openwrtv4/target/linux/ramips/patches-3.10/0250-nand-7620.patch

2410 lines
61 KiB
Diff
Raw Normal View History

From a5fc495c8dc199ffa997d43331693a5b7ee07270 Mon Sep 17 00:00:00 2001
From: John Crispin <blogic@openwrt.org>
Date: Sun, 17 Nov 2013 17:41:46 +0100
Subject: [PATCH] ralink: add mt7620 nand driver
Signed-off-by: John Crispin <blogic@openwrt.org>
---
drivers/mtd/maps/Kconfig | 4 +
drivers/mtd/maps/Makefile | 2 +
drivers/mtd/maps/ralink_nand.c | 2136 ++++++++++++++++++++++++++++++++++++++++
drivers/mtd/maps/ralink_nand.h | 232 +++++
drivers/mtd/nand/Makefile | 2 +-
5 files changed, 2375 insertions(+), 1 deletion(-)
create mode 100644 drivers/mtd/maps/ralink_nand.c
create mode 100644 drivers/mtd/maps/ralink_nand.h
--- a/drivers/mtd/maps/Kconfig
+++ b/drivers/mtd/maps/Kconfig
@@ -424,4 +424,8 @@ config MTD_LATCH_ADDR
If compiled as a module, it will be called latch-addr-flash.
+config MTD_NAND_MT7620
+ tristate "Support for NAND on Mediatek MT7620"
+ depends on RALINK && SOC_MT7620
+
endmenu
--- a/drivers/mtd/maps/Makefile
+++ b/drivers/mtd/maps/Makefile
@@ -46,3 +46,5 @@ obj-$(CONFIG_MTD_VMU) += vmu-flash.o
obj-$(CONFIG_MTD_GPIO_ADDR) += gpio-addr-flash.o
obj-$(CONFIG_MTD_LATCH_ADDR) += latch-addr-flash.o
obj-$(CONFIG_MTD_LANTIQ) += lantiq-flash.o
+obj-$(CONFIG_MTD_NAND_MT7620) += ralink_nand.o
+
--- /dev/null
+++ b/drivers/mtd/maps/ralink_nand.c
@@ -0,0 +1,2136 @@
+#define DEBUG
+#include <linux/device.h>
+#undef DEBUG
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/dma-mapping.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <linux/delay.h>
+#include <linux/sched.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+
+#include "ralink_nand.h"
+#ifdef RANDOM_GEN_BAD_BLOCK
+#include <linux/random.h>
+#endif
+
+#define LARGE_MTD_BOOT_PART_SIZE (CFG_BLOCKSIZE<<2)
+#define LARGE_MTD_CONFIG_PART_SIZE (CFG_BLOCKSIZE<<2)
+#define LARGE_MTD_FACTORY_PART_SIZE (CFG_BLOCKSIZE<<1)
+
+
+#define BLOCK_ALIGNED(a) ((a) & (CFG_BLOCKSIZE - 1))
+
+#define READ_STATUS_RETRY 1000
+
+struct mtd_info *ranfc_mtd = NULL;
+
+int skipbbt = 0;
+int ranfc_debug = 1;
+static int ranfc_bbt = 1;
+#if defined (WORKAROUND_RX_BUF_OV)
+static int ranfc_verify = 1;
+#endif
+static u32 nand_addrlen;
+
+#if 0
+module_param(ranfc_debug, int, 0644);
+module_param(ranfc_bbt, int, 0644);
+module_param(ranfc_verify, int, 0644);
+#endif
+
+#if 0
+#define ra_dbg(args...) do { if (ranfc_debug) printk(args); } while(0)
+#else
+#define ra_dbg(args...)
+#endif
+
+#define CLEAR_INT_STATUS() ra_outl(NFC_INT_ST, ra_inl(NFC_INT_ST))
+#define NFC_TRANS_DONE() (ra_inl(NFC_INT_ST) & INT_ST_ND_DONE)
+
+int is_nand_page_2048 = 0;
+const unsigned int nand_size_map[2][3] = {{25, 30, 30}, {20, 27, 30}};
+
+static int nfc_wait_ready(int snooze_ms);
+
+static const char * const mtk_probe_types[] = { "cmdlinepart", "ofpart", NULL };
+
+/**
+ * reset nand chip
+ */
+static int nfc_chip_reset(void)
+{
+ int status;
+
+ //ra_dbg("%s:\n", __func__);
+
+ // reset nand flash
+ ra_outl(NFC_CMD1, 0x0);
+ ra_outl(NFC_CMD2, 0xff);
+ ra_outl(NFC_ADDR, 0x0);
+ ra_outl(NFC_CONF, 0x0411);
+
+ status = nfc_wait_ready(5); //erase wait 5us
+ if (status & NAND_STATUS_FAIL) {
+ printk("%s: fail \n", __func__);
+ }
+
+ return (int)(status & NAND_STATUS_FAIL);
+
+}
+
+
+
+/**
+ * clear NFC and flash chip.
+ */
+static int nfc_all_reset(void)
+{
+ int retry;
+
+ ra_dbg("%s: \n", __func__);
+
+ // reset controller
+ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) | 0x02); //clear data buffer
+ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) & ~0x02); //clear data buffer
+
+ CLEAR_INT_STATUS();
+
+ retry = READ_STATUS_RETRY;
+ while ((ra_inl(NFC_INT_ST) & 0x02) != 0x02 && retry--);
+ if (retry <= 0) {
+ printk("nfc_all_reset: clean buffer fail \n");
+ return -1;
+ }
+
+ retry = READ_STATUS_RETRY;
+ while ((ra_inl(NFC_STATUS) & 0x1) != 0x0 && retry--) { //fixme, controller is busy ?
+ udelay(1);
+ }
+
+ nfc_chip_reset();
+
+ return 0;
+}
+
+/** NOTICE: only called by nfc_wait_ready().
+ * @return -1, nfc can not get transction done
+ * @return 0, ok.
+ */
+static int _nfc_read_status(char *status)
+{
+ unsigned long cmd1, conf;
+ int int_st, nfc_st;
+ int retry;
+
+ cmd1 = 0x70;
+ conf = 0x000101 | (1 << 20);
+
+ //fixme, should we check nfc status?
+ CLEAR_INT_STATUS();
+
+ ra_outl(NFC_CMD1, cmd1);
+ ra_outl(NFC_CONF, conf);
+
+ /* FIXME,
+ * 1. since we have no wired ready signal, directly
+ * calling this function is not gurantee to read right status under ready state.
+ * 2. the other side, we can not determine how long to become ready, this timeout retry is nonsense.
+ * 3. SUGGESTION: call nfc_read_status() from nfc_wait_ready(),
+ * that is aware about caller (in sementics) and has snooze plused nfc ND_DONE.
+ */
+ retry = READ_STATUS_RETRY;
+ do {
+ nfc_st = ra_inl(NFC_STATUS);
+ int_st = ra_inl(NFC_INT_ST);
+
+ ndelay(10);
+ } while (!(int_st & INT_ST_RX_BUF_RDY) && retry--);
+
+ if (!(int_st & INT_ST_RX_BUF_RDY)) {
+ printk("nfc_read_status: NFC fail, int_st(%x), retry:%x. nfc:%x, reset nfc and flash. \n",
+ int_st, retry, nfc_st);
+ nfc_all_reset();
+ *status = NAND_STATUS_FAIL;
+ return -1;
+ }
+
+ *status = (char)(le32_to_cpu(ra_inl(NFC_DATA)) & 0x0ff);
+ return 0;
+}
+
+/**
+ * @return !0, chip protect.
+ * @return 0, chip not protected.
+ */
+static int nfc_check_wp(void)
+{
+ /* Check the WP bit */
+#if !defined CONFIG_NOT_SUPPORT_WP
+ return !!(ra_inl(NFC_CTRL) & 0x01);
+#else
+ char result = 0;
+ int ret;
+
+ ret = _nfc_read_status(&result);
+ //FIXME, if ret < 0
+
+ return !(result & NAND_STATUS_WP);
+#endif
+}
+
+#if !defined CONFIG_NOT_SUPPORT_RB
+/*
+ * @return !0, chip ready.
+ * @return 0, chip busy.
+ */
+static int nfc_device_ready(void)
+{
+ /* Check the ready */
+ return !!(ra_inl(NFC_STATUS) & 0x04);
+}
+#endif
+
+
+/**
+ * generic function to get data from flash.
+ * @return data length reading from flash.
+ */
+static int _ra_nand_pull_data(char *buf, int len, int use_gdma)
+{
+#ifdef RW_DATA_BY_BYTE
+ char *p = buf;
+#else
+ __u32 *p = (__u32 *)buf;
+#endif
+ int retry, int_st;
+ unsigned int ret_data;
+ int ret_size;
+
+ // receive data by use_gdma
+ if (use_gdma) {
+ //if (_ra_nand_dma_pull((unsigned long)p, len)) {
+ if (1) {
+ printk("%s: fail \n", __func__);
+ len = -1; //return error
+ }
+
+ return len;
+ }
+
+ //fixme: retry count size?
+ retry = READ_STATUS_RETRY;
+ // no gdma
+ while (len > 0) {
+ int_st = ra_inl(NFC_INT_ST);
+ if (int_st & INT_ST_RX_BUF_RDY) {
+
+ ret_data = ra_inl(NFC_DATA);
+ ra_outl(NFC_INT_ST, INT_ST_RX_BUF_RDY);
+#ifdef RW_DATA_BY_BYTE
+ ret_size = sizeof(unsigned int);
+ ret_size = min(ret_size, len);
+ len -= ret_size;
+ while (ret_size-- > 0) {
+ //nfc is little endian
+ *p++ = ret_data & 0x0ff;
+ ret_data >>= 8;
+ }
+#else
+ ret_size = min(len, 4);
+ len -= ret_size;
+ if (ret_size == 4)
+ *p++ = ret_data;
+ else {
+ __u8 *q = (__u8 *)p;
+ while (ret_size-- > 0) {
+ *q++ = ret_data & 0x0ff;
+ ret_data >>= 8;
+ }
+ p = (__u32 *)q;
+ }
+#endif
+ retry = READ_STATUS_RETRY;
+ }
+ else if (int_st & INT_ST_ND_DONE) {
+ break;
+ }
+ else {
+ udelay(1);
+ if (retry-- < 0)
+ break;
+ }
+ }
+
+#ifdef RW_DATA_BY_BYTE
+ return (int)(p - buf);
+#else
+ return ((int)p - (int)buf);
+#endif
+}
+
+/**
+ * generic function to put data into flash.
+ * @return data length writing into flash.
