ramips: improve ethernet driver performance with GRO/TSO

GRO stores packets as fraglist. If they are routed back to the ethernet
device, they need to be re-segmented if the driver does not support
sending fraglists.
Add the missing support for that, along with a missing feature flag that
allows full routed GRO->TSO offload.
Considerably reduces CPU utilization for routing

Signed-off-by: Felix Fietkau <nbd@nbd.name>
This commit is contained in:
Felix Fietkau 2018-06-06 09:56:13 +02:00
parent c49ae68cba
commit 9a4253b81f
3 changed files with 106 additions and 77 deletions

View file

@ -307,24 +307,20 @@ no_rx_mem:
static void fe_txd_unmap(struct device *dev, struct fe_tx_buf *tx_buf) static void fe_txd_unmap(struct device *dev, struct fe_tx_buf *tx_buf)
{ {
if (tx_buf->flags & FE_TX_FLAGS_SINGLE0) { if (dma_unmap_len(tx_buf, dma_len0))
dma_unmap_single(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
} else if (tx_buf->flags & FE_TX_FLAGS_PAGE0) {
dma_unmap_page(dev, dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0), dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE); DMA_TO_DEVICE);
}
if (tx_buf->flags & FE_TX_FLAGS_PAGE1) if (dma_unmap_len(tx_buf, dma_len1))
dma_unmap_page(dev, dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr1), dma_unmap_addr(tx_buf, dma_addr1),
dma_unmap_len(tx_buf, dma_len1), dma_unmap_len(tx_buf, dma_len1),
DMA_TO_DEVICE); DMA_TO_DEVICE);
tx_buf->flags = 0; dma_unmap_len_set(tx_buf, dma_addr0, 0);
dma_unmap_len_set(tx_buf, dma_addr1, 0);
if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC)) if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
dev_kfree_skb_any(tx_buf->skb); dev_kfree_skb_any(tx_buf->skb);
tx_buf->skb = NULL; tx_buf->skb = NULL;
@ -559,6 +555,54 @@ static inline u32 fe_empty_txd(struct fe_tx_ring *ring)
(ring->tx_ring_size - 1))); (ring->tx_ring_size - 1)));
} }
static int fe_tx_dma_map_page(struct device *dev, struct fe_tx_buf *tx_buf,
struct fe_tx_dma *txd, int idx,
struct page *page, size_t offset, size_t size)
{
dma_addr_t mapped_addr;
mapped_addr = dma_map_page(dev, page, offset, size, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, mapped_addr)))
return -EIO;
if (idx & 1) {
txd->txd3 = mapped_addr;
txd->txd2 |= TX_DMA_PLEN1(size);
dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len1, size);
} else {
tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
txd->txd1 = mapped_addr;
txd->txd2 = TX_DMA_PLEN0(size);
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, size);
}
return 0;
}
static int fe_tx_dma_map_skb(struct device *dev, struct fe_tx_buf *tx_buf,
struct fe_tx_dma *txd, int idx,
struct sk_buff *skb)
{
struct page *page = virt_to_page(skb->data);
size_t offset = offset_in_page(skb->data);
size_t size = skb_headlen(skb);
return fe_tx_dma_map_page(dev, tx_buf, txd, idx, page, offset, size);
}
static inline struct sk_buff *
fe_next_frag(struct sk_buff *head, struct sk_buff *skb)
{
if (skb != head)
return skb->next;
if (skb_has_frag_list(skb))
return skb_shinfo(skb)->frag_list;
return NULL;
}
static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev, static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct fe_tx_ring *ring) int tx_num, struct fe_tx_ring *ring)
{ {
@ -566,7 +610,7 @@ static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
struct skb_frag_struct *frag; struct skb_frag_struct *frag;
struct fe_tx_dma txd, *ptxd; struct fe_tx_dma txd, *ptxd;
struct fe_tx_buf *tx_buf; struct fe_tx_buf *tx_buf;
dma_addr_t mapped_addr; struct sk_buff *head = skb;
unsigned int nr_frags; unsigned int nr_frags;
u32 def_txd4; u32 def_txd4;
int i, j, k, frag_size, frag_map_size, offset; int i, j, k, frag_size, frag_map_size, offset;
@ -574,7 +618,6 @@ static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
tx_buf = &ring->tx_buf[ring->tx_next_idx]; tx_buf = &ring->tx_buf[ring->tx_next_idx];
memset(tx_buf, 0, sizeof(*tx_buf)); memset(tx_buf, 0, sizeof(*tx_buf));
memset(&txd, 0, sizeof(txd)); memset(&txd, 0, sizeof(txd));
nr_frags = skb_shinfo(skb)->nr_frags;
/* init tx descriptor */ /* init tx descriptor */
if (priv->soc->tx_dma) if (priv->soc->tx_dma)
@ -613,82 +656,68 @@ static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
} }
} }
mapped_addr = dma_map_single(&dev->dev, skb->data, k = 0;
