openwrtv3/package/rt2x00/src/rt2x00dev.c

1030 lines
23 KiB
C

/*
Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 generic device routines.
Supported chipsets: RT2460, RT2560, RT2570,
rt2561, rt2561s, rt2661, rt2571W & rt2671.
*/
/*
* Set enviroment defines for rt2x00.h
*/
#define DRV_NAME "rt2x00lib"
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
#include "rt2x00dev.h"
/*
* Radio control handlers.
*/
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int status;
/*
* Don't enable the radio twice.
* or if the hardware button has been disabled.
*/
if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
(test_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags) &&
!test_bit(DEVICE_ENABLED_RADIO_HW, &rt2x00dev->flags)))
return 0;
status = rt2x00dev->ops->lib->set_device_state(
rt2x00dev, STATE_RADIO_ON);
if (status)
return status;
__set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
rt2x00lib_toggle_rx(rt2x00dev, 1);
ieee80211_start_queues(rt2x00dev->hw);
if (is_interface_present(&rt2x00dev->interface))
rt2x00_start_link_tune(rt2x00dev);
return 0;
}
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
rt2x00_stop_link_tune(rt2x00dev);
ieee80211_stop_queues(rt2x00dev->hw);
rt2x00lib_toggle_rx(rt2x00dev, 0);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
}
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, int enable)
{
/*
* When we are disabling the rx, we should also stop the link tuner.
*/
if (!enable)
rt2x00_stop_link_tune(rt2x00dev);
rt2x00dev->ops->lib->set_device_state(rt2x00dev,
enable ? STATE_RADIO_RX_ON : STATE_RADIO_RX_OFF);
/*
* When we are enabling the rx, we should also start the link tuner.
*/
if (enable && is_interface_present(&rt2x00dev->interface))
rt2x00_start_link_tune(rt2x00dev);
}
static void rt2x00lib_link_tuner(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, link.work.work);
/*
* Update promisc mode (this function will first check
* if updating is really required).
*/
rt2x00lib_config_promisc(rt2x00dev, rt2x00dev->interface.promisc);
/*
* Cancel all link tuning if the eeprom has indicated
* it is not required.
*/
if (test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
return;
rt2x00dev->ops->lib->link_tuner(rt2x00dev);
/*
* Increase tuner counter, and reschedule the next link tuner run.
*/
rt2x00dev->link.count++;
queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
LINK_TUNE_INTERVAL);
}
/*
* Config handlers
*/
void rt2x00lib_config_type(struct rt2x00_dev *rt2x00dev, const int type)
{
if (!(is_interface_present(&rt2x00dev->interface) ^
test_bit(INTERFACE_ENABLED, &rt2x00dev->flags)) &&
!(is_monitor_present(&rt2x00dev->interface) ^
test_bit(INTERFACE_ENABLED_MONITOR, &rt2x00dev->flags)))
return;
rt2x00dev->ops->lib->config_type(rt2x00dev, type);
if (type != IEEE80211_IF_TYPE_MNTR) {
if (is_interface_present(&rt2x00dev->interface))
__set_bit(INTERFACE_ENABLED, &rt2x00dev->flags);
else
__clear_bit(INTERFACE_ENABLED, &rt2x00dev->flags);
} else {
if (is_monitor_present(&rt2x00dev->interface))
__set_bit(INTERFACE_ENABLED_MONITOR,
&rt2x00dev->flags);
else
__clear_bit(INTERFACE_ENABLED_MONITOR,
&rt2x00dev->flags);
}
}
void rt2x00lib_config_phymode(struct rt2x00_dev *rt2x00dev, const int phymode)
{
if (rt2x00dev->rx_status.phymode == phymode)
return;
rt2x00dev->ops->lib->config_phymode(rt2x00dev, phymode);
rt2x00dev->rx_status.phymode = phymode;
}
void rt2x00lib_config_channel(struct rt2x00_dev *rt2x00dev, const int value,
const int channel, const int freq, const int txpower)
{
if (channel == rt2x00dev->rx_status.channel)
return;
rt2x00dev->ops->lib->config_channel(rt2x00dev, value, channel, txpower);
INFO(rt2x00dev, "Switching channel. "
"RF1: 0x%08x, RF2: 0x%08x, RF3: 0x%08x, RF3: 0x%08x.\n",
rt2x00dev->rf1, rt2x00dev->rf2,
rt2x00dev->rf3, rt2x00dev->rf4);
rt2x00dev->rx_status.freq = freq;
rt2x00dev->rx_status.channel = channel;
}
void rt2x00lib_config_promisc(struct rt2x00_dev *rt2x00dev, const int promisc)
{
/*
* Monitor mode implies promisc mode enabled.
