Buildroot
+OpenWrt Buildroot
Usage and documentation by Thomas Petazzoni. Contributions from - Karsten Kruse, Ned Ludd, Martin Herren.
+Usage and documentation by Felix Fietkau, based on uClibc Buildroot + documentation by Thomas Petazzoni. Contributions from Karsten Kruse, + Ned Ludd, Martin Herren.
Last modification : $Id$
-
-
- About Buildroot -
- Obtaining Buildroot -
- Using Buildroot +
- About OpenWrt Buildroot +
- Obtaining OpenWrt Buildroot +
- Using OpenWrt Buildroot
- Customizing the target filesystem
- Customizing the Busybox configuration
- Customizing the uClibc configuration -
- How Buildroot works +
- How OpenWrt Buildroot works
- Using the uClibc toolchain
- Using the uClibc toolchain outside of Buildroot
- Location of downloaded packages -
- Extending Buildroot with more - Software +
- Extending OpenWrt with more Software
- Ressources
About Buildroot
+About OpenWrt Buildroot
-Buildroot is a set of Makefiles and patches that allows to easily +
OpenWrt Buildroot is a set of Makefiles and patches that allows to easily generate both a cross-compilation toolchain and a root filesystem for your - target. The cross-compilation toolchain uses uClibc (http://www.uclibc.org/), a tiny C standard library.
-Buildroot is useful mainly for people working with embedded systems. - Embedded systems often use processors that are not the regular x86 - processors everyone is used to have on his PC. It can be PowerPC - processors, MIPS processors, ARM processors, etc.
-A compilation toolchain is the set of tools that allows to
compile code for your system. It consists of a compiler (in our
case, gcc
), binary utils like assembler and linker
@@ -68,7 +63,7 @@
toolchain is called the "host compilation toolchain", and more
generally, the machine on which it is running, and on which you're
working is called the "host system". The compilation toolchain is
- provided by your distribution, and Buildroot has nothing to do
+ provided by your distribution, and OpenWrt Buildroot has nothing to do
with it.
As said above, the compilation toolchain that comes with your system @@ -76,66 +71,34 @@ embedded system has a different processor, you need a cross-compilation toolchain: it's a compilation toolchain that runs on your host system but that generates code for your target system (and target processor). For - example, if your host system uses x86 and your target system uses ARM, the + example, if your host system uses x86 and your target system uses MIPS, the regular compilation toolchain of your host runs on x86 and generates code for x86, while the cross-compilation toolchain runs on x86 and generates - code for ARM.
- -Even if your embedded system uses a x86 processor, you might interested - in Buildroot, for two reasons:
- --
-
- The compilation toolchain of your host certainly uses the GNU Libc - which is a complete but huge C standard library. Instead of using GNU - Libc on your target system, you can use uClibc which is a tiny C standard - library. If you want to use this C library, then you need a compilation - toolchain to generate binaries linked with it. Buildroot can do it for - you. - -
- Buildroot automates the building of a root filesystem with all needed - tools like busybox. It makes it much easier than doing it by hand. -
You might wonder why such a tool is needed when you can compile
gcc
, binutils
, uClibc and all the tools by hand.
Of course, doing so is possible. But dealing with all configure options,
with all problems of every gcc
or binutils
- version it very time-consuming and uninteresting. Buildroot automates this
+ version it very time-consuming and uninteresting. OpenWrt Buildroot automates this
process through the use of Makefiles, and has a collection of patches for
each gcc
and binutils
version to make them work
- on most architectures.
Obtaining Buildroot
+Obtaining OpenWrt Buildroot
-Buildroot is available as daily CVS snapshots or directly using - CVS.
+OpenWrt Buildroot is currently available as experimental snapshots
The latest snapshot is always available at http://uclibc.org/downloads/snapshots/buildroot-snapshot.tar.bz2, - and previous snapshots are also available at http://uclibc.org/downloads/snapshots/.