skb_headlen(skb), DMA_TO_DEVICE); j = ring->tx_next_idx;
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr)))
goto err_out;
txd.txd1 = mapped_addr;
txd.txd2 = TX_DMA_PLEN0(skb_headlen(skb));
tx_buf->flags |= FE_TX_FLAGS_SINGLE0; next_frag:
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr); if (skb_headlen(skb)) {
dma_unmap_len_set(tx_buf, dma_len0, skb_headlen(skb)); if (fe_tx_dma_map_skb(&dev->dev, tx_buf, &txd, k++, skb))
goto err_dma;
}
/* TX SG offload */ /* TX SG offload */
j = ring->tx_next_idx; nr_frags = skb_shinfo(skb)->nr_frags;
k = 0;
for (i = 0; i < nr_frags; i++) { for (i = 0; i < nr_frags; i++) {
offset = 0; struct page *page;
frag = &skb_shinfo(skb)->frags[i]; frag = &skb_shinfo(skb)->frags[i];
frag_size = skb_frag_size(frag); frag_size = skb_frag_size(frag);
offset = frag->page_offset;
page = skb_frag_page(frag);
while (frag_size > 0) { while (frag_size > 0) {
frag_map_size = min(frag_size, TX_DMA_BUF_LEN); frag_map_size = min(frag_size, TX_DMA_BUF_LEN);
mapped_addr = skb_frag_dma_map(&dev->dev, frag, offset, if (!(k & 0x1)) {
frag_map_size, fe_set_txd(&txd, &ring->tx_dma[j]);
DMA_TO_DEVICE); memset(&txd, 0, sizeof(txd));
if (unlikely(dma_mapping_error(&dev->dev, mapped_addr))) txd.txd4 = def_txd4;
j = NEXT_TX_DESP_IDX(j);
tx_buf = &ring->tx_buf[j];
}
if (fe_tx_dma_map_page(&dev->dev, tx_buf, &txd, k++,
page, offset, frag_map_size))
goto err_dma; goto err_dma;
if (k & 0x1) {
j = NEXT_TX_DESP_IDX(j);
txd.txd1 = mapped_addr;
txd.txd2 = TX_DMA_PLEN0(frag_map_size);
txd.txd4 = def_txd4;
tx_buf = &ring->tx_buf[j];
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->flags |= FE_TX_FLAGS_PAGE0;
dma_unmap_addr_set(tx_buf, dma_addr0,
mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0,
frag_map_size);
} else {
txd.txd3 = mapped_addr;
txd.txd2 |= TX_DMA_PLEN1(frag_map_size);
tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
tx_buf->flags |= FE_TX_FLAGS_PAGE1;
dma_unmap_addr_set(tx_buf, dma_addr1,
mapped_addr);
dma_unmap_len_set(tx_buf, dma_len1,
frag_map_size);
if (!((i == (nr_frags - 1)) &&
(frag_map_size == frag_size))) {
fe_set_txd(&txd, &ring->tx_dma[j]);
memset(&txd, 0, sizeof(txd));
}
}
frag_size -= frag_map_size; frag_size -= frag_map_size;
offset += frag_map_size; offset += frag_map_size;
k++;
} }
} }
skb = fe_next_frag(head, skb);
if (skb) {
if (!(k & 0x1)) {
fe_set_txd(&txd, &ring->tx_dma[j]);
memset(&txd, 0, sizeof(txd));
txd.txd4 = def_txd4;
j = NEXT_TX_DESP_IDX(j);
tx_buf = &ring->tx_buf[j];
}
goto next_frag;
}
/* set last segment */ /* set last segment */
if (k & 0x1) if (k & 0x1)
txd.txd2 |= TX_DMA_LS1;
else
txd.txd2 |= TX_DMA_LS0; txd.txd2 |= TX_DMA_LS0;
else
txd.txd2 |= TX_DMA_LS1;
fe_set_txd(&txd, &ring->tx_dma[j]); fe_set_txd(&txd, &ring->tx_dma[j]);
/* store skb to cleanup */ /* store skb to cleanup */
tx_buf->skb = skb; tx_buf->skb = head;
netdev_sent_queue(dev, skb->len); netdev_sent_queue(dev, head->len);
skb_tx_timestamp(skb); skb_tx_timestamp(head);
ring->tx_next_idx = NEXT_TX_DESP_IDX(j); ring->tx_next_idx = NEXT_TX_DESP_IDX(j);
/* make sure that all changes to the dma ring are flushed before we /* make sure that all changes to the dma ring are flushed before we
@ -702,7 +731,7 @@ static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
netif_wake_queue(dev); netif_wake_queue(dev);
} }
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more) if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !head->xmit_more)
fe_reg_w32(ring->tx_next_idx, FE_REG_TX_CTX_IDX0); fe_reg_w32(ring->tx_next_idx, FE_REG_TX_CTX_IDX0);
return 0; return 0;
@ -762,10 +791,12 @@ static inline int fe_skb_padto(struct sk_buff *skb, struct fe_priv *priv)
static inline int fe_cal_txd_req(struct sk_buff *skb) static inline int fe_cal_txd_req(struct sk_buff *skb)
{ {
int i, nfrags; struct sk_buff *head = skb;
int i, nfrags = 0;
struct skb_frag_struct *frag; struct skb_frag_struct *frag;
nfrags = 1; next_frag:
nfrags++;
if (skb_is_gso(skb)) { if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i]; frag = &skb_shinfo(skb)->frags[i];
@ -775,6 +806,10 @@ static inline int fe_cal_txd_req(struct sk_buff *skb)
nfrags += skb_shinfo(skb)->nr_frags; nfrags += skb_shinfo(skb)->nr_frags;
} }
skb = fe_next_frag(head, skb);
if (skb)
goto next_frag;
return DIV_ROUND_UP(nfrags, 2); return DIV_ROUND_UP(nfrags, 2);
} }