* In all other instances, check if we need to toggle promisc mode.
*/
if (is_monitor_present(&rt2x00dev->interface) &&
!test_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags)) {
rt2x00dev->ops->lib->config_promisc(rt2x00dev, 1);
__set_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags);
}
if (test_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags) != promisc) {
rt2x00dev->ops->lib->config_promisc(rt2x00dev, promisc);
__change_bit(INTERFACE_ENABLED_PROMISC, &rt2x00dev->flags);
}
}
void rt2x00lib_config_txpower(struct rt2x00_dev *rt2x00dev, const int txpower)
{
if (txpower == rt2x00dev->tx_power)
return;
rt2x00dev->ops->lib->config_txpower(rt2x00dev, txpower);
rt2x00dev->tx_power = txpower;
}
void rt2x00lib_config_antenna(struct rt2x00_dev *rt2x00dev,
const int antenna_tx, const int antenna_rx)
{
if (rt2x00dev->rx_status.antenna == antenna_rx)
return;
rt2x00dev->ops->lib->config_antenna(rt2x00dev, antenna_tx, antenna_rx);
rt2x00dev->rx_status.antenna = antenna_rx;
}
/*
* Driver initialization handlers.
*/
static void rt2x00lib_channel(struct ieee80211_channel *entry,
const int channel, const int tx_power, const int value)
{
entry->chan = channel;
if (channel <= 14)
entry->freq = 2407 + (5 * channel);
else
entry->freq = 5000 + (5 * channel);
entry->val = value;
entry->flag =
IEEE80211_CHAN_W_IBSS |
IEEE80211_CHAN_W_ACTIVE_SCAN |
IEEE80211_CHAN_W_SCAN;
entry->power_level = tx_power;
entry->antenna_max = 0xff;
}
static void rt2x00lib_rate(struct ieee80211_rate *entry,
const int rate,const int mask, const int plcp, const int flags)
{
entry->rate = rate;
entry->val =
DEVICE_SET_RATE_FIELD(rate, RATE) |
DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
DEVICE_SET_RATE_FIELD(plcp, PLCP);
entry->flags = flags;
entry->val2 = entry->val;
if (entry->flags & IEEE80211_RATE_PREAMBLE2)
entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
entry->min_rssi_ack = 0;
entry->min_rssi_ack_delta = 0;
}
static int rt2x00lib_init_hw_modes(struct rt2x00_dev *rt2x00dev,
struct hw_mode_spec *spec)
{
struct ieee80211_hw *hw = rt2x00dev->hw;
struct ieee80211_hw_mode *hwmodes;
struct ieee80211_channel *channels;
struct ieee80211_rate *rates;
unsigned int i;
unsigned char tx_power;
hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
if (!hwmodes)
goto exit;
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
if (!channels)
goto exit_free_modes;
rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
if (!rates)
goto exit_free_channels;
/*
* Initialize Rate list.
