openwrtv4/target/linux/ar7-2.6/files/drivers/net/cpmac.c

1223 lines
29 KiB
C
Raw Normal View History

/*
* $Id$
*
* Copyright (C) 2006, 2007 OpenWrt.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/version.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <asm/ar7/ar7.h>
2007-05-24 15:59:32 +00:00
#include <gpio.h>
MODULE_AUTHOR("Eugene Konev");
MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
MODULE_LICENSE("GPL");
static int rx_ring_size = 64;
static int disable_napi = 0;
module_param(rx_ring_size, int, 64);
module_param(disable_napi, int, 0);
MODULE_PARM_DESC(rx_ring_size, "Size of rx ring (in skbs)");
MODULE_PARM_DESC(disable_napi, "Disable NAPI polling");
/* Register definitions */
struct cpmac_control_regs {
volatile u32 revision;
volatile u32 control;
volatile u32 teardown;
volatile u32 unused;
} __attribute__ ((packed));
struct cpmac_int_regs {
volatile u32 stat_raw;
volatile u32 stat_masked;
volatile u32 enable;
volatile u32 clear;
} __attribute__ ((packed));
struct cpmac_stats {
volatile u32 good;
volatile u32 bcast;
volatile u32 mcast;
volatile u32 pause;
volatile u32 crc_error;
volatile u32 align_error;
volatile u32 oversized;
volatile u32 jabber;
volatile u32 undersized;
volatile u32 fragment;
volatile u32 filtered;
volatile u32 qos_filtered;
volatile u32 octets;
} __attribute__ ((packed));
struct cpmac_regs {
struct cpmac_control_regs tx_ctrl;
struct cpmac_control_regs rx_ctrl;
volatile u32 unused1[56];
volatile u32 mbp;
/* MBP bits */
#define MBP_RXPASSCRC 0x40000000
#define MBP_RXQOS 0x20000000
#define MBP_RXNOCHAIN 0x10000000
#define MBP_RXCMF 0x01000000
#define MBP_RXSHORT 0x00800000
#define MBP_RXCEF 0x00400000
#define MBP_RXPROMISC 0x00200000
#define MBP_PROMISCCHAN(chan) (((chan) & 0x7) << 16)
#define MBP_RXBCAST 0x00002000
#define MBP_BCASTCHAN(chan) (((chan) & 0x7) << 8)
#define MBP_RXMCAST 0x00000020
#define MBP_MCASTCHAN(chan) ((chan) & 0x7)
volatile u32 unicast_enable;
volatile u32 unicast_clear;
volatile u32 max_len;
volatile u32 buffer_offset;
volatile u32 filter_flow_threshold;
volatile u32 unused2[2];
volatile u32 flow_thre[8];
volatile u32 free_buffer[8];
volatile u32 mac_control;
#define MAC_TXPTYPE 0x00000200
#define MAC_TXPACE 0x00000040
#define MAC_MII 0x00000020
#define MAC_TXFLOW 0x00000010
#define MAC_RXFLOW 0x00000008
#define MAC_MTEST 0x00000004
#define MAC_LOOPBACK 0x00000002
#define MAC_FDX 0x00000001
volatile u32 mac_status;
#define MACST_QOS 0x4
#define MACST_RXFLOW 0x2
#define MACST_TXFLOW 0x1
volatile u32 emc_control;
volatile u32 unused3;
struct cpmac_int_regs tx_int;
volatile u32 mac_int_vector;
/* Int Status bits */
#define INTST_STATUS 0x80000
#define INTST_HOST 0x40000
#define INTST_RX 0x20000
#define INTST_TX 0x10000
volatile u32 mac_eoi_vector;
volatile u32 unused4[2];
struct cpmac_int_regs rx_int;
volatile u32 mac_int_stat_raw;
volatile u32 mac_int_stat_masked;
volatile u32 mac_int_enable;
volatile u32 mac_int_clear;
volatile u32 mac_addr_low[8];
volatile u32 mac_addr_mid;
volatile u32 mac_addr_high;
volatile u32 mac_hash_low;
volatile u32 mac_hash_high;
volatile u32 boff_test;
volatile u32 pac_test;
volatile u32 rx_pause;
volatile u32 tx_pause;
volatile u32 unused5[2];
struct cpmac_stats rx_stats;
struct cpmac_stats tx_stats;