+ */
+static int _ra_nand_push_data(char *buf, int len, int use_gdma)
+{
+#ifdef RW_DATA_BY_BYTE
+ char *p = buf;
+#else
+ __u32 *p = (__u32 *)buf;
+#endif
+ int retry, int_st;
+ unsigned int tx_data = 0;
+ int tx_size, iter = 0;
+
+ // receive data by use_gdma
+ if (use_gdma) {
+ //if (_ra_nand_dma_push((unsigned long)p, len))
+ if (1)
+ len = 0;
+ printk("%s: fail \n", __func__);
+ return len;
+ }
+
+ // no gdma
+ retry = READ_STATUS_RETRY;
+ while (len > 0) {
+ int_st = ra_inl(NFC_INT_ST);
+ if (int_st & INT_ST_TX_BUF_RDY) {
+#ifdef RW_DATA_BY_BYTE
+ tx_size = min(len, (int)sizeof(unsigned long));
+ for (iter = 0; iter < tx_size; iter++) {
+ tx_data |= (*p++ << (8*iter));
+ }
+#else
+ tx_size = min(len, 4);
+ if (tx_size == 4)
+ tx_data = (*p++);
+ else {
+ __u8 *q = (__u8 *)p;
+ for (iter = 0; iter < tx_size; iter++)
+ tx_data |= (*q++ << (8*iter));
+ p = (__u32 *)q;
+ }
+#endif
+ ra_outl(NFC_INT_ST, INT_ST_TX_BUF_RDY);
+ ra_outl(NFC_DATA, tx_data);
+ len -= tx_size;
+ retry = READ_STATUS_RETRY;
+ }
+ else if (int_st & INT_ST_ND_DONE) {
+ break;
+ }
+ else {
+ udelay(1);
+ if (retry-- < 0) {
+ ra_dbg("%s p:%p buf:%p \n", __func__, p, buf);
+ break;
+ }
+ }
+ }
+
+
+#ifdef RW_DATA_BY_BYTE
+ return (int)(p - buf);
+#else
+ return ((int)p - (int)buf);
+#endif
+
+}
+
+static int nfc_select_chip(struct ra_nand_chip *ra, int chipnr)
+{
+#if (CONFIG_NUMCHIPS == 1)
+ if (!(chipnr < CONFIG_NUMCHIPS))
+ return -1;
+ return 0;
+#else
+ BUG();
+#endif
+}
+
+/** @return -1: chip_select fail
+ * 0 : both CE and WP==0 are OK
+ * 1 : CE OK and WP==1
+ */
+static int nfc_enable_chip(struct ra_nand_chip *ra, unsigned int offs, int read_only)
+{
+ int chipnr = offs >> ra->chip_shift;
+
+ ra_dbg("%s: offs:%x read_only:%x \n", __func__, offs, read_only);
+
+ chipnr = nfc_select_chip(ra, chipnr);
+ if (chipnr < 0) {
+ printk("%s: chip select error, offs(%x)\n", __func__, offs);
+ return -1;
+ }
+
+ if (!read_only)
+ return nfc_check_wp();
+
+ return 0;
+}
+
+/** wait nand chip becomeing ready and return queried status.
+ * @param snooze: sleep time in ms unit before polling device ready.
+ * @return status of nand chip
+ * @return NAN_STATUS_FAIL if something unexpected.
+ */
+static int nfc_wait_ready(int snooze_ms)
+{
+ int retry;
+ char status;
+
+ // wait nfc idle,
+ if (snooze_ms == 0)
+ snooze_ms = 1;
+ else
+ schedule_timeout(snooze_ms * HZ / 1000);
+
+ snooze_ms = retry = snooze_ms *1000000 / 100 ; // ndelay(100)
+
+ while (!NFC_TRANS_DONE() && retry--) {
+ if (!cond_resched())
+ ndelay(100);
+ }
+
+ if (!NFC_TRANS_DONE()) {
+ printk("nfc_wait_ready: no transaction done \n");
+ return NAND_STATUS_FAIL;
+ }
+
+#if !defined (CONFIG_NOT_SUPPORT_RB)
+ //fixme
+ while(!(status = nfc_device_ready()) && retry--) {
+ ndelay(100);
+ }
+
+ if (status == 0) {
+ printk("nfc_wait_ready: no device ready. \n");
+ return NAND_STATUS_FAIL;
+ }
+
+ _nfc_read_status(&status);
+ return status;
+#else
+
+ while(retry--) {
+ _nfc_read_status(&status);
+ if (status & NAND_STATUS_READY)
+ break;
+ ndelay(100);
+ }
+ if (retry<0)
+ printk("nfc_wait_ready 2: no device ready, status(%x). \n", status);
+
+ return status;
+#endif
+}
+
+/**
+ * return 0: erase OK
+ * return -EIO: fail
+ */
+int nfc_erase_block(struct ra_nand_chip *ra, int row_addr)
+{
+ unsigned long cmd1, cmd2, bus_addr, conf;
+ char status;
+
+ cmd1 = 0x60;
+ cmd2 = 0xd0;
+ bus_addr = row_addr;
+ conf = 0x00511 | ((CFG_ROW_ADDR_CYCLE)<<16);
+
+ // set NFC
+ ra_dbg("%s: cmd1: %lx, cmd2:%lx bus_addr: %lx, conf: %lx \n",
+ __func__, cmd1, cmd2, bus_addr, conf);
+
+ //fixme, should we check nfc status?
+ CLEAR_INT_STATUS();
+
+ ra_outl(NFC_CMD1, cmd1);
+ ra_outl(NFC_CMD2, cmd2);
+ ra_outl(NFC_ADDR, bus_addr);
+ ra_outl(NFC_CONF, conf);
+
+ status = nfc_wait_ready(3); //erase wait 3ms
+ if (status & NAND_STATUS_FAIL) {
+ printk("%s: fail \n", __func__);
+ return -EIO;
+ }
+
+ return 0;
+
+}
+
+static inline int _nfc_read_raw_data(int cmd1, int cmd2, int bus_addr, int bus_addr2, int conf, char *buf, int len, int flags)
+{
+ int ret;
+
+ CLEAR_INT_STATUS();
+ ra_outl(NFC_CMD1, cmd1);
+ ra_outl(NFC_CMD2, cmd2);
+ ra_outl(NFC_ADDR, bus_addr);
+#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
+ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
+ ra_outl(NFC_ADDR2, bus_addr2);
+#endif
+ ra_outl(NFC_CONF, conf);
+
+ ret = _ra_nand_pull_data(buf, len, 0);
+ if (ret != len) {
+ ra_dbg("%s: ret:%x (%x) \n", __func__, ret, len);
+ return NAND_STATUS_FAIL;
+ }
+
+ //FIXME, this section is not necessary
+ ret = nfc_wait_ready(0); //wait ready
+ /* to prevent the DATA FIFO 's old data from next operation */
+ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) | 0x02); //clear data buffer
+ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) & ~0x02); //clear data buffer
+
+ if (ret & NAND_STATUS_FAIL) {
+ printk("%s: fail \n", __func__);
+ return NAND_STATUS_FAIL;
+ }
+
+ return 0;
+}
+
+static inline int _nfc_write_raw_data(int cmd1, int cmd3, int bus_addr, int bus_addr2, int conf, char *buf, int len, int flags)
+{
+ int ret;
+
+ CLEAR_INT_STATUS();
+ ra_outl(NFC_CMD1, cmd1);
+ ra_outl(NFC_CMD3, cmd3);
+ ra_outl(NFC_ADDR, bus_addr);
+#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
+ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
+ ra_outl(NFC_ADDR2, bus_addr2);
+#endif
+ ra_outl(NFC_CONF, conf);
+
+ ret = _ra_nand_push_data(buf, len, 0);
+ if (ret != len) {
+ ra_dbg("%s: ret:%x (%x) \n", __func__, ret, len);
+ return NAND_STATUS_FAIL;
+ }
+
+ ret = nfc_wait_ready(1); //write wait 1ms
+ /* to prevent the DATA FIFO 's old data from next operation */
+ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) | 0x02); //clear data buffer
+ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) & ~0x02); //clear data buffer
+
+ if (ret & NAND_STATUS_FAIL) {
+ printk("%s: fail \n", __func__);
+ return NAND_STATUS_FAIL;
+ }
+
+ return 0;
+}
+
+/**
+ * @return !0: fail
+ * @return 0: OK
+ */
+int nfc_read_oob(struct ra_nand_chip *ra, int page, unsigned int offs, char *buf, int len, int flags)
+{
+ unsigned int cmd1 = 0, cmd2 = 0, conf = 0;
+ unsigned int bus_addr = 0, bus_addr2 = 0;
+ unsigned int ecc_en;
+ int use_gdma;
+ int status;
+
+ int pages_perblock = 1<<(ra->erase_shift - ra->page_shift);
+ // constrain of nfc read function
+
+#if defined (WORKAROUND_RX_BUF_OV)
+ BUG_ON (len > 60); //problem of rx-buffer overrun
+#endif
+ BUG_ON (offs >> ra->oob_shift); //page boundry
+ BUG_ON ((unsigned int)(((offs + len) >> ra->oob_shift) + page) >
+ ((page + pages_perblock) & ~(pages_perblock-1))); //block boundry
+
+ use_gdma = flags & FLAG_USE_GDMA;
+ ecc_en = flags & FLAG_ECC_EN;
+ bus_addr = (page << (CFG_COLUMN_ADDR_CYCLE*8)) | (offs & ((1<<CFG_COLUMN_ADDR_CYCLE*8) - 1));
+
+ if (is_nand_page_2048) {
+ bus_addr += CFG_PAGESIZE;
+ bus_addr2 = page >> (CFG_COLUMN_ADDR_CYCLE*8);
+ cmd1 = 0x0;
+ cmd2 = 0x30;
+ conf = 0x000511| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
+ }
+ else {
+ cmd1 = 0x50;
+ conf = 0x000141| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
+ }
+ if (ecc_en)
+ conf |= (1<<3);
+ if (use_gdma)
+ conf |= (1<<2);
+
+ ra_dbg("%s: cmd1:%x, bus_addr:%x, conf:%x, len:%x, flag:%x\n",
+ __func__, cmd1, bus_addr, conf, len, flags);
+
+ status = _nfc_read_raw_data(cmd1, cmd2, bus_addr, bus_addr2, conf, buf, len, flags);
+ if (status & NAND_STATUS_FAIL) {
+ printk("%s: fail\n", __func__);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * @return !0: fail
+ * @return 0: OK
+ */
+int nfc_write_oob(struct ra_nand_chip *ra, int page, unsigned int offs, char *buf, int len, int flags)
+{
+ unsigned int cmd1 = 0, cmd3=0, conf = 0;
+ unsigned int bus_addr = 0, bus_addr2 = 0;
+ int use_gdma;
+ int status;
+
+ int pages_perblock = 1<<(ra->erase_shift - ra->page_shift);
+ // constrain of nfc read function
+
+ BUG_ON (offs >> ra->oob_shift); //page boundry
+ BUG_ON ((unsigned int)(((offs + len) >> ra->oob_shift) + page) >
+ ((page + pages_perblock) & ~(pages_perblock-1))); //block boundry
+
+ use_gdma = flags & FLAG_USE_GDMA;
+ bus_addr = (page << (CFG_COLUMN_ADDR_CYCLE*8)) | (offs & ((1<<CFG_COLUMN_ADDR_CYCLE*8) - 1));
+
+ if (is_nand_page_2048) {
+ cmd1 = 0x80;
+ cmd3 = 0x10;
+ bus_addr += CFG_PAGESIZE;
+ bus_addr2 = page >> (CFG_COLUMN_ADDR_CYCLE*8);
+ conf = 0x001123 | ((CFG_ADDR_CYCLE)<<16) | ((len) << 20);
+ }
+ else {
+ cmd1 = 0x08050;
+ cmd3 = 0x10;
+ conf = 0x001223 | ((CFG_ADDR_CYCLE)<<16) | ((len) << 20);
+ }
+ if (use_gdma)
+ conf |= (1<<2);
+
+ // set NFC
+ ra_dbg("%s: cmd1: %x, cmd3: %x bus_addr: %x, conf: %x, len:%x\n",
+ __func__, cmd1, cmd3, bus_addr, conf, len);
+
+ status = _nfc_write_raw_data(cmd1, cmd3, bus_addr, bus_addr2, conf, buf, len, flags);
+ if (status & NAND_STATUS_FAIL) {
+ printk("%s: fail \n", __func__);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+
+int nfc_read_page(struct ra_nand_chip *ra, char *buf, int page, int flags);
+int nfc_write_page(struct ra_nand_chip *ra, char *buf, int page, int flags);
+
+
+#if !defined (WORKAROUND_RX_BUF_OV)
+static int one_bit_correction(char *ecc, char *expected, int *bytes, int *bits);
+int nfc_ecc_verify(struct ra_nand_chip *ra, char *buf, int page, int mode)
+{
+ int ret, i;
+ char *p, *e;
+ int ecc;
+
+ //ra_dbg("%s, page:%x mode:%d\n", __func__, page, mode);
+
+ if (mode == FL_WRITING) {
+ int len = CFG_PAGESIZE + CFG_PAGE_OOBSIZE;
+ int conf = 0x000141| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
+ conf |= (1<<3); //(ecc_en)
+ //conf |= (1<<2); // (use_gdma)
+
+ p = ra->readback_buffers;
+ ret = nfc_read_page(ra, ra->readback_buffers, page, FLAG_ECC_EN);
+ if (ret == 0)
+ goto ecc_check;
+
+ //FIXME, double comfirm
+ printk("%s: read back fail, try again \n",__func__);
+ ret = nfc_read_page(ra, ra->readback_buffers, page, FLAG_ECC_EN);
+ if (ret != 0) {
+ printk("\t%s: read back fail agian \n",__func__);
+ goto bad_block;
+ }
+ }
+ else if (mode == FL_READING) {
+ p = buf;
+ }
+ else
+ return -2;
+
+ecc_check:
+ p += CFG_PAGESIZE;
+ if (!is_nand_page_2048) {
+ ecc = ra_inl(NFC_ECC);
+ if (ecc == 0) //clean page.