+ href="http://openwrt.org/downloads/experimental/">http://openwrt.org/downloads/experimental/, -To download Buildroot using CVS, you can simply follow
- the rules described on the "Accessing CVS"-page (http://www.uclibc.org/cvs_anon.html)
- of the uClibc website (http://www.uclibc.org), and download the
- buildroot
CVS module. For the impatient, here's a quick
- recipe:
Using OpenWrt Buildroot
-- $ cvs -d:pserver:anonymous@uclibc.org:/var/cvs login - $ cvs -z3 -d:pserver:anonymous@uclibc.org:/var/cvs co buildroot -- -
Using Buildroot
- -Buildroot has a nice configuration tool similar to the one you can find - in the Linux Kernel (http://www.kernel.org/) or in Busybox - (http://www.busybox.org/). Note that - you can run everything as a normal user. There is no need to be root to - configure and use Buildroot. The first step is to run the configuration +
OpenWrt Buildroot has a nice configuration tool similar to the one you can find + in the Linux Kernel (http://www.kernel.org/) + or in Busybox (http://www.busybox.org/). + Note that you can run everything as a normal user. There is no need to be root to + configure and use the Buildroot. The first step is to run the configuration assistant:
@@ -156,12 +119,24 @@
This command will download, configure and compile all the selected
- tools, and finally generate a target filesystem. The target filesystem will
- be named root_fs_ARCH.EXT
where ARCH
is your
- architecture and EXT
depends on the type of target filesystem
- selected in the Target options
section of the configuration
- tool.
make menuconfig
.
+ All the target files can be found in the bin/
subdirectory.
+ You can compile firmware images containing two different filesystem types:
+ -
+
- jffs2 +
- squashfs +
jffs2
contains a writable root filesystem, which will expand to
+ the size of your flash image. Note that you if you use the generic firmware
+ Image, you need to pick the right image for your Flash size, because of different
+ eraseblock sizes.
squashfs
contains a read-only root filesystem using a modified
+ squashfs
filesystem with LZMA compression. When booting it, you can
+ create a writable second filesystem, which will contain your modifications to
+ the root filesystem, including the packages you install.
+
Customizing the target filesystem
@@ -170,55 +145,27 @@- Customize the target filesystem directly, and rebuild the image. The
target filesystem is available under
build_ARCH/root/
where -ARCH
is the chosen target architecture. You can simply make - your changes here, and run make afterwards, which will rebuild the target - filesystem image. This method allows to do everything on the target - filesystem, but if you decide to completely rebuild your toolchain and - tools, these changes will be lost.
+ - Customize the target filesystem skeleton, available under
target/default/target_skeleton/
. You can customize configuration files or other stuff here. However, the full file hierarchy is not yet present, because it's created during the compilation process. So you can't do everything on this target filesystem skeleton, but - changes to it remains even you completely rebuild the cross-compilation + changes to it remains even when you completely rebuild the cross-compilation toolchain and the tools.
- You can also customize thetarget/default/device_table.txt
- file which is used by the tools that generate the target filesystem image - to properly set permissions and create device nodes. The -target/default/skel.tar.gz
file contains the main - directories of a root filesystem and there is no obvious reason for which - it should be changed. These main directories are in an tarball inside of - inside the skeleton because it contains symlinks that would be broken - otherwise.
ARCH
is the chosen target architecture, usually mipsel.
+ You can simply make your changes here, and run make target_install afterwards,
+ which will rebuild the target filesystem image. This method allows to do
+ everything on the target filesystem, but if you decide to rebuild your toolchain,
+ tools or packages, these changes will be lost.
Customizing the Busybox configuration
-Busybox is very configurable, and you may want to customize it. You can - follow these simple steps to do it. It's not an optimal way, but it's - simple and it works.
- --
-
- Make a first compilation of buildroot with busybox without trying to - customize it. - -
- Go into
build_ARCH/busybox/
and runmake - menuconfig
. The nice configuration tool appears and you can - customize everything.
-
- - Copy the
.config
file to -package/busybox/busybox.config
so that your customized - configuration will remains even if you remove the cross-compilation - toolchain.
-
- - Run the compilation of buildroot again. -
Otherwise, you can simply change the
- package/busybox/busybox.config
file if you know the options
- you want to change without using the configuration tool.
Busybox is very configurable, and you may want to customize it. + Its configuration is completely integrated into the main menuconfig system. + You can find it under "OpenWrt Package Selection" => "Busybox Configuration"
Customizing the uClibc configuration
@@ -239,17 +186,17 @@toolchain_build_ARCH/uClibc/
and run make
menuconfig
. The nice configuration assistant, similar to
- the one used in the Linux Kernel or in Buildroot appears. Make
+ the one used in the Linux Kernel appears. Make
your configuration as appropriate..config
file to
toolchain/uClibc/uClibc.config
or
toolchain/uClibc/uClibc.config-locale
. The former
- is used if you haven't selected locale support in Buildroot
+ is used if you haven't selected locale support in the Buildroot
configuration, and the latter is used if you have selected
locale support.toolchain/uClibc/uClibc.config-locale
without running
the configuration assistant.