volatile u32 unused6[232];
volatile u32 tx_ptr[8];
volatile u32 rx_ptr[8];
volatile u32 tx_ack[8];
volatile u32 rx_ack[8];
} __attribute__ ((packed));
struct cpmac_mdio_regs {
volatile u32 version;
volatile u32 control;
#define MDIOC_IDLE 0x80000000
#define MDIOC_ENABLE 0x40000000
#define MDIOC_PREAMBLE 0x00100000
#define MDIOC_FAULT 0x00080000
#define MDIOC_FAULTDETECT 0x00040000
#define MDIOC_INTTEST 0x00020000
#define MDIOC_CLKDIV(div) ((div) & 0xff)
volatile u32 alive;
volatile u32 link;
struct cpmac_int_regs link_int;
struct cpmac_int_regs user_int;
u32 unused[20];
volatile u32 access;
#define MDIO_BUSY 0x80000000
#define MDIO_WRITE 0x40000000
#define MDIO_REG(reg) (((reg) & 0x1f) << 21)
#define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
#define MDIO_DATA(data) ((data) & 0xffff)
volatile u32 physel;
} __attribute__ ((packed));
/* Descriptor */
struct cpmac_desc {
u32 hw_next;
u32 hw_data;
u16 buflen;
u16 bufflags;
u16 datalen;
u16 dataflags;
/* Flags bits */
#define CPMAC_SOP 0x8000
#define CPMAC_EOP 0x4000
#define CPMAC_OWN 0x2000
#define CPMAC_EOQ 0x1000
struct sk_buff *skb;
struct cpmac_desc *next;
} __attribute__ ((packed));
struct cpmac_priv {
struct net_device_stats stats;
spinlock_t lock;
struct sk_buff *skb_pool;
int free_skbs;
struct cpmac_desc *rx_head;
int tx_head, tx_tail;
struct cpmac_desc *desc_ring;
struct cpmac_regs *regs;
struct mii_bus *mii_bus;
struct phy_device *phy;
char phy_name[BUS_ID_SIZE];
struct plat_cpmac_data *config;
int oldlink, oldspeed, oldduplex;
u32 msg_enable;
struct net_device *dev;
struct work_struct alloc_work;
};
static irqreturn_t cpmac_irq(int, void *);
static void cpmac_reset(struct net_device *dev);
static void cpmac_hw_init(struct net_device *dev);
static int cpmac_stop(struct net_device *dev);
static int cpmac_open(struct net_device *dev);
#undef CPMAC_DEBUG
#define CPMAC_LOW_THRESH 32
#define CPMAC_ALLOC_SIZE 64
#define CPMAC_SKB_SIZE 1518
#define CPMAC_TX_RING_SIZE 8
#ifdef CPMAC_DEBUG
static void cpmac_dump_regs(u32 *base, int count)
{
int i;
for (i = 0; i < (count + 3) / 4; i++) {
if (i % 4 == 0) printk("\nCPMAC[0x%04x]:", i * 4);
printk(" 0x%08x", *(base + i));
}
printk("\n");
}
static const char *cpmac_dump_buf(const uint8_t * buf, unsigned size)
{
static char buffer[3 * 25 + 1];
char *p = &buffer[0];
if (size > 20)
size = 20;
while (size-- > 0) {
p += sprintf(p, " %02x", *buf++);
}
return buffer;
}
#endif
static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int regnum)
{
struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
volatile u32 val;
while ((val = regs->access) & MDIO_BUSY);
regs->access = MDIO_BUSY | MDIO_REG(regnum & 0x1f) |
MDIO_PHY(phy_id & 0x1f);
while ((val = regs->access) & MDIO_BUSY);
return val & 0xffff;
}
static int cpmac_mdio_write(struct mii_bus *bus, int phy_id, int regnum, u16 val)
{
struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
volatile u32 tmp;
while ((tmp = regs->access) & MDIO_BUSY);
regs->access = MDIO_BUSY | MDIO_WRITE |
MDIO_REG(regnum & 0x1f) | MDIO_PHY(phy_id & 0x1f) |
val;
return 0;
}
static int cpmac_mdio_reset(struct mii_bus *bus)
{
struct cpmac_mdio_regs *regs = (struct cpmac_mdio_regs *)bus->priv;
ar7_device_reset(AR7_RESET_BIT_MDIO);
regs->control = MDIOC_ENABLE |
MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1);
return 0;
}
static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
static struct mii_bus cpmac_mii = {
.name = "cpmac-mii",
.read = cpmac_mdio_read,
.write = cpmac_mdio_write,
.reset = cpmac_mdio_reset,
.irq = mii_irqs,
};
static int cpmac_config(struct net_device *dev, struct ifmap *map)
{
if (dev->flags & IFF_UP)
return -EBUSY;
/* Don't allow changing the I/O address */
if (map->base_addr != dev->base_addr)
return -EOPNOTSUPP;
/* ignore other fields */
return 0;
}
static int cpmac_set_mac_address(struct net_device *dev, void *addr)
{
struct sockaddr *sa = addr;
if (dev->flags & IFF_UP)
return -EBUSY;
memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
return 0;
}
static void cpmac_set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *iter;
int i;
int hash, tmp;
int hashlo = 0, hashhi = 0;
struct cpmac_priv *priv = netdev_priv(dev);
if(dev->flags & IFF_PROMISC) {
priv->regs->mbp &= ~MBP_PROMISCCHAN(0); /* promisc channel 0 */
priv->regs->mbp |= MBP_RXPROMISC;
} else {
priv->regs->mbp &= ~MBP_RXPROMISC;
if(dev->flags & IFF_ALLMULTI) {
/* enable all multicast mode */
priv->regs->mac_hash_low = 0xffffffff;
priv->regs->mac_hash_high = 0xffffffff;
} else {
for(i = 0, iter = dev->mc_list; i < dev->mc_count;
i++, iter = iter->next) {
hash = 0;
tmp = iter->dmi_addr[0];
hash ^= (tmp >> 2) ^ (tmp << 4);
tmp = iter->dmi_addr[1];
hash ^= (tmp >> 4) ^ (tmp << 2);
tmp = iter->dmi_addr[2];
hash ^= (tmp >> 6) ^ tmp;
tmp = iter->dmi_addr[4];
hash ^= (tmp >> 2) ^ (tmp << 4);
tmp = iter->dmi_addr[5];
hash ^= (tmp >> 4) ^ (tmp << 2);
tmp = iter->dmi_addr[6];
hash ^= (tmp >> 6) ^ tmp;
hash &= 0x3f;
if(hash < 32) {
hashlo |= 1<<hash;
} else {
hashhi |= 1<<(hash - 32);
}
}
priv->regs->mac_hash_low = hashlo;
priv->regs->mac_hash_high = hashhi;
}
}
}
static struct sk_buff *cpmac_get_skb(struct net_device *dev)
{
struct sk_buff *skb;
struct cpmac_priv *priv = netdev_priv(dev);
skb = priv->skb_pool;
if (likely(skb)) {
priv->skb_pool = skb->next;
} else {
skb = dev_alloc_skb(CPMAC_SKB_SIZE + 2);
if (skb) {
skb->next = NULL;
skb_reserve(skb, 2);
skb->dev = priv->dev;
}
}
if (likely(priv->free_skbs))
priv->free_skbs--;
if (priv->free_skbs < CPMAC_LOW_THRESH)
schedule_work(&priv->alloc_work);
return skb;
}
static inline struct sk_buff *cpmac_rx_one(struct net_device *dev,
struct cpmac_priv *priv,
struct cpmac_desc *desc)
{
unsigned long flags;
char *data;
struct sk_buff *skb, *result = NULL;
priv->regs->rx_ack[0] = virt_to_phys(desc);
if (unlikely(!desc->datalen)) {
if (printk_ratelimit())
printk(KERN_WARNING "%s: rx: spurious interrupt\n",
dev->name);
priv->stats.rx_errors++;
return NULL;
}
spin_lock_irqsave(&priv->lock, flags);
skb = cpmac_get_skb(dev);
if (likely(skb)) {
data = (char *)phys_to_virt(desc->hw_data);
dma_cache_inv((u32)data, desc->datalen);
skb_put(desc->skb, desc->datalen);
desc->skb->protocol = eth_type_trans(desc->skb, dev);
desc->skb->ip_summed = CHECKSUM_NONE;
priv->stats.rx_packets++;
priv->stats.rx_bytes += desc->datalen;
result = desc->skb;
desc->skb = skb;
} else {
#ifdef CPMAC_DEBUG
if (printk_ratelimit())
printk("%s: low on skbs, dropping packet\n",
dev->name);
#endif
priv->stats.rx_dropped++;
}
spin_unlock_irqrestore(&priv->lock, flags);