+ return 0;
+ e = (char*)&ecc;
+ for (i=0; i<CONFIG_ECC_BYTES; i++) {
+ int eccpos = CONFIG_ECC_OFFSET + i;
+ if (*(p + eccpos) != (char)0xff)
+ break;
+ if (i == CONFIG_ECC_BYTES - 1) {
+ printk("skip ecc 0xff at page %x\n", page);
+ return 0;
+ }
+ }
+ for (i=0; i<CONFIG_ECC_BYTES; i++) {
+ int eccpos = CONFIG_ECC_OFFSET + i;
+ if (*(p + eccpos) != *(e + i)) {
+ printk("%s mode:%s, invalid ecc, page: %x read:%x %x %x, ecc:%x \n",
+ __func__, (mode == FL_READING)?"read":"write", page,
+ *(p+ CONFIG_ECC_OFFSET), *(p+ CONFIG_ECC_OFFSET+1), *(p+ CONFIG_ECC_OFFSET +2), ecc);
+ return -1;
+ }
+ }
+ }
+#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
+ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
+ else {
+ int ecc2, ecc3, ecc4, qsz;
+ char *e2, *e3, *e4;
+ int correction_flag = 0;
+ ecc = ra_inl(NFC_ECC_P1);
+ ecc2 = ra_inl(NFC_ECC_P2);
+ ecc3 = ra_inl(NFC_ECC_P3);
+ ecc4 = ra_inl(NFC_ECC_P4);
+ e = (char*)&ecc;
+ e2 = (char*)&ecc2;
+ e3 = (char*)&ecc3;
+ e4 = (char*)&ecc4;
+ qsz = CFG_PAGE_OOBSIZE / 4;
+ if (ecc == 0 && ecc2 == 0 && ecc3 == 0 && ecc4 == 0)
+ return 0;
+ for (i=0; i<CONFIG_ECC_BYTES; i++) {
+ int eccpos = CONFIG_ECC_OFFSET + i;
+ if (*(p + eccpos) != (char)0xff)
+ break;
+ else if (*(p + eccpos + qsz) != (char)0xff)
+ break;
+ else if (*(p + eccpos + qsz*2) != (char)0xff)
+ break;
+ else if (*(p + eccpos + qsz*3) != (char)0xff)
+ break;
+ if (i == CONFIG_ECC_BYTES - 1) {
+ printk("skip ecc 0xff at page %x\n", page);
+ return 0;
+ }
+ }
+ for (i=0; i<CONFIG_ECC_BYTES; i++) {
+ int eccpos = CONFIG_ECC_OFFSET + i;
+ if (*(p + eccpos) != *(e + i)) {
+ printk("%s mode:%s, invalid ecc, page: %x read:%x %x %x, ecc:%x \n",
+ __func__, (mode == FL_READING)?"read":"write", page,
+ *(p+ CONFIG_ECC_OFFSET), *(p+ CONFIG_ECC_OFFSET+1), *(p+ CONFIG_ECC_OFFSET +2), ecc);
+ correction_flag |= 0x1;
+ }
+ if (*(p + eccpos + qsz) != *(e2 + i)) {
+ printk("%s mode:%s, invalid ecc2, page: %x read:%x %x %x, ecc2:%x \n",
+ __func__, (mode == FL_READING)?"read":"write", page,
+ *(p+CONFIG_ECC_OFFSET+qsz), *(p+ CONFIG_ECC_OFFSET+1+qsz), *(p+ CONFIG_ECC_OFFSET+2+qsz), ecc2);
+ correction_flag |= 0x2;
+ }
+ if (*(p + eccpos + qsz*2) != *(e3 + i)) {
+ printk("%s mode:%s, invalid ecc3, page: %x read:%x %x %x, ecc3:%x \n",
+ __func__, (mode == FL_READING)?"read":"write", page,
+ *(p+CONFIG_ECC_OFFSET+qsz*2), *(p+ CONFIG_ECC_OFFSET+1+qsz*2), *(p+ CONFIG_ECC_OFFSET+2+qsz*2), ecc3);
+ correction_flag |= 0x4;
+ }
+ if (*(p + eccpos + qsz*3) != *(e4 + i)) {
+ printk("%s mode:%s, invalid ecc4, page: %x read:%x %x %x, ecc4:%x \n",
+ __func__, (mode == FL_READING)?"read":"write", page,
+ *(p+CONFIG_ECC_OFFSET+qsz*3), *(p+ CONFIG_ECC_OFFSET+1+qsz*3), *(p+ CONFIG_ECC_OFFSET+2+qsz*3), ecc4);
+ correction_flag |= 0x8;
+ }
+ }
+
+ if (correction_flag)
+ {
+ printk("trying to do correction!\n");
+ if (correction_flag & 0x1)
+ {
+ int bytes, bits;
+ char *pBuf = p - CFG_PAGESIZE;
+
+ if (one_bit_correction(p + CONFIG_ECC_OFFSET, e, &bytes, &bits) == 0)
+ {
+ pBuf[bytes] = pBuf[bytes] ^ (1 << bits);
+ printk("1. correct byte %d, bit %d!\n", bytes, bits);
+ }
+ else
+ {
+ printk("failed to correct!\n");
+ return -1;
+ }
+ }
+
+ if (correction_flag & 0x2)
+ {
+ int bytes, bits;
+ char *pBuf = (p - CFG_PAGESIZE) + CFG_PAGESIZE/4;
+
+ if (one_bit_correction((p + CONFIG_ECC_OFFSET + qsz), e2, &bytes, &bits) == 0)
+ {
+ pBuf[bytes] = pBuf[bytes] ^ (1 << bits);
+ printk("2. correct byte %d, bit %d!\n", bytes, bits);
+ }
+ else
+ {
+ printk("failed to correct!\n");
+ return -1;
+ }
+ }
+ if (correction_flag & 0x4)
+ {
+ int bytes, bits;
+ char *pBuf = (p - CFG_PAGESIZE) + CFG_PAGESIZE/2;
+
+ if (one_bit_correction((p + CONFIG_ECC_OFFSET + qsz * 2), e3, &bytes, &bits) == 0)
+ {
+ pBuf[bytes] = pBuf[bytes] ^ (1 << bits);
+ printk("3. correct byte %d, bit %d!\n", bytes, bits);
+ }
+ else
+ {
+ printk("failed to correct!\n");
+ return -1;
+ }
+ }
+ if (correction_flag & 0x8)
+ {
+ int bytes, bits;
+ char *pBuf = (p - CFG_PAGESIZE) + CFG_PAGESIZE*3/4;
+
+ if (one_bit_correction((p + CONFIG_ECC_OFFSET + qsz * 3), e4, &bytes, &bits) == 0)
+ {
+ pBuf[bytes] = pBuf[bytes] ^ (1 << bits);
+ printk("4. correct byte %d, bit %d!\n", bytes, bits);
+ }
+ else
+ {
+ printk("failed to correct!\n");
+ return -1;
+ }
+ }
+ }
+
+ }
+#endif
+ return 0;
+
+bad_block:
+ return -1;
+}
+
+#else
+
+void ranfc_dump(void)
+{
+ int i;
+ for (i=0; i<11; i++) {
+ if (i==6)
+ continue;
+ printk("%x: %x \n", NFC_BASE + i*4, ra_inl(NFC_BASE + i*4));
+ }
+}
+
+/**
+ * @return 0, ecc OK or corrected.
+ * @return NAND_STATUS_FAIL, ecc fail.
+ */
+
+int nfc_ecc_verify(struct ra_nand_chip *ra, char *buf, int page, int mode)
+{
+ int ret, i;
+ char *p, *e;
+ int ecc;
+
+ if (ranfc_verify == 0)
+ return 0;
+
+ ra_dbg("%s, page:%x mode:%d\n", __func__, page, mode);
+
+ if (mode == FL_WRITING) { // read back and memcmp
+ ret = nfc_read_page(ra, ra->readback_buffers, page, FLAG_NONE);
+ if (ret != 0) //double comfirm
+ ret = nfc_read_page(ra, ra->readback_buffers, page, FLAG_NONE);
+
+ if (ret != 0) {
+ printk("%s: mode:%x read back fail \n", __func__, mode);
+ return -1;
+ }
+ return memcmp(buf, ra->readback_buffers, 1<<ra->page_shift);
+ }
+
+ if (mode == FL_READING) {
+#if 0
+ if (ra->sandbox_page == 0)
+ return 0;
+
+ ret = nfc_write_page(ra, buf, ra->sandbox_page, FLAG_USE_GDMA | FLAG_ECC_EN);
+ if (ret != 0) {
+ printk("%s, fail write sandbox_page \n", __func__);
+ return -1;
+ }
+#else
+ /** @note:
+ * The following command is actually not 'write' command to drive NFC to write flash.