- How Buildroot
+ How OpenWrt Buildroot
works
-
As said above, Buildroot is basically a set of Makefiles that download, +
As said above, OpenWrt is basically a set of Makefiles that download,
configure and compiles software with the correct options. It also includes
some patches for various software, mainly the ones involved in the
cross-compilation tool chain (gcc
, binutils
and
uClibc).
There is basically one Makefile per software, and they are named with
- the .mk
extension. Makefiles are split into three
- sections:
There is basically one Makefile per software, and they are named Makefile
.
+ Makefiles are split into three sections:
- package (in the
package/
directory) contains the @@ -286,26 +232,18 @@ - target (in the
target
directory) contains the Makefiles and associated files for software related to the generation of the target root filesystem image. Four types of filesystems are supported - : ext2, jffs2, cramfs and squashfs. For each of them, there's a - sub-directory with the required files. There is also a -default/
directory that contains the target filesystem - skeleton.
+ : jffs2 and squashfs.
Each directory contains at least 3 files :
-
-
something.mk
is the Makefile that downloads, configures, +Makefile
is the Makefile that downloads, configures, compiles and installs the softwaresomething
.Config.in
is a part of the configuration tool description file. It describes the option related to the current software.
-
- Makefile.in
is a part of Makefile that sets various - variables according to the configuration given through the configuration - tool. For most tools it simply involves adding the name of the tool to - theTARGETS
variable.
The main Makefile do the job through the following steps (once the @@ -338,24 +276,22 @@
build_ARCH/root/
by
default) and the target filesystem skeleton. This directory will contain
the final root filesystem. To setup it up, it first deletes it, then it
- uncompress the target/default/skel.tar.gz
file to create the
- main subdirectories and symlinks, copies the skeleton available in
- target/default/target_skeleton
and then removes useless
- CVS/
directories.target/default/target_skeleton
+ and then removes useless CVS/
directories.
- TARGETS
dependency. This is where all the job
- is done : all Makefile.in
files "subscribe" targets into
- this global variable, so that the needed tools gets compiled.prepare
, compile
and install
+ targets for the subdirectories toolchain
, package
+ and target
Using the uClibc toolchain
You may want to compile your own programs or other software - that are not packaged in Buildroot. In order to do this, you can - use the toolchain that was generated by Buildroot.
+ that are not packaged in OpenWrt. In order to do this, you can + use the toolchain that was generated by the Buildroot. -The toolchain generated by Buildroot by default is located in +
The toolchain generated by the Buildroot by default is located in
build_ARCH/staging_dir/
. The simplest way to use it
is to add build_ARCH/staging_dir/bin/
to your PATH
environnement variable, and then to use
@@ -396,7 +332,7 @@ mips-linux-gcc -o foo foo.c
If you want to use the generated toolchain for other purposes,
you can configure Buildroot to generate it elsewhere using the
- option of the configuration tool : Build options ->
+ option of the configuration tool :
Build options ->
Toolchain and header file location
, which defaults to
$(BUILD_DIR)/staging_dir/
.
Extending Buildroot with
+ Extending OpenWrt with
more software
This section will only consider the case in which you want to @@ -432,7 +368,7 @@ mips-linux-gcc -o foo foo.c
config BR2_PACKAGE_FOO - bool "foo" + tristate "foo" default n help This is a comment that explains what foo is. @@ -441,56 +377,77 @@ config BR2_PACKAGE_FOOOf course, you can add other options to configure particular things in your software.
-+
Makefile.in
file-
Makefile
in the package directoryThen, write a
+Makefile.in
file. Basically, this is - a very short Makefile that adds the name of the software to - the list ofTARGETS
that Buildroot will generate. In - fact, the name of the software is the the identifier of the target - inside the real Makefile that will do everything (download, - compile, install), and that we study below. Back to -Makefile.in
, here is an example :To add your package to the build process, you need to edit + the Makefile in the
package/
directory. Locate the + lines that look like the following:-ifeq ($(strip $(BR2_PACKAGE_FOO)),y) -TARGETS+=foo -endif +package-$(BR2_PACKAGE_FOO) += foo-As you can see, this short Makefile simply adds the - target
+foo
to the list of targets handled by Buildroot - if software foo was selected using the configuration tool.As you can see, this short line simply adds the target +
+ + +foo
to the list of targets handled by OpenWrt Buildroot.In addition to the default dependencies, you make your package + depend on another package (e.g. a library) by adding a line: + +
+foo-compile: bar-compile ++ +The .control file
+Additionally, you need to create a control file which contains + information about your package, readable by the ipkg package + utility.