desc->hw_data = virt_to_phys(desc->skb->data);
desc->buflen = CPMAC_SKB_SIZE;
desc->dataflags = CPMAC_OWN;
dma_cache_wback((u32)desc, 16);
return result;
}
static void cpmac_rx(struct net_device *dev)
{
struct sk_buff *skb;
struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev);
spin_lock(&priv->lock);
if (unlikely(!priv->rx_head)) {
spin_unlock(&priv->lock);
return;
}
desc = priv->rx_head;
dma_cache_inv((u32)desc, 16);
#ifdef CPMAC_DEBUG
printk(KERN_DEBUG "%s: len=%d, %s\n", __func__, pkt->datalen,
cpmac_dump_buf(data, pkt->datalen));
#endif
while ((desc->dataflags & CPMAC_OWN) == 0) {
skb = cpmac_rx_one(dev, priv, desc);
if (likely(skb)) {
netif_rx(skb);
}
desc = desc->next;
dma_cache_inv((u32)desc, 16);
}
priv->rx_head = desc;
priv->regs->rx_ptr[0] = virt_to_phys(desc);
spin_unlock(&priv->lock);
}
static int cpmac_poll(struct net_device *dev, int *budget)
{
struct sk_buff *skb;
struct cpmac_desc *desc;
int received = 0, quota = min(dev->quota, *budget);
struct cpmac_priv *priv = netdev_priv(dev);
if (unlikely(!priv->rx_head)) {
if (printk_ratelimit())
printk(KERN_WARNING "%s: rx: polling, but no queue\n",
dev->name);
netif_rx_complete(dev);
return 0;
}
desc = priv->rx_head;
dma_cache_inv((u32)desc, 16);
while ((received < quota) && ((desc->dataflags & CPMAC_OWN) == 0)) {
skb = cpmac_rx_one(dev, priv, desc);
if (likely(skb)) {
netif_receive_skb(skb);
received++;
}
desc = desc->next;
priv->rx_head = desc;
dma_cache_inv((u32)desc, 16);
}
*budget -= received;
dev->quota -= received;
#ifdef CPMAC_DEBUG
printk("%s: processed %d packets\n", dev->name, received);
#endif
if (desc->dataflags & CPMAC_OWN) {
priv->regs->rx_ptr[0] = virt_to_phys(desc);
netif_rx_complete(dev);
priv->regs->rx_int.enable = 0x1;
priv->regs->rx_int.clear = 0xfe;
return 0;
}
return 1;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
static void
cpmac_alloc_skbs(struct work_struct *work)
{
struct cpmac_priv *priv = container_of(work, struct cpmac_priv,
alloc_work);
#else
static void
cpmac_alloc_skbs(void *data)
{
struct net_device *dev = (struct net_device*)data;
struct cpmac_priv *priv = netdev_priv(dev);
#endif
unsigned long flags;
int i, num_skbs = 0;
struct sk_buff *skb, *skbs = NULL;
for (i = 0; i < CPMAC_ALLOC_SIZE; i++) {
skb = alloc_skb(CPMAC_SKB_SIZE + 2, GFP_KERNEL);
if (!skb)
break;
skb->next = skbs;
skb_reserve(skb, 2);
skb->dev = priv->dev;
num_skbs++;
skbs = skb;
}
if (skbs) {
spin_lock_irqsave(&priv->lock, flags);
for (skb = priv->skb_pool; skb && skb->next; skb = skb->next);
if (!skb) {
priv->skb_pool = skbs;
} else {
skb->next = skbs;
}
priv->free_skbs += num_skbs;
spin_unlock_irqrestore(&priv->lock, flags);
#ifdef CPMAC_DEBUG
printk("%s: allocated %d skbs\n", priv->dev->name, num_skbs);
#endif
}
}
static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long flags;
int len, chan;
struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev);
len = skb->len;
#ifdef CPMAC_DEBUG
printk(KERN_DEBUG "%s: len=%d\n", __func__, len); //cpmac_dump_buf(const uint8_t * buf, unsigned size)
#endif
if (unlikely(len < ETH_ZLEN)) {
if (unlikely(skb_padto(skb, ETH_ZLEN))) {
if (printk_ratelimit())
printk(KERN_NOTICE "%s: padding failed, dropping\n",
dev->name);
spin_lock_irqsave(&priv->lock, flags);
priv->stats.tx_dropped++;