+ * However, it can make NFC to calculate ECC, that will be used to compare with original ones.
+ * --YT
+ */
+ unsigned int conf = 0x001223| (CFG_ADDR_CYCLE<<16) | (0x200 << 20) | (1<<3) | (1<<2);
+ _nfc_write_raw_data(0xff, 0xff, ra->sandbox_page<<ra->page_shift, conf, buf, 0x200, FLAG_USE_GDMA);
+#endif
+
+ ecc = ra_inl(NFC_ECC);
+ if (ecc == 0) //clean page.
+ return 0;
+ e = (char*)&ecc;
+ p = buf + (1<<ra->page_shift);
+ for (i=0; i<CONFIG_ECC_BYTES; i++) {
+ int eccpos = CONFIG_ECC_OFFSET + i;
+ if (*(p + eccpos) != *(e + i)) {
+ printk("%s mode:%s, invalid ecc, page: %x read:%x %x %x, write:%x \n",
+ __func__, (mode == FL_READING)?"read":"write", page,
+ *(p+ CONFIG_ECC_OFFSET), *(p+ CONFIG_ECC_OFFSET+1), *(p+ CONFIG_ECC_OFFSET +2), ecc);
+
+ for (i=0; i<528; i++)
+ printk("%-2x \n", *(buf + i));
+ return -1;
+ }
+ }
+ return 0;
+ }
+
+ return -1;
+
+}
+
+#endif
+
+
+/**
+ * @return -EIO, writing size is less than a page
+ * @return 0, OK
+ */
+int nfc_read_page(struct ra_nand_chip *ra, char *buf, int page, int flags)
+{
+ unsigned int cmd1 = 0, cmd2 = 0, conf = 0;
+ unsigned int bus_addr = 0, bus_addr2 = 0;
+ unsigned int ecc_en;
+ int use_gdma;
+ int size, offs;
+ int status = 0;
+
+ use_gdma = flags & FLAG_USE_GDMA;
+ ecc_en = flags & FLAG_ECC_EN;
+
+ page = page & (CFG_CHIPSIZE - 1); // chip boundary
+ size = CFG_PAGESIZE + CFG_PAGE_OOBSIZE; //add oobsize
+ offs = 0;
+
+ while (size > 0) {
+ int len;
+#if defined (WORKAROUND_RX_BUF_OV)
+ len = min(60, size);
+#else
+ len = size;
+#endif
+ bus_addr = (page << (CFG_COLUMN_ADDR_CYCLE*8)) | (offs & ((1<<CFG_COLUMN_ADDR_CYCLE*8)-1));
+ if (is_nand_page_2048) {
+ bus_addr2 = page >> (CFG_COLUMN_ADDR_CYCLE*8);
+ cmd1 = 0x0;
+ cmd2 = 0x30;
+ conf = 0x000511| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
+ }
+ else {
+ if (offs & ~(CFG_PAGESIZE-1))
+ cmd1 = 0x50;
+ else if (offs & ~((1<<CFG_COLUMN_ADDR_CYCLE*8)-1))
+ cmd1 = 0x01;
+ else
+ cmd1 = 0;
+
+ conf = 0x000141| ((CFG_ADDR_CYCLE)<<16) | (len << 20);
+ }
+#if !defined (WORKAROUND_RX_BUF_OV)
+ if (ecc_en)
+ conf |= (1<<3);
+#endif
+ if (use_gdma)
+ conf |= (1<<2);
+
+ status = _nfc_read_raw_data(cmd1, cmd2, bus_addr, bus_addr2, conf, buf+offs, len, flags);
+ if (status & NAND_STATUS_FAIL) {
+ printk("%s: fail \n", __func__);
+ return -EIO;
+ }
+
+ offs += len;
+ size -= len;
+ }
+
+ // verify and correct ecc
+ if ((flags & (FLAG_VERIFY | FLAG_ECC_EN)) == (FLAG_VERIFY | FLAG_ECC_EN)) {
+ status = nfc_ecc_verify(ra, buf, page, FL_READING);
+ if (status != 0) {
+ printk("%s: fail, buf:%x, page:%x, flag:%x\n",
+ __func__, (unsigned int)buf, page, flags);
+ return -EBADMSG;
+ }
+ }
+ else {
+ // fix,e not yet support
+ ra->buffers_page = -1; //cached
+ }
+
+ return 0;
+}
+
+
+/**
+ * @return -EIO, fail to write
+ * @return 0, OK
+ */
+int nfc_write_page(struct ra_nand_chip *ra, char *buf, int page, int flags)
+{
+ unsigned int cmd1 = 0, cmd3, conf = 0;
+ unsigned int bus_addr = 0, bus_addr2 = 0;
+ unsigned int ecc_en;
+ int use_gdma;
+ int size;
+ char status;
+ uint8_t *oob = buf + (1<<ra->page_shift);
+
+ use_gdma = flags & FLAG_USE_GDMA;
+ ecc_en = flags & FLAG_ECC_EN;
+
+ oob[ra->badblockpos] = 0xff; //tag as good block.
+ ra->buffers_page = -1; //cached
+
+ page = page & (CFG_CHIPSIZE-1); //chip boundary
+ size = CFG_PAGESIZE + CFG_PAGE_OOBSIZE; //add oobsize
+ bus_addr = (page << (CFG_COLUMN_ADDR_CYCLE*8)); //write_page always write from offset 0.
+
+ if (is_nand_page_2048) {
+ bus_addr2 = page >> (CFG_COLUMN_ADDR_CYCLE*8);
+ cmd1 = 0x80;
+ cmd3 = 0x10;
+ conf = 0x001123| ((CFG_ADDR_CYCLE)<<16) | (size << 20);
+ }
+ else {
+ cmd1 = 0x8000;
+ cmd3 = 0x10;
+ conf = 0x001223| ((CFG_ADDR_CYCLE)<<16) | (size << 20);
+}
+ if (ecc_en)
+ conf |= (1<<3); //enable ecc
+ if (use_gdma)
+ conf |= (1<<2);
+
+ // set NFC
+ ra_dbg("nfc_write_page: cmd1: %x, cmd3: %x bus_addr: %x, conf: %x, len:%x\n",
+ cmd1, cmd3, bus_addr, conf, size);
+
+ status = _nfc_write_raw_data(cmd1, cmd3, bus_addr, bus_addr2, conf, buf, size, flags);
+ if (status & NAND_STATUS_FAIL) {
+ printk("%s: fail \n", __func__);
+ return -EIO;
+ }
+
+
+ if (flags & FLAG_VERIFY) { // verify and correct ecc
+ status = nfc_ecc_verify(ra, buf, page, FL_WRITING);
+
+#ifdef RANDOM_GEN_BAD_BLOCK
+ if (((random32() & 0x1ff) == 0x0) && (page >= 0x100)) // randomly create bad block
+ {
+ printk("hmm... create a bad block at page %x\n", (bus_addr >> 16));
+ status = -1;
+ }
+#endif
+
+ if (status != 0) {
+ printk("%s: ecc_verify fail: ret:%x \n", __func__, status);
+ oob[ra->badblockpos] = 0x33;
+ page -= page % (CFG_BLOCKSIZE/CFG_PAGESIZE);
+ printk("create a bad block at page %x\n", page);
+ if (!is_nand_page_2048)
+ status = nfc_write_oob(ra, page, ra->badblockpos, oob+ra->badblockpos, 1, flags);
+ else
+ {
+ status = _nfc_write_raw_data(cmd1, cmd3, bus_addr, bus_addr2, conf, buf, size, flags);
+ nfc_write_oob(ra, page, 0, oob, 16, FLAG_NONE);
+ }
+ return -EBADMSG;
+ }
+ }
+
+
+ ra->buffers_page = page; //cached
+ return 0;
+}
+
+
+
+/*************************************************************
+ * nand internal process
+ *************************************************************/
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd: MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+static void nand_release_device(struct ra_nand_chip *ra)
+{
+ /* De-select the NAND device */
+ nfc_select_chip(ra, -1);
+
+ /* Release the controller and the chip */
+ ra->state = FL_READY;
+
+ mutex_unlock(ra->controller);
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @chip: the nand chip descriptor
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static int
+nand_get_device(struct ra_nand_chip *ra, int new_state)
+{
+ int ret = 0;
+
+ ret = mutex_lock_interruptible(ra->controller);
+ if (!ret)
+ ra->state = new_state;
+
+ return ret;
+
+}
+
+
+
+/*************************************************************
+ * nand internal process
+ *************************************************************/
+
+int nand_bbt_get(struct ra_nand_chip *ra, int block)
+{
+ int byte, bits;
+ bits = block * BBTTAG_BITS;
+
+ byte = bits / 8;
+ bits = bits % 8;
+
+ return (ra->bbt[byte] >> bits) & BBTTAG_BITS_MASK;
+}
+
+int nand_bbt_set(struct ra_nand_chip *ra, int block, int tag)
+{
+ int byte, bits;
+ bits = block * BBTTAG_BITS;
+
+ byte = bits / 8;
+ bits = bits % 8;
+
+ // If previous tag is bad, dont overwrite it
+ if (((ra->bbt[byte] >> bits) & BBTTAG_BITS_MASK) == BBT_TAG_BAD)
+ {
+ return BBT_TAG_BAD;
+ }
+
+ ra->bbt[byte] = (ra->bbt[byte] & ~(BBTTAG_BITS_MASK << bits)) | ((tag & BBTTAG_BITS_MASK) << bits);
+
+ return tag;
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+int nand_block_checkbad(struct ra_nand_chip *ra, loff_t offs)
+{
+ int page, block;
+ int ret = 4;
+ unsigned int tag;
+ char *str[]= {"UNK", "RES", "BAD", "GOOD"};
+
+ if (ranfc_bbt == 0)
+ return 0;
+
+ {
+ // align with chip
+
+ offs = offs & ((1<<ra->chip_shift) -1);
+
+ page = offs >> ra->page_shift;
+ block = offs >> ra->erase_shift;
+ }
+
+ tag = nand_bbt_get(ra, block);
+
+ if (tag == BBT_TAG_UNKNOWN) {
+ ret = nfc_read_oob(ra, page, ra->badblockpos, (char*)&tag, 1, FLAG_NONE);
+ if (ret == 0)
+ tag = ((le32_to_cpu(tag) & 0x0ff) == 0x0ff) ? BBT_TAG_GOOD : BBT_TAG_BAD;
+ else
+ tag = BBT_TAG_BAD;
+
+ nand_bbt_set(ra, block, tag);
+ }
+
+ if (tag != BBT_TAG_GOOD) {
+ printk("%s: offs:%x tag: %s \n", __func__, (unsigned int)offs, str[tag]);
+ return 1;
+ }
+ else
+ return 0;
+
+}
+
+
+
+/**
+ * nand_block_markbad -
+ */
+int nand_block_markbad(struct ra_nand_chip *ra, loff_t offs)
+{
+ int page, block;
+ int ret = 4;
+ unsigned int tag;
+ char *ecc;
+
+ // align with chip
+ ra_dbg("%s offs: %x \n", __func__, (int)offs);
+
+ offs = offs & ((1<<ra->chip_shift) -1);
+
+ page = offs >> ra->page_shift;
+ block = offs >> ra->erase_shift;
+
+ tag = nand_bbt_get(ra, block);
+
+ if (tag == BBT_TAG_BAD) {
+ printk("%s: mark repeatedly \n", __func__);
+ return 0;
+ }
+
+ // new tag as bad
+ tag =BBT_TAG_BAD;
+ ret = nfc_read_page(ra, ra->buffers, page, FLAG_NONE);
+ if (ret != 0) {
+ printk("%s: fail to read bad block tag \n", __func__);
+ goto tag_bbt;
+ }
+
+ ecc = &ra->buffers[(1<<ra->page_shift)+ra->badblockpos];
+ if (*ecc == (char)0x0ff) {
+ //tag into flash
+ *ecc = (char)tag;
+ ret = nfc_write_page(ra, ra->buffers, page, FLAG_USE_GDMA);
+ if (ret)
+ printk("%s: fail to write bad block tag \n", __func__);
+
+ }
+
+tag_bbt:
+ //update bbt
+ nand_bbt_set(ra, block, tag);
+
+ return 0;
+}
+
+
+#if defined (WORKAROUND_RX_BUF_OV)
+/**
+ * to find a bad block for ecc verify of read_page
+ */
+unsigned int nand_bbt_find_sandbox(struct ra_nand_chip *ra)
+{
+ loff_t offs = 0;
+ int chipsize = 1 << ra->chip_shift;
+ int blocksize = 1 << ra->erase_shift;
+
+
+ while (offs < chipsize) {
+ if (nand_block_checkbad(ra, offs)) //scan and verify the unknown tag
+ break;
+ offs += blocksize;
+ }
+
+ if (offs >= chipsize) {
+ offs = chipsize - blocksize;
+ }
+
+ nand_bbt_set(ra, (unsigned int)offs>>ra->erase_shift, BBT_TAG_RES); // tag bbt only, instead of update badblockpos of flash.