View file

@ -435,19 +435,12 @@ struct fe_hw_stats {
#undef _FE #undef _FE
}; };
enum fe_tx_flags {
FE_TX_FLAGS_SINGLE0 = 0x01,
FE_TX_FLAGS_PAGE0 = 0x02,
FE_TX_FLAGS_PAGE1 = 0x04,
};
struct fe_tx_buf { struct fe_tx_buf {
struct sk_buff *skb; struct sk_buff *skb;
u32 flags;
DEFINE_DMA_UNMAP_ADDR(dma_addr0); DEFINE_DMA_UNMAP_ADDR(dma_addr0);
DEFINE_DMA_UNMAP_LEN(dma_len0);
DEFINE_DMA_UNMAP_ADDR(dma_addr1); DEFINE_DMA_UNMAP_ADDR(dma_addr1);
DEFINE_DMA_UNMAP_LEN(dma_len1); u16 dma_len0;
u16 dma_len1;
}; };
struct fe_tx_ring { struct fe_tx_ring {

View file

@ -143,7 +143,8 @@ static void mt7621_init_data(struct fe_soc_data *data,
netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM | netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_TSO |
NETIF_F_TSO6 | NETIF_F_IPV6_CSUM; NETIF_F_TSO6 | NETIF_F_IPV6_CSUM | NETIF_F_FRAGLIST |
NETIF_F_TSO_MANGLEID;
} }
static void mt7621_set_mac(struct fe_priv *priv, unsigned char *mac) static void mt7621_set_mac(struct fe_priv *priv, unsigned char *mac)