spin_unlock_irqrestore(&priv->lock, flags);
return -ENOMEM;
}
len = ETH_ZLEN;
}
spin_lock_irqsave(&priv->lock, flags);
chan = priv->tx_tail++;
priv->tx_tail %= 8;
if (priv->tx_tail == priv->tx_head)
netif_stop_queue(dev);
desc = &priv->desc_ring[chan];
dma_cache_inv((u32)desc, 16);
if (desc->dataflags & CPMAC_OWN) {
printk(KERN_NOTICE "%s: tx dma ring full, dropping\n", dev->name);
priv->stats.tx_dropped++;
spin_unlock_irqrestore(&priv->lock, flags);
return -ENOMEM;
}
dev->trans_start = jiffies;
desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
desc->skb = skb;
desc->hw_data = virt_to_phys(skb->data);
dma_cache_wback((u32)skb->data, len);
desc->buflen = len;
desc->datalen = len;
desc->hw_next = 0;
dma_cache_wback((u32)desc, 16);
priv->regs->tx_ptr[chan] = virt_to_phys(desc);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static void cpmac_end_xmit(struct net_device *dev, int channel)
{
struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev);
spin_lock(&priv->lock);
desc = &priv->desc_ring[channel];
priv->regs->tx_ack[channel] = virt_to_phys(desc);
if (likely(desc->skb)) {
priv->stats.tx_packets++;
priv->stats.tx_bytes += desc->skb->len;
dev_kfree_skb_irq(desc->skb);
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
} else {
if (printk_ratelimit())
printk(KERN_NOTICE "%s: end_xmit: spurious interrupt\n",
dev->name);
}
spin_unlock(&priv->lock);
}
static void cpmac_reset(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
ar7_device_reset(priv->config->reset_bit);
priv->regs->rx_ctrl.control &= ~1;
priv->regs->tx_ctrl.control &= ~1;
for (i = 0; i < 8; i++) {
priv->regs->tx_ptr[i] = 0;
priv->regs->rx_ptr[i] = 0;
}
priv->regs->mac_control &= ~MAC_MII; /* disable mii */
}
static inline void cpmac_free_rx_ring(struct net_device *dev)
{
struct cpmac_desc *desc;
int i;
struct cpmac_priv *priv = netdev_priv(dev);
if (unlikely(!priv->rx_head))
return;
desc = priv->rx_head;
dma_cache_inv((u32)desc, 16);
for (i = 0; i < rx_ring_size; i++) {
desc->buflen = CPMAC_SKB_SIZE;
if ((desc->dataflags & CPMAC_OWN) == 0) {
desc->dataflags = CPMAC_OWN;
priv->stats.rx_dropped++;
}
dma_cache_wback((u32)desc, 16);
desc = desc->next;
dma_cache_inv((u32)desc, 16);
}
}
static irqreturn_t cpmac_irq(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct cpmac_priv *priv = netdev_priv(dev);
u32 status;
if (!dev)
return IRQ_NONE;
status = priv->regs->mac_int_vector;
if (status & INTST_TX) {
cpmac_end_xmit(dev, (status & 7));
}
if (status & INTST_RX) {
if (disable_napi) {
cpmac_rx(dev);
} else {
priv->regs->rx_int.enable = 0;
priv->regs->rx_int.clear = 0xff;
netif_rx_schedule(dev);
}
}
priv->regs->mac_eoi_vector = 0;
if (unlikely(status & (INTST_HOST | INTST_STATUS))) {
if (printk_ratelimit()) {
printk(KERN_ERR "%s: hw error, resetting...\n", dev->name);
}
spin_lock(&priv->lock);
phy_stop(priv->phy);
cpmac_reset(dev);
cpmac_free_rx_ring(dev);
cpmac_hw_init(dev);
spin_unlock(&priv->lock);
}
return IRQ_HANDLED;
}
static void cpmac_tx_timeout(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
struct cpmac_desc *desc;
priv->stats.tx_errors++;
desc = &priv->desc_ring[priv->tx_head++];
priv->tx_head %= 8;
printk("%s: transmit timeout\n", dev->name);
if (desc->skb)
dev_kfree_skb(desc->skb);
netif_wake_queue(dev);
}