+ return (offs >> ra->page_shift);
+}
+#endif
+
+
+
+/**
+ * nand_erase_nand - [Internal] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ * @allowbbt: allow erasing the bbt area
+ *
+ * Erase one ore more blocks
+ */
+int _nand_erase_nand(struct ra_nand_chip *ra, struct erase_info *instr)
+{
+ int page, len, status, ret;
+ unsigned int addr, blocksize = 1<<ra->erase_shift;
+
+ ra_dbg("%s: start:%x, len:%x \n", __func__,
+ (unsigned int)instr->addr, (unsigned int)instr->len);
+
+//#define BLOCK_ALIGNED(a) ((a) & (blocksize - 1)) // already defined
+
+ if (BLOCK_ALIGNED(instr->addr) || BLOCK_ALIGNED(instr->len)) {
+ ra_dbg("%s: erase block not aligned, addr:%x len:%x\n", __func__, instr->addr, instr->len);
+ return -EINVAL;
+ }
+
+ instr->fail_addr = 0xffffffff;
+
+ len = instr->len;
+ addr = instr->addr;
+ instr->state = MTD_ERASING;
+
+ while (len) {
+
+ page = (int)(addr >> ra->page_shift);
+
+ /* select device and check wp */
+ if (nfc_enable_chip(ra, addr, 0)) {
+ printk("%s: nand is write protected \n", __func__);
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /* if we have a bad block, we do not erase bad blocks */
+ if (nand_block_checkbad(ra, addr)) {
+ printk(KERN_WARNING "nand_erase: attempt to erase a "
+ "bad block at 0x%08x\n", addr);
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /*
+ * Invalidate the page cache, if we erase the block which
+ * contains the current cached page
+ */
+ if (BLOCK_ALIGNED(addr) == BLOCK_ALIGNED(ra->buffers_page << ra->page_shift))
+ ra->buffers_page = -1;
+
+ status = nfc_erase_block(ra, page);
+ /* See if block erase succeeded */
+ if (status) {
+ printk("%s: failed erase, page 0x%08x\n", __func__, page);
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = (page << ra->page_shift);
+ goto erase_exit;
+ }
+
+
+ /* Increment page address and decrement length */
+ len -= blocksize;
+ addr += blocksize;
+
+ }
+ instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+ ret = ((instr->state == MTD_ERASE_DONE) ? 0 : -EIO);
+ /* Do call back function */
+ if (!ret)
+ mtd_erase_callback(instr);
+
+ if (ret) {
+ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_BAD);
+ }
+
+ /* Return more or less happy */
+ return ret;
+}
+
+static int
+nand_write_oob_buf(struct ra_nand_chip *ra, uint8_t *buf, uint8_t *oob, size_t size,
+ int mode, int ooboffs)
+{
+ size_t oobsize = 1<<ra->oob_shift;
+ struct nand_oobfree *free;
+ uint32_t woffs = ooboffs;
+ int retsize = 0;
+
+ ra_dbg("%s: size:%x, mode:%x, offs:%x \n", __func__, size, mode, ooboffs);
+
+ switch(mode) {
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_RAW:
+ if (ooboffs > oobsize)
+ return -1;
+
+ size = min(size, oobsize - ooboffs);
+ memcpy(buf + ooboffs, oob, size);
+ retsize = size;
+ break;
+
+ case MTD_OPS_AUTO_OOB:
+ if (ooboffs > ra->oob->oobavail)
+ return -1;
+
+ while (size) {
+ for(free = ra->oob->oobfree; free->length && size; free++) {
+ int wlen = free->length - woffs;
+ int bytes = 0;
+
+ /* Write request not from offset 0 ? */
+ if (wlen <= 0) {
+ woffs = -wlen;
+ continue;
+ }
+
+ bytes = min_t(size_t, size, wlen);
+ memcpy (buf + free->offset + woffs, oob, bytes);
+ woffs = 0;
+ oob += bytes;
+ size -= bytes;
+ retsize += bytes;
+ }
+ buf += oobsize;
+ }
+ break;
+
+ default:
+ BUG();
+ }
+
+ return retsize;
+}
+
+static int nand_read_oob_buf(struct ra_nand_chip *ra, uint8_t *oob, size_t size,
+ int mode, int ooboffs)
+{
+ size_t oobsize = 1<<ra->oob_shift;
+ uint8_t *buf = ra->buffers + (1<<ra->page_shift);
+ int retsize=0;
+
+ ra_dbg("%s: size:%x, mode:%x, offs:%x \n", __func__, size, mode, ooboffs);
+
+ switch(mode) {
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_RAW:
+ if (ooboffs > oobsize)
+ return -1;
+
+ size = min(size, oobsize - ooboffs);
+ memcpy(oob, buf + ooboffs, size);
+ return size;
+
+ case MTD_OPS_AUTO_OOB: {
+ struct nand_oobfree *free;
+ uint32_t woffs = ooboffs;
+
+ if (ooboffs > ra->oob->oobavail)
+ return -1;
+
+ size = min(size, ra->oob->oobavail - ooboffs);
+ for(free = ra->oob->oobfree; free->length && size; free++) {
+ int wlen = free->length - woffs;
+ int bytes = 0;
+
+ /* Write request not from offset 0 ? */
+ if (wlen <= 0) {
+ woffs = -wlen;
+ continue;
+ }
+
+ bytes = min_t(size_t, size, wlen);
+ memcpy (oob, buf + free->offset + woffs, bytes);
+ woffs = 0;
+ oob += bytes;
+ size -= bytes;
+ retsize += bytes;
+ }
+ return retsize;
+ }
+ default:
+ BUG();
+ }
+
+ return -1;
+}
+
+/**
+ * nand_do_write_ops - [Internal] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operations description structure
+ *
+ * NAND write with ECC
+ */
+static int nand_do_write_ops(struct ra_nand_chip *ra, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ int page;
+ uint32_t datalen = ops->len;
+ uint32_t ooblen = ops->ooblen;
+ uint8_t *oob = ops->oobbuf;
+ uint8_t *data = ops->datbuf;
+ int pagesize = (1<<ra->page_shift);
+ int pagemask = (pagesize -1);
+ int oobsize = 1<<ra->oob_shift;
+ loff_t addr = to;
+ //int i = 0; //for ra_dbg only
+
+ ra_dbg("%s: to:%x, ops data:%p, oob:%p datalen:%x ooblen:%x, ooboffs:%x oobmode:%x \n",
+ __func__, (unsigned int)to, data, oob, datalen, ooblen, ops->ooboffs, ops->mode);
+
+ ops->retlen = 0;
+ ops->oobretlen = 0;
+
+
+ /* Invalidate the page cache, when we write to the cached page */
+ ra->buffers_page = -1;
+
+
+ if (data ==0)
+ datalen = 0;
+
+ // oob sequential (burst) write
+ if (datalen == 0 && ooblen) {
+ int len = ((ooblen + ops->ooboffs) + (ra->oob->oobavail - 1)) / ra->oob->oobavail * oobsize;
+
+ /* select chip, and check if it is write protected */
+ if (nfc_enable_chip(ra, addr, 0))
+ return -EIO;
+
+ //FIXME, need sanity check of block boundary
+ page = (int)((to & ((1<<ra->chip_shift)-1)) >> ra->page_shift); //chip boundary
+ memset(ra->buffers, 0x0ff, pagesize);
+ //fixme, should we reserve the original content?
+ if (ops->mode == MTD_OPS_AUTO_OOB) {
+ nfc_read_oob(ra, page, 0, ra->buffers, len, FLAG_NONE);
+ }
+ //prepare buffers
+ if (ooblen != 8)
+ {
+ nand_write_oob_buf(ra, ra->buffers, oob, ooblen, ops->mode, ops->ooboffs);
+ // write out buffer to chip
+ nfc_write_oob(ra, page, 0, ra->buffers, len, FLAG_USE_GDMA);
+ }
+
+ ops->oobretlen = ooblen;
+ ooblen = 0;
+ }
+
+ // data sequential (burst) write
+ if (datalen && ooblen == 0) {
+ // ranfc can not support write_data_burst, since hw-ecc and fifo constraints..