*/
rt2x00lib_rate(&rates[0], 10, 0x001, 0x00, IEEE80211_RATE_CCK);
rt2x00lib_rate(&rates[1], 20, 0x003, 0x01, IEEE80211_RATE_CCK_2);
rt2x00lib_rate(&rates[2], 55, 0x007, 0x02, IEEE80211_RATE_CCK_2);
rt2x00lib_rate(&rates[3], 110, 0x00f, 0x03, IEEE80211_RATE_CCK_2);
if (spec->num_rates > 4) {
rt2x00lib_rate(&rates[4], 60, 0x01f, 0x0b, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[5], 90, 0x03f, 0x0f, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[6], 120, 0x07f, 0x0a, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[7], 180, 0x0ff, 0x0e, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[8], 240, 0x1ff, 0x09, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[9], 360, 0x3ff, 0x0d, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[10], 480, 0x7ff, 0x08, IEEE80211_RATE_OFDM);
rt2x00lib_rate(&rates[11], 540, 0xfff, 0x0c, IEEE80211_RATE_OFDM);
}
/*
* Initialize Channel list.
*/
for (i = 0; i < 14; i++)
rt2x00lib_channel(&channels[i], i + 1,
spec->tx_power_bg[i], spec->chan_val_bg[i]);
if (spec->num_channels > 14) {
for (i = 14; i < spec->num_channels; i++) {
if (i < 22)
channels[i].chan = 36;
else if (i < 33)
channels[i].chan = 100;
else
channels[i].chan = 149;
channels[i].chan += ((i - 14) * 4);
if (spec->tx_power_a)
tx_power = spec->tx_power_a[i];
else
tx_power = spec->tx_power_default;
rt2x00lib_channel(&channels[i],
channels[i].chan, tx_power,
spec->chan_val_a[i]);
}
}
/*
* Intitialize 802.11b
* Rates: CCK.
* Channels: OFDM.
*/
if (spec->num_modes > HWMODE_B) {
hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
hwmodes[HWMODE_B].num_channels = 14;
hwmodes[HWMODE_B].num_rates = 4;
hwmodes[HWMODE_B].channels = channels;
hwmodes[HWMODE_B].rates = rates;
}
/*
* Intitialize 802.11g
* Rates: CCK, OFDM.
* Channels: OFDM.
*/
if (spec->num_modes > HWMODE_G) {
hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
hwmodes[HWMODE_G].num_channels = 14;
hwmodes[HWMODE_G].num_rates = spec->num_rates;
hwmodes[HWMODE_G].channels = channels;
hwmodes[HWMODE_G].rates = rates;
}
/*
* Intitialize 802.11a
* Rates: OFDM.
* Channels: OFDM, UNII, HiperLAN2.
*/
if (spec->num_modes > HWMODE_A) {
hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
hwmodes[HWMODE_A].channels = &channels[14];
hwmodes[HWMODE_A].rates = &rates[4];
}
if (spec->num_modes > HWMODE_G &&
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
goto exit_free_rates;
if (spec->num_modes > HWMODE_B &&
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
goto exit_free_rates;
if (spec->num_modes > HWMODE_A &&
ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
goto exit_free_rates;
rt2x00dev->hwmodes = hwmodes;
return 0;
exit_free_rates:
kfree(rates);
exit_free_channels:
kfree(channels);
exit_free_modes:
kfree(hwmodes);
exit:
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
return -ENOMEM;
}
static void rt2x00lib_deinit_hw(struct rt2x00_dev *rt2x00dev)
{
if (test_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags))
ieee80211_unregister_hw(rt2x00dev->hw);
if (likely(rt2x00dev->hwmodes)) {
kfree(rt2x00dev->hwmodes->channels);
kfree(rt2x00dev->hwmodes->rates);
kfree(rt2x00dev->hwmodes);
rt2x00dev->hwmodes = NULL;
}
}
static int rt2x00lib_init_hw(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
int status;
/*
* Initialize HW modes.
*/
status = rt2x00lib_init_hw_modes(rt2x00dev, spec);
if (status)
return status;
/*
* Register HW.