static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (!(netif_running(dev)))
return -EINVAL;
if (!priv->phy)
return -EINVAL;
if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
(cmd == SIOCSMIIREG))
return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
return -EINVAL;
}
static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (priv->phy)
return phy_ethtool_gset(priv->phy, cmd);
return -EINVAL;
}
static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (priv->phy)
return phy_ethtool_sset(priv->phy, cmd);
return -EINVAL;
}
static void cpmac_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, "cpmac");
strcpy(info->version, "0.0.3");
info->fw_version[0] = '\0';
sprintf(info->bus_info, "%s", "cpmac");
info->regdump_len = 0;
}
static const struct ethtool_ops cpmac_ethtool_ops = {
.get_settings = cpmac_get_settings,
.set_settings = cpmac_set_settings,
.get_drvinfo = cpmac_get_drvinfo,
.get_link = ethtool_op_get_link,
};
static struct net_device_stats *cpmac_stats(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (netif_device_present(dev))
return &priv->stats;
return NULL;
}
static int cpmac_change_mtu(struct net_device *dev, int mtu)
{
unsigned long flags;
struct cpmac_priv *priv = netdev_priv(dev);
spinlock_t *lock = &priv->lock;
if ((mtu < 68) || (mtu > 1500))
return -EINVAL;
spin_lock_irqsave(lock, flags);
dev->mtu = mtu;
spin_unlock_irqrestore(lock, flags);
return 0;
}
static void cpmac_adjust_link(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
unsigned long flags;
int new_state = 0;
spin_lock_irqsave(&priv->lock, flags);
if (priv->phy->link) {
if (priv->phy->duplex != priv->oldduplex) {
new_state = 1;
priv->oldduplex = priv->phy->duplex;
}
if (priv->phy->speed != priv->oldspeed) {
new_state = 1;
priv->oldspeed = priv->phy->speed;
}
if (!priv->oldlink) {
new_state = 1;
priv->oldlink = 1;
netif_schedule(dev);
}
} else if (priv->oldlink) {
new_state = 1;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (new_state)
phy_print_status(priv->phy);
spin_unlock_irqrestore(&priv->lock, flags);
}
static void cpmac_hw_init(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
for (i = 0; i < 8; i++)
priv->regs->tx_ptr[i] = 0;
priv->regs->rx_ptr[0] = virt_to_phys(priv->rx_head);
priv->regs->mbp = MBP_RXSHORT | MBP_RXBCAST | MBP_RXMCAST;
priv->regs->unicast_enable = 0x1;
priv->regs->unicast_clear = 0xfe;
priv->regs->buffer_offset = 0;
for (i = 0; i < 8; i++)
priv->regs->mac_addr_low[i] = dev->dev_addr[5];
priv->regs->mac_addr_mid = dev->dev_addr[4];
priv->regs->mac_addr_high = dev->dev_addr[0] | (dev->dev_addr[1] << 8)
| (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
priv->regs->max_len = CPMAC_SKB_SIZE;
priv->regs->rx_int.enable = 0x1;
priv->regs->rx_int.clear = 0xfe;
priv->regs->tx_int.enable = 0xff;
priv->regs->tx_int.clear = 0;
priv->regs->mac_int_enable = 3;
priv->regs->mac_int_clear = 0xfc;
priv->regs->rx_ctrl.control |= 1;
priv->regs->tx_ctrl.control |= 1;
priv->regs->mac_control |= MAC_MII | MAC_FDX;
priv->phy->state = PHY_CHANGELINK;
phy_start(priv->phy);
}
static int cpmac_open(struct net_device *dev)
{
int i, size, res;
struct cpmac_priv *priv = netdev_priv(dev);
struct cpmac_desc *desc;
struct sk_buff *skb;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link,
0, PHY_INTERFACE_MODE_MII);
