objs(dev); if (!init_failed && !yaffs_create_initial_dir(dev)) init_failed = 1; if (!init_failed && !yaffs2_scan_backwards(dev)) init_failed = 1; } } else if (!yaffs1_scan(dev)) { init_failed = 1; } yaffs_strip_deleted_objs(dev); yaffs_fix_hanging_objs(dev); if (dev->param.empty_lost_n_found) yaffs_empty_l_n_f(dev); } if (init_failed) { /* Clean up the mess */ yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: yaffs_guts_initialise() aborted."); yaffs_deinitialise(dev); return YAFFS_FAIL; } /* Zero out stats */ dev->n_page_reads = 0; dev->n_page_writes = 0; dev->n_erasures = 0; dev->n_gc_copies = 0; dev->n_retried_writes = 0; dev->n_retired_blocks = 0; yaffs_verify_free_chunks(dev); yaffs_verify_blocks(dev); /* Clean up any aborted checkpoint data */ if (!dev->is_checkpointed && dev->blocks_in_checkpt > 0) yaffs2_checkpt_invalidate(dev); yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: yaffs_guts_initialise() done."); return YAFFS_OK; } void yaffs_deinitialise(struct yaffs_dev *dev) { if (dev->is_mounted) { int i; yaffs_deinit_blocks(dev); yaffs_deinit_tnodes_and_objs(dev); yaffs_summary_deinit(dev); if (dev->param.n_caches > 0 && dev->cache) { for (i = 0; i < dev->param.n_caches; i++) { kfree(dev->cache[i].data); dev->cache[i].data = NULL; } kfree(dev->cache); dev->cache = NULL; } kfree(dev->gc_cleanup_list); for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) kfree(dev->temp_buffer[i].buffer); dev->is_mounted = 0; yaffs_deinit_nand(dev); } } int yaffs_count_free_chunks(struct yaffs_dev *dev) { int n_free = 0; int b; struct yaffs_block_info *blk; blk = dev->block_info; for (b = dev->internal_start_block; b <= dev->internal_end_block; b++) { switch (blk->block_state) { case YAFFS_BLOCK_STATE_EMPTY: case YAFFS_BLOCK_STATE_ALLOCATING: case YAFFS_BLOCK_STATE_COLLECTING: case YAFFS_BLOCK_STATE_FULL: n_free += (dev->param.chunks_per_block - blk->pages_in_use + blk->soft_del_pages); break; default: break; } blk++; } return n_free; } int yaffs_get_n_free_chunks(struct yaffs_dev *dev) { /* This is what we report to the outside world */ int n_free; int n_dirty_caches; int blocks_for_checkpt; int i; n_free = dev->n_free_chunks; n_free += dev->n_deleted_files; /* Now count and subtract the number of dirty chunks in the cache. */ for (n_dirty_caches = 0, i = 0; i < dev->param.n_caches; i++) { if (dev->cache[i].dirty) n_dirty_caches++; } n_free -= n_dirty_caches; n_free -= ((dev->param.n_reserved_blocks + 1) * dev->param.chunks_per_block); /* Now figure checkpoint space and report that... */ blocks_for_checkpt = yaffs_calc_checkpt_blocks_required(dev); n_free -= (blocks_for_checkpt * dev->param.chunks_per_block); if (n_free < 0) n_free = 0; return n_free; } /* * Marshalling functions to get loff_t file sizes into and out of * object headers. */ void yaffs_oh_size_load(struct yaffs_obj_hdr *oh, loff_t fsize) { oh->file_size_low = (fsize & 0xFFFFFFFF); oh->file_size_high = ((fsize >> 32) & 0xFFFFFFFF); } loff_t yaffs_oh_to_size(struct yaffs_obj_hdr *oh) { loff_t retval; if (sizeof(loff_t) >= 8 && ~(oh->file_size_high)) retval = (((loff_t) oh->file_size_high) << 32) | (((loff_t) oh->file_size_low) & 0xFFFFFFFF); else retval = (loff_t) oh->file_size_low; return retval; } void yaffs_count_blocks_by_state(struct yaffs_dev *dev, int bs[10]) { int i; struct yaffs_block_info *bi; int s; for(i = 0; i < 10; i++) bs[i] = 0; for(i = dev->internal_start_block; i <= dev->internal_end_block; i++) { bi = yaffs_get_block_info(dev, i); s = bi->block_state; if(s > YAFFS_BLOCK_STATE_DEAD || s < YAFFS_BLOCK_STATE_UNKNOWN) bs[0]++; else bs[s]++; } }