*/
status = ieee80211_register_hw(rt2x00dev->hw);
if (status) {
rt2x00lib_deinit_hw(rt2x00dev);
return status;
}
__set_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags);
return 0;
}
/*
* Initialization/uninitialization handlers.
*/
static int rt2x00lib_alloc_ring_entries(struct data_ring *ring,
const u16 max_entries, const u16 data_size, const u16 desc_size)
{
struct data_entry *entry;
unsigned int i;
ring->stats.limit = max_entries;
ring->data_size = data_size;
ring->desc_size = desc_size;
/*
* Allocate all ring entries.
*/
entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
for (i = 0; i < ring->stats.limit; i++) {
entry[i].flags = 0;
entry[i].ring = ring;
entry[i].skb = NULL;
}
ring->entry = entry;
return 0;
}
static int rt2x00lib_allocate_ring_entries(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
/*
* Allocate the RX ring.
*/
if (rt2x00lib_alloc_ring_entries(rt2x00dev->rx,
RX_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->rxd_size))
return -ENOMEM;
/*
* First allocate the TX rings.
*/
txring_for_each(rt2x00dev, ring) {
if (rt2x00lib_alloc_ring_entries(ring,
TX_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
return -ENOMEM;
}
/*
* Allocate the BEACON ring.
*/
if (rt2x00lib_alloc_ring_entries(&rt2x00dev->bcn[0],
BEACON_ENTRIES, MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
return -ENOMEM;
/*
* Allocate the Atim ring.
*/
if (test_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags)) {
if (rt2x00lib_alloc_ring_entries(&rt2x00dev->bcn[1],
ATIM_ENTRIES, DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
return -ENOMEM;
}
return 0;
}
static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
ring_for_each(rt2x00dev, ring) {
kfree(ring->entry);
ring->entry = NULL;
}
}
int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
int status;
if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return 0;
/*
* Allocate all data rings.
*/
status = rt2x00lib_allocate_ring_entries(rt2x00dev);
if (status) {
ERROR(rt2x00dev, "DMA allocation failed.\n");
return status;
}
/*
* Initialize the device.
*/
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
if (status)
goto exit;
__set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
/*
* Register the rfkill handler.
*/
status = rt2x00lib_register_rfkill(rt2x00dev);
if (status)
goto exit_unitialize;
return 0;
exit_unitialize:
rt2x00lib_uninitialize(rt2x00dev);
exit:
rt2x00lib_free_ring_entries(rt2x00dev);
return status;
}
void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return;
/*
* Unregister rfkill.
*/
rt2x00lib_unregister_rfkill(rt2x00dev);
/*
* Allow the HW to uninitialize.
*/
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
/*
* Free allocated datarings.
*/
rt2x00lib_free_ring_entries(rt2x00dev);
}
/*
* driver allocation handlers.
*/
static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
{
struct data_ring *ring;
unsigned int ring_num;
/*
* We need the following rings:
* RX: 1
* TX: hw->queues
* Beacon: 1
* Atim: 1 (if supported)
*/
ring_num = 2 + rt2x00dev->hw->queues +
test_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags);
ring = kzalloc(sizeof(*ring) * ring_num, GFP_KERNEL);
if (!ring) {
ERROR(rt2x00dev, "Ring allocation failed.\n");
return -ENOMEM;
}
/*
* Initialize pointers
*/
rt2x00dev->rx = &ring[0];
rt2x00dev->tx = &ring[1];
rt2x00dev->bcn = &ring[1 + rt2x00dev->hw->queues];
/*
* Initialize ring parameters.
* cw_min: 2^5 = 32.
* cw_max: 2^10 = 1024.
*/
ring_for_each(rt2x00dev, ring) {
ring->rt2x00dev = rt2x00dev;
ring->tx_params.aifs = 2;
ring->tx_params.cw_min = 5;
ring->tx_params.cw_max = 10;
}
return 0;
}
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
int retval = -ENOMEM;
/*
* Let the driver probe the device to detect the capabilities.