#else
priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0);
#endif
if (IS_ERR(priv->phy)) {
printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
return PTR_ERR(priv->phy);
}
if (!request_mem_region(dev->mem_start, dev->mem_end -
dev->mem_start, dev->name)) {
printk("%s: failed to request registers\n",
dev->name);
res = -ENXIO;
goto fail_reserve;
}
priv->regs = ioremap_nocache(dev->mem_start, dev->mem_end -
dev->mem_start);
if (!priv->regs) {
printk("%s: failed to remap registers\n", dev->name);
res = -ENXIO;
goto fail_remap;
}
priv->rx_head = NULL;
size = sizeof(struct cpmac_desc) * (rx_ring_size +
CPMAC_TX_RING_SIZE);
priv->desc_ring = (struct cpmac_desc *)kmalloc(size, GFP_KERNEL);
if (!priv->desc_ring) {
res = -ENOMEM;
goto fail_alloc;
}
memset((char *)priv->desc_ring, 0, size);
priv->skb_pool = NULL;
priv->free_skbs = 0;
priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 20)
INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs);
#else
INIT_WORK(&priv->alloc_work, cpmac_alloc_skbs, dev);
#endif
schedule_work(&priv->alloc_work);
flush_scheduled_work();
for (i = 0; i < rx_ring_size; i++) {
desc = &priv->rx_head[i];
skb = cpmac_get_skb(dev);
if (!skb) {
res = -ENOMEM;
goto fail_desc;
}
desc->skb = skb;
desc->hw_data = virt_to_phys(skb->data);
desc->buflen = CPMAC_SKB_SIZE;
desc->dataflags = CPMAC_OWN;
desc->next = &priv->rx_head[(i + 1) % rx_ring_size];
desc->hw_next = virt_to_phys(desc->next);
dma_cache_wback((u32)desc, 16);
}
if((res = request_irq(dev->irq, cpmac_irq, SA_INTERRUPT,
dev->name, dev))) {
printk("%s: failed to obtain irq\n", dev->name);
goto fail_irq;
}
cpmac_reset(dev);
cpmac_hw_init(dev);
netif_start_queue(dev);
return 0;
fail_irq:
fail_desc:
for (i = 0; i < rx_ring_size; i++)
if (priv->rx_head[i].skb)
kfree_skb(priv->rx_head[i].skb);
fail_alloc:
kfree(priv->desc_ring);
for (skb = priv->skb_pool; skb; skb = priv->skb_pool) {
priv->skb_pool = skb->next;
kfree_skb(skb);
}
iounmap(priv->regs);
fail_remap:
release_mem_region(dev->mem_start, dev->mem_end -
dev->mem_start);
fail_reserve:
phy_disconnect(priv->phy);
return res;
}
static int cpmac_stop(struct net_device *dev)
{
int i;
struct sk_buff *skb;
struct cpmac_priv *priv = netdev_priv(dev);
netif_stop_queue(dev);
phy_stop(priv->phy);
phy_disconnect(priv->phy);
priv->phy = NULL;
cpmac_reset(dev);
for (i = 0; i < 8; i++) {
priv->regs->rx_ptr[i] = 0;
priv->regs->tx_ptr[i] = 0;
priv->regs->mbp = 0;
}
free_irq(dev->irq, dev);
release_mem_region(dev->mem_start, dev->mem_end -
dev->mem_start);
cancel_delayed_work(&priv->alloc_work);
flush_scheduled_work();
priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
for (i = 0; i < rx_ring_size; i++)
if (priv->rx_head[i].skb)
kfree_skb(priv->rx_head[i].skb);
kfree(priv->desc_ring);
for (skb = priv->skb_pool; skb; skb = priv->skb_pool) {
priv->skb_pool = skb->next;
kfree_skb(skb);
}
return 0;
}
static int external_switch = 0;
static int __devinit cpmac_probe(struct platform_device *pdev)
{
int i, rc, phy_id;
struct resource *res;
struct cpmac_priv *priv;
struct net_device *dev;
struct plat_cpmac_data *pdata;
if (strcmp(pdev->name, "cpmac") != 0)
return -ENODEV;
pdata = pdev->dev.platform_data;
for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
if (!(pdata->phy_mask & (1 << phy_id)))