+ }
+
+ // page write
+ while(datalen || ooblen) {
+ int len;
+ int ret;
+ int offs;
+ int ecc_en = 0;
+
+ ra_dbg("%s (%d): addr:%x, ops data:%p, oob:%p datalen:%x ooblen:%x, ooboffs:%x \n",
+ __func__, i++, (unsigned int)addr, data, oob, datalen, ooblen, ops->ooboffs);
+
+ page = (int)((addr & ((1<<ra->chip_shift)-1)) >> ra->page_shift); //chip boundary
+
+ /* select chip, and check if it is write protected */
+ if (nfc_enable_chip(ra, addr, 0))
+ return -EIO;
+
+ // oob write
+ if (ops->mode == MTD_OPS_AUTO_OOB) {
+ //fixme, this path is not yet varified
+ nfc_read_oob(ra, page, 0, ra->buffers + pagesize, oobsize, FLAG_NONE);
+ }
+ if (oob && ooblen > 0) {
+ len = nand_write_oob_buf(ra, ra->buffers + pagesize, oob, ooblen, ops->mode, ops->ooboffs);
+ if (len < 0)
+ return -EINVAL;
+
+ oob += len;
+ ops->oobretlen += len;
+ ooblen -= len;
+ }
+
+ // data write
+ offs = addr & pagemask;
+ len = min_t(size_t, datalen, pagesize - offs);
+ if (data && len > 0) {
+ memcpy(ra->buffers + offs, data, len); // we can not sure ops->buf wether is DMA-able.
+
+ data += len;
+ datalen -= len;
+ ops->retlen += len;
+
+ ecc_en = FLAG_ECC_EN;
+ }
+ ret = nfc_write_page(ra, ra->buffers, page, FLAG_USE_GDMA | FLAG_VERIFY |
+ ((ops->mode == MTD_OPS_RAW || ops->mode == MTD_OPS_PLACE_OOB) ? 0 : ecc_en ));
+ if (ret) {
+ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_BAD);
+ return ret;
+ }
+
+ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_GOOD);
+
+ addr = (page+1) << ra->page_shift;
+
+ }
+ return 0;
+}
+
+/**
+ * nand_do_read_ops - [Internal] Read data with ECC
+ *
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob ops structure
+ *
+ * Internal function. Called with chip held.
+ */
+static int nand_do_read_ops(struct ra_nand_chip *ra, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ int page;
+ uint32_t datalen = ops->len;
+ uint32_t ooblen = ops->ooblen;
+ uint8_t *oob = ops->oobbuf;
+ uint8_t *data = ops->datbuf;
+ int pagesize = (1<<ra->page_shift);
+ int pagemask = (pagesize -1);
+ loff_t addr = from;
+ //int i = 0; //for ra_dbg only
+
+ ra_dbg("%s: addr:%x, ops data:%p, oob:%p datalen:%x ooblen:%x, ooboffs:%x \n",
+ __func__, (unsigned int)addr, data, oob, datalen, ooblen, ops->ooboffs);
+
+ ops->retlen = 0;
+ ops->oobretlen = 0;
+ if (data == 0)
+ datalen = 0;
+
+
+ while(datalen || ooblen) {
+ int len;
+ int ret;
+ int offs;
+
+ ra_dbg("%s (%d): addr:%x, ops data:%p, oob:%p datalen:%x ooblen:%x, ooboffs:%x \n",
+ __func__, i++, (unsigned int)addr, data, oob, datalen, ooblen, ops->ooboffs);
+ /* select chip */
+ if (nfc_enable_chip(ra, addr, 1) < 0)
+ return -EIO;
+
+ page = (int)((addr & ((1<<ra->chip_shift)-1)) >> ra->page_shift);
+
+ ret = nfc_read_page(ra, ra->buffers, page, FLAG_VERIFY |
+ ((ops->mode == MTD_OPS_RAW || ops->mode == MTD_OPS_PLACE_OOB) ? 0: FLAG_ECC_EN ));
+ //FIXME, something strange here, some page needs 2 more tries to guarantee read success.
+ if (ret) {
+ printk("read again:\n");
+ ret = nfc_read_page(ra, ra->buffers, page, FLAG_VERIFY |
+ ((ops->mode == MTD_OPS_RAW || ops->mode == MTD_OPS_PLACE_OOB) ? 0: FLAG_ECC_EN ));
+
+ if (ret) {
+ printk("read again fail \n");
+ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_BAD);
+ if ((ret != -EUCLEAN) && (ret != -EBADMSG)) {
+ return ret;
+ }
+ else {
+ /* ecc verification fail, but data need to be returned. */
+ }
+ }
+ else {
+ printk(" read agian susccess \n");
+ }
+ }
+
+ // oob read
+ if (oob && ooblen > 0) {
+ len = nand_read_oob_buf(ra, oob, ooblen, ops->mode, ops->ooboffs);
+ if (len < 0) {
+ printk("nand_read_oob_buf: fail return %x \n", len);
+ return -EINVAL;
+ }
+
+ oob += len;
+ ops->oobretlen += len;
+ ooblen -= len;
+ }
+
+ // data read
+ offs = addr & pagemask;
+ len = min_t(size_t, datalen, pagesize - offs);
+ if (data && len > 0) {
+ memcpy(data, ra->buffers + offs, len); // we can not sure ops->buf wether is DMA-able.
+
+ data += len;
+ datalen -= len;
+ ops->retlen += len;
+ if (ret)
+ return ret;
+ }
+
+
+ nand_bbt_set(ra, addr >> ra->erase_shift, BBT_TAG_GOOD);
+ // address go further to next page, instead of increasing of length of write. This avoids some special cases wrong.
+ addr = (page+1) << ra->page_shift;
+ }
+ return 0;
+}
+
+static int
+ramtd_nand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct ra_nand_chip *ra = (struct ra_nand_chip *)mtd->priv;
+ int ret;
+
+ ra_dbg("%s: start:%x, len:%x \n", __func__,
+ (unsigned int)instr->addr, (unsigned int)instr->len);
+
+ nand_get_device(ra, FL_ERASING);
+ ret = _nand_erase_nand((struct ra_nand_chip *)mtd->priv, instr);
+ nand_release_device(ra);
+
+ return ret;
+}
+
+static int
+ramtd_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const uint8_t *buf)
+{
+ struct ra_nand_chip *ra = mtd->priv;
+ struct mtd_oob_ops ops;
+ int ret;
+
+ ra_dbg("%s: to 0x%x len=0x%x\n", __func__, to, len);
+
+ if ((to + len) > mtd->size)
+ return -EINVAL;
+
+ if (!len)
+ return 0;
+
+ nand_get_device(ra, FL_WRITING);
+
+ memset(&ops, 0, sizeof(ops));
+ ops.len = len;
+ ops.datbuf = (uint8_t *)buf;
+ ops.oobbuf = NULL;
+ ops.mode = MTD_OPS_AUTO_OOB;
+
+ ret = nand_do_write_ops(ra, to, &ops);
+
+ *retlen = ops.retlen;
+
+ nand_release_device(ra);
+
+ return ret;
+}
+
+static int
+ramtd_nand_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, uint8_t *buf)
+{
+
+ struct ra_nand_chip *ra = mtd->priv;
+ int ret;
+ struct mtd_oob_ops ops;
+
+ ra_dbg("%s: mtd:%p from:%x, len:%x, buf:%p \n", __func__, mtd, (unsigned int)from, len, buf);
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size)
+ return -EINVAL;
+ if (!len)
+ return 0;
+
+ nand_get_device(ra, FL_READING);
+
+ memset(&ops, 0, sizeof(ops));
+ ops.len = len;
+ ops.datbuf = buf;
+ ops.oobbuf = NULL;
+ ops.mode = MTD_OPS_AUTO_OOB;
+
+ ret = nand_do_read_ops(ra, from, &ops);
+
+ *retlen = ops.retlen;
+
+ nand_release_device(ra);
+
+ return ret;
+
+}
+
+static int
+ramtd_nand_readoob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct ra_nand_chip *ra = mtd->priv;
+ int ret;
+
+ ra_dbg("%s: \n", __func__);
+
+ nand_get_device(ra, FL_READING);
+
+ ret = nand_do_read_ops(ra, from, ops);
+
+ nand_release_device(ra);
+
+ return ret;
+}
+
+static int
+ramtd_nand_writeoob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct ra_nand_chip *ra = mtd->priv;
+ int ret;
+
+ nand_get_device(ra, FL_READING);
+ ret = nand_do_write_ops(ra, to, ops);
+ nand_release_device(ra);
+
+ return ret;
+}
+
+static int
+ramtd_nand_block_isbad(struct mtd_info *mtd, loff_t offs)
+{
+ if (offs > mtd->size)
+ return -EINVAL;
+
+ return nand_block_checkbad((struct ra_nand_chip *)mtd->priv, offs);
+}
+
+static int
+ramtd_nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct ra_nand_chip *ra = mtd->priv;
+ int ret;
+
+ ra_dbg("%s: \n", __func__);
+ nand_get_device(ra, FL_WRITING);
+ ret = nand_block_markbad(ra, ofs);
+ nand_release_device(ra);
+
+ return ret;
+}
+
+// 1-bit error detection
+static int one_bit_correction(char *ecc1, char *ecc2, int *bytes, int *bits)
+{
+ // check if ecc and expected are all valid
+ char *p, nibble, crumb;
+ int i, xor, iecc1 = 0, iecc2 = 0;
+
+ printk("correction : %x %x %x\n", ecc1[0], ecc1[1], ecc1[2]);
+ printk("correction : %x %x %x\n", ecc2[0], ecc2[1], ecc2[2]);
+
+ p = (char *)ecc1;
+ for (i = 0; i < CONFIG_ECC_BYTES; i++)
+ {
+ nibble = *(p+i) & 0xf;
+ if ((nibble != 0x0) && (nibble != 0xf) && (nibble != 0x3) && (nibble != 0xc) &&
+ (nibble != 0x5) && (nibble != 0xa) && (nibble != 0x6) && (nibble != 0x9))
+ return -1;
+ nibble = ((*(p+i)) >> 4) & 0xf;
+ if ((nibble != 0x0) && (nibble != 0xf) && (nibble != 0x3) && (nibble != 0xc) &&
+ (nibble != 0x5) && (nibble != 0xa) && (nibble != 0x6) && (nibble != 0x9))
+ return -1;
+ }
+
+ p = (char *)ecc2;
+ for (i = 0; i < CONFIG_ECC_BYTES; i++)
+ {
+ nibble = *(p+i) & 0xf;
+ if ((nibble != 0x0) && (nibble != 0xf) && (nibble != 0x3) && (nibble != 0xc) &&
+ (nibble != 0x5) && (nibble != 0xa) && (nibble != 0x6) && (nibble != 0x9))
+ return -1;
+ nibble = ((*(p+i)) >> 4) & 0xf;
+ if ((nibble != 0x0) && (nibble != 0xf) && (nibble != 0x3) && (nibble != 0xc) &&
+ (nibble != 0x5) && (nibble != 0xa) && (nibble != 0x6) && (nibble != 0x9))
+ return -1;
+ }
+
+ memcpy(&iecc1, ecc1, 3);
+ memcpy(&iecc2, ecc2, 3);
+
+ xor = iecc1 ^ iecc2;
+ printk("xor = %x (%x %x)\n", xor, iecc1, iecc2);
+
+ *bytes = 0;
+ for (i = 0; i < 9; i++)
+ {
+ crumb = (xor >> (2*i)) & 0x3;
+ if ((crumb == 0x0) || (crumb == 0x3))
+ return -1;
+ if (crumb == 0x2)
+ *bytes += (1 << i);
+ }
+
+ *bits = 0;
+ for (i = 0; i < 3; i++)
+ {
+ crumb = (xor >> (18 + 2*i)) & 0x3;
+ if ((crumb == 0x0) || (crumb == 0x3))
+ return -1;
+ if (crumb == 0x2)
+ *bits += (1 << i);
+ }
+
+ return 0;
+}
+
+
+
+/************************************************************
+ * the init/exit section.