+ +The file looks like this
+ ++ 1 Package: foo + 2 Priority: optional + 3 Section: net + 4 Maintainer: Foo Software <foo@foosoftware.com> + 5 Source: http://foosoftware.com + 6 Description: Your Package Description ++ +You can skip the usual
Version:
andArchitecture
+ fields, as they will be generated by themake-ipkg-dir.sh
script + called from your MakefileThe real Makefile
Finally, here's the hardest part. Create a file named -
foo.mk
. It will contain the Makefile rules that +Makefile
. It will contain the Makefile rules that are in charge of downloading, configuring, compiling and installing the software. Below is an example that we will comment afterwards.1 ############################################################# - 2 # - 3 # foo - 4 # - 5 ############################################################# - 6 FOO_VERSION:=1.0 - 7 FOO_SOURCE:=less-$(FOO_VERSION).tar.gz - 8 FOO_SITE:=http://www.foosoftware.org/downloads - 9 FOO_DIR:=$(BUILD_DIR)/less-$(FOO_VERSION) - 10 FOO_BINARY:=foo - 11 FOO_TARGET_BINARY:=usr/bin/foo + 2 # foo + 3 ############################################################# + 4 PKG_NAME:=foo + 5 PKG_VERSION:=1.0 + 6 PKG_RELEASE:=1 + 7 PKG_SOURCE:=$(PKG_NAME)-$(PKG_VERSION).tar.gz + 8 PKG_SITE:=http://www.foosoftware.org/downloads + 9 PKG_DIR:=$(BUILD_DIR)/$(PKG_NAME)-$(PKG_VERSION) + 10 PKG_IPK:=$(PACKAGE_DIR)/$(PKG_NAME)_$(PKG_VERSION)-$(PKG_RELEASE)_$(ARCH).ipk + 11 PKG_IPK_DIR:=$(PKG_DIR)/ipkg 12 - 13 $(DL_DIR)/$(FOO_SOURCE): - 14 $(WGET) -P $(DL_DIR) $(FOO_SITE)/$(FOO_SOURCE) + 13 $(DL_DIR)/$(PKG_SOURCE): + 14 $(WGET) -P $(DL_DIR) $(PKG_SITE)/$(PKG_SOURCE) 15 - 16 $(FOO_DIR)/.source: $(DL_DIR)/$(FOO_SOURCE) - 17 zcat $(DL_DIR)/$(FOO_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) - - 18 touch $(FOO_DIR)/.source + 16 $(PKG_DIR)/.source: $(DL_DIR)/$(PKG_SOURCE) + 17 zcat $(DL_DIR)/$(PKG_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) - + 18 touch $(PKG_DIR)/.source 19 - 20 $(FOO_DIR)/.configured: $(FOO_DIR)/.source - 21 (cd $(FOO_DIR); \ + 20 $(PKG_DIR)/.configured: $(PKG_DIR)/.source + 21 (cd $(PKG_DIR); \ 22 $(TARGET_CONFIGURE_OPTS) \ 23 CFLAGS="$(TARGET_CFLAGS)" \ 24 ./configure \ @@ -500,60 +457,60 @@ endif 28 --prefix=/usr \ 29 --sysconfdir=/etc \ 30 ); - 31 touch $(FOO_DIR)/.configured; + 31 touch $(PKG_DIR)/.configured; 32 - 33 $(FOO_DIR)/$(FOO_BINARY): $(FOO_DIR)/.configured - 34 $(MAKE) CC=$(TARGET_CC) -C $(FOO_DIR) + 33 $(PKG_DIR)/foo $(PKG_DIR)/.configured + 34 $(MAKE) CC=$(TARGET_CC) -C $(PKG_DIR) 35 - 36 $(TARGET_DIR)/$(FOO_TARGET_BINARY): $(FOO_DIR)/$(FOO_BINARY) - 37 $(MAKE) prefix=$(TARGET_DIR)/usr -C $(FOO_DIR) install - 38 rm -Rf $(TARGET_DIR)/usr/man - 39 - 40 foo: uclibc ncurses $(TARGET_DIR)/$(FOO_TARGET_BINARY) + 36 $(PKG_IPK): $(PKG_DIR)/$(PKG_BINARY) + 37 $(SCRIPT_DIR)/make-ipkg-dir.sh $(PKG_IPK_DIR) $(PKG_NAME).control $(PKG_VERSION)-$(PKG_RELEASE) $(ARCH) + 38 $(MAKE) prefix=$(PKG_IPK_DIR)/usr -C $(PKG_DIR) install + 39 rm -Rf $(PKG_IPK_DIR)/usr/man + 40 $(IPKG_BUILD) $(PKG_IPK_DIR) $(PACKAGE_DIR) 41 - 42 foo-source: $(DL_DIR)/$(FOO_SOURCE) - 43 - 44 foo-clean: - 45 $(MAKE) prefix=$(TARGET_DIR)/usr -C $(FOO_DIR) uninstall - 46 -$(MAKE) -C $(FOO_DIR) clean - 47 - 48 foo-dirclean: - 49 rm -rf $(FOO_DIR) - 50 + 42 $(IPKG_STATE_DIR)/info/$(PKG_NAME).list: $(PKG_IPK) + 43 $(IPKG) install $(PKG_IPK) + 44 + 45 prepare: $(PKG_DIR)/.source + 46 compile: $(PKG_IPK) + 47 install: $(IPKG_STATE_DIR)/info/$(PKG_NAME).list + 48 clean: + 49 rm -rf $(PKG_DIR) + 50 rm -f $(PKG_IPK)First of all, this Makefile example works for a single binary software. For other software such as libraries or more complex stuff with multiple binaries, it should be adapted. Look at - the other
-*.mk
files in thepackage
+ the otherMakefile
files in thepackage
directory.At lines 6-11, a couple of useful variables are defined :
+At lines 4-11, a couple of useful variables are defined :
-
-
-
FOO_VERSION
: The version of foo that +PKG_NAME
: The package name, e.g. foo.