*/
retval = rt2x00dev->ops->lib->init_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to allocate device.\n");
goto exit;
}
/*
* Initialize configuration work.
*/
INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
/*
* Reset current working type.
*/
rt2x00dev->interface.type = -EINVAL;
/*
* Allocate ring array.
*/
retval = rt2x00lib_alloc_rings(rt2x00dev);
if (retval)
goto exit;
/*
* Initialize ieee80211 structure.
*/
retval = rt2x00lib_init_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to initialize hw.\n");
goto exit;
}
/*
* Allocatie rfkill.
*/
retval = rt2x00lib_allocate_rfkill(rt2x00dev);
if (retval)
goto exit;
/*
* Open the debugfs entry.
*/
rt2x00debug_register(rt2x00dev);
/*
* Check if we need to load the firmware.
*/
if (test_bit(FIRMWARE_REQUIRED, &rt2x00dev->flags)) {
/*
* Request firmware and wait with further
* initializing of the card until the firmware
* has been loaded.
*/
retval = rt2x00lib_load_firmware(rt2x00dev);
if (retval)
goto exit;
}
return 0;
exit:
rt2x00lib_remove_dev(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
/*
* Disable radio.
*/
rt2x00lib_disable_radio(rt2x00dev);
/*
* Uninitialize device.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Close debugfs entry.
*/
rt2x00debug_deregister(rt2x00dev);
/*
* Free rfkill
*/
rt2x00lib_free_rfkill(rt2x00dev);
/*
* Free ieee80211_hw memory.
*/
rt2x00lib_deinit_hw(rt2x00dev);
/*
* Free ring structures.
*/
kfree(rt2x00dev->rx);
rt2x00dev->rx = NULL;
rt2x00dev->tx = NULL;
rt2x00dev->bcn = NULL;
/*
* Free EEPROM memory.
*/
kfree(rt2x00dev->eeprom);
rt2x00dev->eeprom = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
/*
* Device state handlers
*/
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev,
pm_message_t state)
{
int retval;
NOTICE(rt2x00dev, "Going to sleep.\n");
rt2x00lib_disable_radio(rt2x00dev);
/*
* Set device mode to sleep for power management.
*/
retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
if (retval)
return retval;
rt2x00lib_remove_dev(rt2x00dev);
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
int retval;
NOTICE(rt2x00dev, "Waking up.\n");
retval = rt2x00lib_probe_dev(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to allocate device.\n");
return retval;
}
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
/*
* Interrupt context handlers.
*/
void rt2x00lib_txdone(struct data_entry *entry,
const int status, const int retry)
{
struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
struct ieee80211_tx_status *tx_status = &entry->tx_status;
struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
/*
* Update TX statistics.
*/
tx_status->flags = 0;
tx_status->ack_signal = 0;
tx_status->excessive_retries = (status == TX_FAIL_RETRY);
tx_status->retry_count = retry;
if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
if (status == TX_SUCCESS || status == TX_SUCCESS_RETRY)
tx_status->flags |= IEEE80211_TX_STATUS_ACK;
else
stats->dot11ACKFailureCount++;
}
tx_status->queue_length = entry->ring->stats.limit;
tx_status->queue_number = tx_status->control.queue;
if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
if (status == TX_SUCCESS || status == TX_SUCCESS_RETRY)
stats->dot11RTSSuccessCount++;
else
stats->dot11RTSFailureCount++;
}
/*
* Send the tx_status to mac80211,
* that method also cleans up the skb structure.
*/
ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
void rt2x00lib_rxdone(struct data_entry *entry, char *data,
const int size, const int signal, const int rssi, const int ofdm)
{
struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
struct ieee80211_hw_mode *mode;
struct ieee80211_rate *rate;
struct sk_buff *skb;
unsigned int i;
int val = 0;
/*
* Update RX statistics.