+ */
+
+static struct nand_ecclayout ra_oob_layout = {
+ .eccbytes = CONFIG_ECC_BYTES,
+ .eccpos = {5, 6, 7},
+ .oobfree = {
+ {.offset = 0, .length = 4},
+ {.offset = 8, .length = 8},
+ {.offset = 0, .length = 0}
+ },
+#define RA_CHIP_OOB_AVAIL (4+8)
+ .oobavail = RA_CHIP_OOB_AVAIL,
+ // 5th byte is bad-block flag.
+};
+
+static int
+mtk_nand_probe(struct platform_device *pdev)
+{
+ struct mtd_part_parser_data ppdata;
+ struct ra_nand_chip *ra;
+ int alloc_size, bbt_size, buffers_size, reg, err;
+ unsigned char chip_mode = 12;
+
+/* if(ra_check_flash_type()!=BOOT_FROM_NAND) {
+ return 0;
+ }*/
+
+ //FIXME: config 512 or 2048-byte page according to HWCONF
+#if defined (CONFIG_RALINK_RT6855A)
+ reg = ra_inl(RALINK_SYSCTL_BASE+0x8c);
+ chip_mode = ((reg>>28) & 0x3)|(((reg>>22) & 0x3)<<2);
+ if (chip_mode == 1) {
+ printk("! nand 2048\n");
+ ra_or(NFC_CONF1, 1);
+ is_nand_page_2048 = 1;
+ nand_addrlen = 5;
+ }
+ else {
+ printk("! nand 512\n");
+ ra_and(NFC_CONF1, ~1);
+ is_nand_page_2048 = 0;
+ nand_addrlen = 4;
+ }
+#elif (defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_RT6855))
+ ra_outl(RALINK_SYSCTL_BASE+0x60, ra_inl(RALINK_SYSCTL_BASE+0x60) & ~(0x3<<18));
+ reg = ra_inl(RALINK_SYSCTL_BASE+0x10);
+ chip_mode = (reg & 0x0F);
+ if((chip_mode==1)||(chip_mode==11)) {
+ ra_or(NFC_CONF1, 1);
+ is_nand_page_2048 = 1;
+ nand_addrlen = ((chip_mode!=11) ? 4 : 5);
+ printk("!!! nand page size = 2048, addr len=%d\n", nand_addrlen);
+ }
+ else {
+ ra_and(NFC_CONF1, ~1);
+ is_nand_page_2048 = 0;
+ nand_addrlen = ((chip_mode!=10) ? 3 : 4);
+ printk("!!! nand page size = 512, addr len=%d\n", nand_addrlen);
+ }
+#else
+ is_nand_page_2048 = 0;
+ nand_addrlen = 3;
+ printk("!!! nand page size = 512, addr len=%d\n", nand_addrlen);
+#endif
+
+#if defined (CONFIG_RALINK_RT6855A) || defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_RT6855)
+ //config ECC location
+ ra_and(NFC_CONF1, 0xfff000ff);
+ ra_or(NFC_CONF1, ((CONFIG_ECC_OFFSET + 2) << 16) +
+ ((CONFIG_ECC_OFFSET + 1) << 12) +
+ (CONFIG_ECC_OFFSET << 8));
+#endif
+
+#define ALIGNE_16(a) (((unsigned long)(a)+15) & ~15)
+ buffers_size = ALIGNE_16((1<<CONFIG_PAGE_SIZE_BIT) + (1<<CONFIG_OOBSIZE_PER_PAGE_BIT)); //ra->buffers
+ bbt_size = BBTTAG_BITS * (1<<(CONFIG_CHIP_SIZE_BIT - (CONFIG_PAGE_SIZE_BIT + CONFIG_NUMPAGE_PER_BLOCK_BIT))) / 8; //ra->bbt
+ bbt_size = ALIGNE_16(bbt_size);
+
+ alloc_size = buffers_size + bbt_size;
+ alloc_size += buffers_size; //for ra->readback_buffers
+ alloc_size += sizeof(*ra);
+ alloc_size += sizeof(*ranfc_mtd);
+
+ //make sure gpio-0 is input
+ ra_outl(RALINK_PIO_BASE+0x24, ra_inl(RALINK_PIO_BASE+0x24) & ~0x01);
+
+ ra = (struct ra_nand_chip *)kzalloc(alloc_size, GFP_KERNEL | GFP_DMA);
+ if (!ra) {
+ printk("%s: mem alloc fail \n", __func__);
+ return -ENOMEM;
+ }
+ memset(ra, 0, alloc_size);
+
+ //dynamic
+ ra->buffers = (char *)((char *)ra + sizeof(*ra));
+ ra->readback_buffers = ra->buffers + buffers_size;
+ ra->bbt = ra->readback_buffers + buffers_size;
+ ranfc_mtd = (struct mtd_info *)(ra->bbt + bbt_size);
+
+ //static
+ ra->numchips = CONFIG_NUMCHIPS;
+ ra->chip_shift = CONFIG_CHIP_SIZE_BIT;
+ ra->page_shift = CONFIG_PAGE_SIZE_BIT;
+ ra->oob_shift = CONFIG_OOBSIZE_PER_PAGE_BIT;
+ ra->erase_shift = (CONFIG_PAGE_SIZE_BIT + CONFIG_NUMPAGE_PER_BLOCK_BIT);
+ ra->badblockpos = CONFIG_BAD_BLOCK_POS;
+ ra_oob_layout.eccpos[0] = CONFIG_ECC_OFFSET;
+ ra_oob_layout.eccpos[1] = CONFIG_ECC_OFFSET + 1;
+ ra_oob_layout.eccpos[2] = CONFIG_ECC_OFFSET + 2;
+ ra->oob = &ra_oob_layout;
+ ra->buffers_page = -1;
+
+#if defined (WORKAROUND_RX_BUF_OV)
+ if (ranfc_verify) {
+ ra->sandbox_page = nand_bbt_find_sandbox(ra);
+ }
+#endif
+ ra_outl(NFC_CTRL, ra_inl(NFC_CTRL) | 0x01); //set wp to high
+ nfc_all_reset();
+
+ ranfc_mtd->type = MTD_NANDFLASH;
+ ranfc_mtd->flags = MTD_CAP_NANDFLASH;
+ ranfc_mtd->size = CONFIG_NUMCHIPS * CFG_CHIPSIZE;
+ ranfc_mtd->erasesize = CFG_BLOCKSIZE;
+ ranfc_mtd->writesize = CFG_PAGESIZE;
+ ranfc_mtd->oobsize = CFG_PAGE_OOBSIZE;
+ ranfc_mtd->oobavail = RA_CHIP_OOB_AVAIL;
+ ranfc_mtd->name = "ra_nfc";
+ //ranfc_mtd->index
+ ranfc_mtd->ecclayout = &ra_oob_layout;
+ //ranfc_mtd->numberaseregions
+ //ranfc_mtd->eraseregions
+ //ranfc_mtd->bansize
+ ranfc_mtd->_erase = ramtd_nand_erase;
+ //ranfc_mtd->point
+ //ranfc_mtd->unpoint
+ ranfc_mtd->_read = ramtd_nand_read;
+ ranfc_mtd->_write = ramtd_nand_write;
+ ranfc_mtd->_read_oob = ramtd_nand_readoob;
+ ranfc_mtd->_write_oob = ramtd_nand_writeoob;
+ //ranfc_mtd->get_fact_prot_info; ranfc_mtd->read_fact_prot_reg;
+ //ranfc_mtd->get_user_prot_info; ranfc_mtd->read_user_prot_reg;
+ //ranfc_mtd->write_user_prot_reg; ranfc_mtd->lock_user_prot_reg;
+ //ranfc_mtd->writev; ranfc_mtd->sync; ranfc_mtd->lock; ranfc_mtd->unlock; ranfc_mtd->suspend; ranfc_mtd->resume;
+ ranfc_mtd->_block_isbad = ramtd_nand_block_isbad;
+ ranfc_mtd->_block_markbad = ramtd_nand_block_markbad;
+ //ranfc_mtd->reboot_notifier
+ //ranfc_mtd->ecc_stats;
+ // subpage_sht;
+
+ //ranfc_mtd->get_device; ranfc_mtd->put_device
+ ranfc_mtd->priv = ra;
+
+ ranfc_mtd->owner = THIS_MODULE;
+ ra->controller = &ra->hwcontrol;
+ mutex_init(ra->controller);
+
+ printk("%s: alloc %x, at %p , btt(%p, %x), ranfc_mtd:%p\n",
+ __func__ , alloc_size, ra, ra->bbt, bbt_size, ranfc_mtd);
+
+ ppdata.of_node = pdev->dev.of_node;
+ err = mtd_device_parse_register(ranfc_mtd, mtk_probe_types,
+ &ppdata, NULL, 0);
+
+ return err;
+}
+
+static int
+mtk_nand_remove(struct platform_device *pdev)
+{
+ struct ra_nand_chip *ra;
+
+ if (ranfc_mtd) {
+ ra = (struct ra_nand_chip *)ranfc_mtd->priv;
+
+ /* Deregister partitions */
+ //del_mtd_partitions(ranfc_mtd);
+ kfree(ra);
+ }
+ return 0;
+}
+
+static const struct of_device_id mtk_nand_match[] = {
+ { .compatible = "mtk,mt7620-nand" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, mtk_nand_match);
+
+static struct platform_driver mtk_nand_driver = {
+ .probe = mtk_nand_probe,
+ .remove = mtk_nand_remove,
+ .driver = {
+ .name = "mt7620_nand",
+ .owner = THIS_MODULE,
+ .of_match_table = mtk_nand_match,
+ },
+};
+
+module_platform_driver(mtk_nand_driver);
+
+
+MODULE_LICENSE("GPL");
--- /dev/null
+++ b/drivers/mtd/maps/ralink_nand.h
@@ -0,0 +1,232 @@
+#ifndef RT2880_NAND_H
+#define RT2880_NAND_H
+
+#include <linux/mtd/mtd.h>
+
+//#include "gdma.h"
+
+#define RALINK_SYSCTL_BASE 0xB0000000
+#define RALINK_PIO_BASE 0xB0000600
+#define RALINK_NAND_CTRL_BASE 0xB0000810
+#define CONFIG_RALINK_MT7620
+
+#define SKIP_BAD_BLOCK
+//#define RANDOM_GEN_BAD_BLOCK
+
+#define ra_inl(addr) (*(volatile unsigned int *)(addr))
+#define ra_outl(addr, value) (*(volatile unsigned int *)(addr) = (value))
+#define ra_aor(addr, a_mask, o_value) ra_outl(addr, (ra_inl(addr) & (a_mask)) | (o_value))
+#define ra_and(addr, a_mask) ra_aor(addr, a_mask, 0)
+#define ra_or(addr, o_value) ra_aor(addr, -1, o_value)
+
+
+#define CONFIG_NUMCHIPS 1
+#define CONFIG_NOT_SUPPORT_WP //rt3052 has no WP signal for chip.