continue;
if (!cpmac_mii.phy_map[phy_id])
continue;
break;
}
if (phy_id == PHY_MAX_ADDR) {
if (external_switch) {
phy_id = 0;
} else {
printk("cpmac: no PHY present\n");
return -ENODEV;
}
}
dev = alloc_etherdev(sizeof(struct cpmac_priv));
if (!dev) {
printk(KERN_ERR "cpmac: Unable to allocate net_device structure!\n");
return -ENOMEM;
}
SET_MODULE_OWNER(dev);
platform_set_drvdata(pdev, dev);
priv = netdev_priv(dev);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
if (!res) {
rc = -ENODEV;
goto fail;
}
dev->mem_start = res->start;
dev->mem_end = res->end;
dev->irq = platform_get_irq_byname(pdev, "irq");
dev->mtu = 1500;
dev->open = cpmac_open;
dev->stop = cpmac_stop;
dev->set_config = cpmac_config;
dev->hard_start_xmit = cpmac_start_xmit;
dev->do_ioctl = cpmac_ioctl;
dev->get_stats = cpmac_stats;
dev->change_mtu = cpmac_change_mtu;
dev->set_mac_address = cpmac_set_mac_address;
dev->set_multicast_list = cpmac_set_multicast_list;
dev->tx_timeout = cpmac_tx_timeout;
dev->ethtool_ops = &cpmac_ethtool_ops;
if (!disable_napi) {
dev->poll = cpmac_poll;
dev->weight = min(rx_ring_size, 64);
}
memset(priv, 0, sizeof(struct cpmac_priv));
spin_lock_init(&priv->lock);
priv->msg_enable = netif_msg_init(NETIF_MSG_WOL, 0x3fff);
priv->config = pdata;
priv->dev = dev;
memcpy(dev->dev_addr, priv->config->dev_addr, sizeof(dev->dev_addr));
if (phy_id == 31) {
snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT,
cpmac_mii.id, phy_id);
} else {
snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1);
}
if ((rc = register_netdev(dev))) {
printk("cpmac: error %i registering device %s\n",
rc, dev->name);
goto fail;
}
printk("cpmac: device %s (regs: %p, irq: %d, phy: %s, mac: ",
dev->name, (u32 *)dev->mem_start, dev->irq,
priv->phy_name);
for (i = 0; i < 6; i++) {
printk("%02x", dev->dev_addr[i]);
if (i < 5) printk(":");
else printk(")\n");
}
return 0;
fail:
free_netdev(dev);
return rc;
}
static int __devexit cpmac_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
unregister_netdev(dev);
free_netdev(dev);
return 0;
}
static struct platform_driver cpmac_driver = {
.driver.name = "cpmac",
.probe = cpmac_probe,
.remove = cpmac_remove,
};
int __devinit cpmac_init(void)
{
volatile u32 mask;
int i, res;
cpmac_mii.priv = (struct cpmac_mdio_regs *)
ioremap_nocache(AR7_REGS_MDIO, sizeof(struct cpmac_mdio_regs));
if (!cpmac_mii.priv) {
printk("Can't ioremap mdio registers\n");
return -ENXIO;
}
#warning FIXME: unhardcode gpio&reset bits
ar7_gpio_disable(26);
ar7_gpio_disable(27);
ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
ar7_device_reset(AR7_RESET_BIT_EPHY);
cpmac_mii.reset(&cpmac_mii);
for (i = 0; i < 300000; i++) {
mask = ((struct cpmac_mdio_regs *)cpmac_mii.priv)->alive;
if (mask)
break;
}
mask &= 0x7fffffff;
if (mask & (mask - 1)) {
external_switch = 1;
mask = 0;
}
cpmac_mii.phy_mask = ~(mask | 0x80000000);
res = mdiobus_register(&cpmac_mii);
if (res)
goto fail_mii;
res = platform_driver_register(&cpmac_driver);
if (res)
goto fail_cpmac;
return 0;
fail_cpmac:
mdiobus_unregister(&cpmac_mii);
fail_mii:
iounmap(cpmac_mii.priv);
return res;
}
void __devexit cpmac_exit(void)
{
platform_driver_unregister(&cpmac_driver);
mdiobus_unregister(&cpmac_mii);
}
module_init(cpmac_init);
module_exit(cpmac_exit);