+
+ PKG_VERSION
: The version of the package that should be downloaded.
- FOO_SOURCE
: The name of the tarball of - foo on the download website of FTP site. As you can see -FOO_VERSION
is used.
+ PKG_RELEASE
: The release number that will be + appended to the version number of your ipkg package. -FOO_SITE
: The HTTP or FTP site from which - foo archive is downloaded. It must include the complete +PKG_SOURCE
: The name of the tarball of + your package on the download website of FTP site. As you can see +PKG_NAME
andPKG_VERSION
are used.
+
+ PKG_SITE
: The HTTP or FTP site from which + the archive is downloaded. It must include the complete path to the directory whereFOO_SOURCE
can be found.
- FOO_DIR
: The directory into which the software +PKG_DIR
: The directory into which the software will be configured and compiled. Basically, it's a subdirectory ofBUILD_DIR
which is created upon decompression of the tarball.
- FOO_BINARY
: Software binary name. As said - previously, this is an example for a single binary software.
-
- FOO_TARGET_BINARY
: The full path of the binary - inside the target filesystem.
+ PKG_IPK
: The resulting ipkg pacakge
make
inside the source
directory.
- Lines 36-38 defines a target and associated rules that install
- the software inside the target filesystem. It depends on the
- binary file in the source directory, to make sure the software has
- been compiled. It uses the install
target of the
+
Lines 36-40 defines a target and associated rules that create
+ the ipkg package which can optionally be embedded into
+ the resulting firmware image. It depends on the binary file in
+ the source directory, to make sure the software has been compiled.
+ It uses the make-ipkg-dir.sh script, which will create the ipkg
+ build directory for your package, copy your control file into
+ that directory and add version and architecture information.
+ Then it calls the install
target of the
software Makefile
by passing a prefix
argument, so that the Makefile
doesn't try to install
the software inside host /usr
but inside target
/usr
. After the installation, the
/usr/man
directory inside the target filesystem is
- removed to save space.
IPKG_BUILD
is called to create the package.
- Line 40 defines the main target of the software, the one
- referenced in the Makefile.in
file. This targets
- should first of all depends on the dependecies of the software (in
- our example, uclibc and ncurses), and then to the
- final binary. This last dependency will call all previous
- dependencies in the right order.
Line 42 and 43 define the installation target of your package, + which will embed the software into the target filesystem.
-Line 42 defines a simple target that only downloads the code - source. This is not used during normal operation of Buildroot, but - might be useful.
- -Lignes 44-46 define a simple target to clean the software build - by calling the Makefiles with the appropriate option.
- -Lines 48-49 define a simple target to completely remove the - directory in which the software was uncompressed, configured and - compiled.
+Lines 45-50 define the main targets that the Makefile in the
+ package
dir calls.
+
-
+
prepare
: Download and unpack the source
+ compile
: Compile the source and create the package
+ install
: Embed the package into the target filesystem
+ clean
: Remove all the files created by the build process
+
Conclusion
@@ -627,17 +583,12 @@ endif the software.If you package software that might be useful for other persons, - don't forget to send a patch to Buildroot developers !
+ don't forget to send a patch to OpenWrt developers ! -Ressources
+Resources
-To learn more about Buildroot you can visit these - websites:
- - +To learn more about OpenWrt Buildroot you can visit this + website: http://openwrt.org/