+//#define CONFIG_NOT_SUPPORT_RB
+
+extern int is_nand_page_2048;
+extern const unsigned int nand_size_map[2][3];
+
+//chip
+// chip geometry: SAMSUNG small size 32MB.
+#define CONFIG_CHIP_SIZE_BIT (nand_size_map[is_nand_page_2048][nand_addrlen-3]) //! (1<<NAND_SIZE_BYTE) MB
+//#define CONFIG_CHIP_SIZE_BIT (is_nand_page_2048? 29 : 25) //! (1<<NAND_SIZE_BYTE) MB
+#define CONFIG_PAGE_SIZE_BIT (is_nand_page_2048? 11 : 9) //! (1<<PAGE_SIZE) MB
+//#define CONFIG_SUBPAGE_BIT 1 //! these bits will be compensate by command cycle
+#define CONFIG_NUMPAGE_PER_BLOCK_BIT (is_nand_page_2048? 6 : 5) //! order of number of pages a block.
+#define CONFIG_OOBSIZE_PER_PAGE_BIT (is_nand_page_2048? 6 : 4) //! byte number of oob a page.
+#define CONFIG_BAD_BLOCK_POS (is_nand_page_2048? 0 : 4) //! offset of byte to denote bad block.
+#define CONFIG_ECC_BYTES 3 //! ecc has 3 bytes
+#define CONFIG_ECC_OFFSET (is_nand_page_2048? 6 : 5) //! ecc starts from offset 5.
+
+//this section should not be modified.
+//#define CFG_COLUMN_ADDR_MASK ((1 << (CONFIG_PAGE_SIZE_BIT - CONFIG_SUBPAGE_BIT)) - 1)
+//#define CFG_COLUMN_ADDR_CYCLE (((CONFIG_PAGE_SIZE_BIT - CONFIG_SUBPAGE_BIT) + 7)/8)
+//#define CFG_ROW_ADDR_CYCLE ((CONFIG_CHIP_SIZE_BIT - CONFIG_PAGE_SIZE_BIT + 7)/8)
+//#define CFG_ADDR_CYCLE (CFG_COLUMN_ADDR_CYCLE + CFG_ROW_ADDR_CYCLE)
+
+#define CFG_COLUMN_ADDR_CYCLE (is_nand_page_2048? 2 : 1)
+#define CFG_ROW_ADDR_CYCLE (nand_addrlen - CFG_COLUMN_ADDR_CYCLE)
+#define CFG_ADDR_CYCLE (CFG_COLUMN_ADDR_CYCLE + CFG_ROW_ADDR_CYCLE)
+
+#define CFG_CHIPSIZE (1 << ((CONFIG_CHIP_SIZE_BIT>=32)? 31 : CONFIG_CHIP_SIZE_BIT))
+//#define CFG_CHIPSIZE (1 << CONFIG_CHIP_SIZE_BIT)
+#define CFG_PAGESIZE (1 << CONFIG_PAGE_SIZE_BIT)
+#define CFG_BLOCKSIZE (CFG_PAGESIZE << CONFIG_NUMPAGE_PER_BLOCK_BIT)
+#define CFG_NUMPAGE (1 << (CONFIG_CHIP_SIZE_BIT - CONFIG_PAGE_SIZE_BIT))
+#define CFG_NUMBLOCK (CFG_NUMPAGE >> CONFIG_NUMPAGE_PER_BLOCK_BIT)
+#define CFG_BLOCK_OOBSIZE (1 << (CONFIG_OOBSIZE_PER_PAGE_BIT + CONFIG_NUMPAGE_PER_BLOCK_BIT))
+#define CFG_PAGE_OOBSIZE (1 << CONFIG_OOBSIZE_PER_PAGE_BIT)
+
+#define NAND_BLOCK_ALIGN(addr) ((addr) & (CFG_BLOCKSIZE-1))
+#define NAND_PAGE_ALIGN(addr) ((addr) & (CFG_PAGESIZE-1))
+
+
+#define NFC_BASE RALINK_NAND_CTRL_BASE
+#define NFC_CTRL (NFC_BASE + 0x0)
+#define NFC_CONF (NFC_BASE + 0x4)
+#define NFC_CMD1 (NFC_BASE + 0x8)
+#define NFC_CMD2 (NFC_BASE + 0xc)
+#define NFC_CMD3 (NFC_BASE + 0x10)
+#define NFC_ADDR (NFC_BASE + 0x14)
+#define NFC_DATA (NFC_BASE + 0x18)
+#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
+ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
+#define NFC_ECC (NFC_BASE + 0x30)
+#else
+#define NFC_ECC (NFC_BASE + 0x1c)
+#endif
+#define NFC_STATUS (NFC_BASE + 0x20)
+#define NFC_INT_EN (NFC_BASE + 0x24)
+#define NFC_INT_ST (NFC_BASE + 0x28)
+#if defined (CONFIG_RALINK_RT6855) || defined (CONFIG_RALINK_RT6855A) || \
+ defined (CONFIG_RALINK_MT7620) || defined (CONFIG_RALINK_MT7621)
+#define NFC_CONF1 (NFC_BASE + 0x2c)
+#define NFC_ECC_P1 (NFC_BASE + 0x30)
+#define NFC_ECC_P2 (NFC_BASE + 0x34)
+#define NFC_ECC_P3 (NFC_BASE + 0x38)
+#define NFC_ECC_P4 (NFC_BASE + 0x3c)
+#define NFC_ECC_ERR1 (NFC_BASE + 0x40)
+#define NFC_ECC_ERR2 (NFC_BASE + 0x44)
+#define NFC_ECC_ERR3 (NFC_BASE + 0x48)
+#define NFC_ECC_ERR4 (NFC_BASE + 0x4c)
+#define NFC_ADDR2 (NFC_BASE + 0x50)
+#endif
+
+enum _int_stat {
+ INT_ST_ND_DONE = 1<<0,
+ INT_ST_TX_BUF_RDY = 1<<1,
+ INT_ST_RX_BUF_RDY = 1<<2,
+ INT_ST_ECC_ERR = 1<<3,
+ INT_ST_TX_TRAS_ERR = 1<<4,
+ INT_ST_RX_TRAS_ERR = 1<<5,
+ INT_ST_TX_KICK_ERR = 1<<6,
+ INT_ST_RX_KICK_ERR = 1<<7
+};
+
+
+//#define WORKAROUND_RX_BUF_OV 1
+
+
+/*************************************************************
+ * stolen from nand.h
+ *************************************************************/
+
+/*
+ * Standard NAND flash commands
+ */
+#define NAND_CMD_READ0 0
+#define NAND_CMD_READ1 1
+#define NAND_CMD_RNDOUT 5
+#define NAND_CMD_PAGEPROG 0x10
+#define NAND_CMD_READOOB 0x50
+#define NAND_CMD_ERASE1 0x60
+#define NAND_CMD_STATUS 0x70
+#define NAND_CMD_STATUS_MULTI 0x71
+#define NAND_CMD_SEQIN 0x80
+#define NAND_CMD_RNDIN 0x85
+#define NAND_CMD_READID 0x90
+#define NAND_CMD_ERASE2 0xd0
+#define NAND_CMD_RESET 0xff
+
+/* Extended commands for large page devices */
+#define NAND_CMD_READSTART 0x30
+#define NAND_CMD_RNDOUTSTART 0xE0
+#define NAND_CMD_CACHEDPROG 0x15
+
+/* Extended commands for AG-AND device */
+/*
+ * Note: the command for NAND_CMD_DEPLETE1 is really 0x00 but
+ * there is no way to distinguish that from NAND_CMD_READ0
+ * until the remaining sequence of commands has been completed
+ * so add a high order bit and mask it off in the command.
+ */
+#define NAND_CMD_DEPLETE1 0x100
+#define NAND_CMD_DEPLETE2 0x38
+#define NAND_CMD_STATUS_MULTI 0x71
+#define NAND_CMD_STATUS_ERROR 0x72
+/* multi-bank error status (banks 0-3) */
+#define NAND_CMD_STATUS_ERROR0 0x73
+#define NAND_CMD_STATUS_ERROR1 0x74
+#define NAND_CMD_STATUS_ERROR2 0x75
+#define NAND_CMD_STATUS_ERROR3 0x76
+#define NAND_CMD_STATUS_RESET 0x7f
+#define NAND_CMD_STATUS_CLEAR 0xff
+
+#define NAND_CMD_NONE -1
+
+/* Status bits */
+#define NAND_STATUS_FAIL 0x01
+#define NAND_STATUS_FAIL_N1 0x02
+#define NAND_STATUS_TRUE_READY 0x20
+#define NAND_STATUS_READY 0x40
+#define NAND_STATUS_WP 0x80
+
+typedef enum {
+ FL_READY,
+ FL_READING,
+ FL_WRITING,
+ FL_ERASING,
+ FL_SYNCING,
+ FL_CACHEDPRG,
+ FL_PM_SUSPENDED,
+} nand_state_t;
+
+/*************************************************************/
+
+
+
+typedef enum _ra_flags {
+ FLAG_NONE = 0,
+ FLAG_ECC_EN = (1<<0),
+ FLAG_USE_GDMA = (1<<1),
+ FLAG_VERIFY = (1<<2),
+} RA_FLAGS;
+
+
+#define BBTTAG_BITS 2
+#define BBTTAG_BITS_MASK ((1<<BBTTAG_BITS) -1)
+enum BBT_TAG {
+ BBT_TAG_UNKNOWN = 0, //2'b01
+ BBT_TAG_GOOD = 3, //2'b11
+ BBT_TAG_BAD = 2, //2'b10
+ BBT_TAG_RES = 1, //2'b01
+};
+
+struct ra_nand_chip {
+ int numchips;
+ int chip_shift;
+ int page_shift;
+ int erase_shift;
+ int oob_shift;
+ int badblockpos;
+#if !defined (__UBOOT__)
+ struct mutex hwcontrol;
+ struct mutex *controller;
+#endif
+ struct nand_ecclayout *oob;
+ int state;
+ unsigned int buffers_page;
+ char *buffers; //[CFG_PAGESIZE + CFG_PAGE_OOBSIZE];
+ char *readback_buffers;
+ unsigned char *bbt;
+#if defined (WORKAROUND_RX_BUF_OV)
+ unsigned int sandbox_page; // steal a page (block) for read ECC verification
+#endif
+
+};
+
+
+
+//fixme, gdma api
+int nand_dma_sync(void);
+void release_dma_buf(void);
+int set_gdma_ch(unsigned long dst,
+ unsigned long src, unsigned int len, int burst_size,
+ int soft_mode, int src_req_type, int dst_req_type,
+ int src_burst_mode, int dst_burst_mode);
+
+
+
+
+#endif