*/
mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
for (i = 0; i < mode->num_rates; i++) {
rate = &mode->rates[i];
/*
* When frame was received with an OFDM bitrate,
* the signal is the PLCP value. If it was received with
* a CCK bitrate the signal is the rate in 0.5kbit/s.
*/
if (!ofdm)
val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
else
val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
if (val == signal) {
/*
* Check for preamble bit.
*/
if (signal & 0x08)
val = rate->val2;
else
val = rate->val;
break;
}
}
rx_status->rate = val;
rx_status->ssi = rssi;
rt2x00_update_link_rssi(&rt2x00dev->link, rssi);
/*
* Let's allocate a sk_buff where we can store the received data in,
* note that if data is NULL, we still have to allocate a sk_buff
* but that we should use that to replace the sk_buff which is already
* inside the entry.
*/
skb = dev_alloc_skb(size + NET_IP_ALIGN);
if (!skb)
return;
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, size);
if (data) {
memcpy(skb->data, data, size);
entry->skb = skb;
skb = NULL;
}
ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
entry->skb = skb;
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
/*
* TX descriptor initializer
*/
void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
struct data_entry *entry, struct data_desc *txd,
struct ieee80211_hdr *ieee80211hdr, unsigned int length,
struct ieee80211_tx_control *control)
{
struct data_entry_desc desc;
int tx_rate;
int bitrate;
int duration;
int residual;
u16 frame_control;
u16 seq_ctrl;
/*
* Identify queue
*/
if (control->queue < rt2x00dev->hw->queues)
desc.queue = control->queue;
else
desc.queue = 15;
/*
* Read required fields from ieee80211 header.
*/
frame_control = le16_to_cpu(ieee80211hdr->frame_control);
seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
tx_rate = control->tx_rate;
/*
* Check if this is a rts frame
*/
if (is_rts_frame(frame_control)) {
__set_bit(ENTRY_TXD_RTS_FRAME, &entry->flags);
if (control->rts_cts_rate)
tx_rate = control->rts_cts_rate;
}
/*
* Check for OFDM
*/
if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATE)
__set_bit(ENTRY_TXD_OFDM_RATE, &entry->flags);
/*
* Check if more fragments are pending
*/
if (ieee80211_get_morefrag(ieee80211hdr))
__set_bit(ENTRY_TXD_MORE_FRAG, &entry->flags);
/*
* Beacons and probe responses require the tsf timestamp
* to be inserted into the frame.
*/
if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
is_probe_resp(frame_control))
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &entry->flags);
/*
* Check if ACK is required
*/
if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
__set_bit(ENTRY_TXD_REQ_ACK, &entry->flags);
/*
* Determine with what IFS priority this frame should be send.
* Set ifs to IFS_SIFS when the this is not the first fragment,
* or this fragment came after RTS/CTS.
*/
if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
test_bit(ENTRY_TXD_RTS_FRAME, &entry->flags))
desc.ifs = IFS_SIFS;
else
desc.ifs = IFS_BACKOFF;
/*
* How the length should be processed depends
* on if we are working with OFDM rates or not.
*/
if (test_bit(ENTRY_TXD_OFDM_RATE, &entry->flags)) {
residual = 0;
desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
desc.length_low = ((length + FCS_LEN) & 0x3f);
} else {
bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
/*
* Convert length to microseconds.
*/
residual = get_duration_res(length + FCS_LEN, bitrate);
duration = get_duration(length + FCS_LEN, bitrate);
if (residual != 0)
duration++;
desc.length_high = duration >> 8;
desc.length_low = duration & 0xff;
}
/*
* Create the signal and service values.
*/
desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
desc.signal |= 0x08;
desc.service = 0x04;
if (residual <= (8 % 11))
desc.service |= 0x80;
rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry, txd, &desc,
ieee80211hdr, length, control);
}
EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
/*
* rt2x00lib module information.
*/
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");