openwrtv3/package/uboot-lantiq/files/board/arcadyan/athrs26_phy.c
2011-02-24 07:41:10 +00:00

812 lines
21 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright © 2003 Atheros Communications, Inc., All Rights Reserved.
*/
/*
* Manage the atheros ethernet PHY.
*
* All definitions in this file are operating system independent!
*/
#include <config.h>
#include <linux/types.h>
#include <common.h>
#include <miiphy.h>
//#include "phy.h"
//#include "ar7100_soc.h"
#include "athrs26_phy.h"
#define phy_reg_read(base, addr, reg, datap) \
miiphy_read("lq_cpe_eth", addr, reg, datap);
#define phy_reg_write(base, addr, reg, data) \
miiphy_write("lq_cpe_eth", addr, reg, data);
/* PHY selections and access functions */
typedef enum {
PHY_SRCPORT_INFO,
PHY_PORTINFO_SIZE,
} PHY_CAP_TYPE;
typedef enum {
PHY_SRCPORT_NONE,
PHY_SRCPORT_VLANTAG,
PHY_SRCPORT_TRAILER,
} PHY_SRCPORT_TYPE;
#ifdef DEBUG
#define DRV_DEBUG 1
#endif
//#define DRV_DEBUG 1
#define DRV_DEBUG_PHYERROR 0x00000001
#define DRV_DEBUG_PHYCHANGE 0x00000002
#define DRV_DEBUG_PHYSETUP 0x00000004
#if DRV_DEBUG
int athrPhyDebug = DRV_DEBUG_PHYERROR|DRV_DEBUG_PHYCHANGE|DRV_DEBUG_PHYSETUP;
#define DRV_LOG(FLG, X0, X1, X2, X3, X4, X5, X6) \
{ \
if (athrPhyDebug & (FLG)) { \
logMsg(X0, X1, X2, X3, X4, X5, X6); \
} \
}
#define DRV_MSG(x,a,b,c,d,e,f) \
logMsg(x,a,b,c,d,e,f)
#define DRV_PRINT(FLG, X) \
{ \
if (athrPhyDebug & (FLG)) { \
printf X; \
} \
}
#else /* !DRV_DEBUG */
#define DRV_LOG(DBG_SW, X0, X1, X2, X3, X4, X5, X6)
#define DRV_MSG(x,a,b,c,d,e,f)
#define DRV_PRINT(DBG_SW,X)
#endif
#define ATHR_LAN_PORT_VLAN 1
#define ATHR_WAN_PORT_VLAN 2
#define ENET_UNIT_LAN 0
#define TRUE 1
#define FALSE 0
#define ATHR_PHY0_ADDR 0x0
#define ATHR_PHY1_ADDR 0x1
#define ATHR_PHY2_ADDR 0x2
#define ATHR_PHY3_ADDR 0x3
#define ATHR_PHY4_ADDR 0x4
/*
* Track per-PHY port information.
*/
typedef struct {
BOOL isEnetPort; /* normal enet port */
BOOL isPhyAlive; /* last known state of link */
int ethUnit; /* MAC associated with this phy port */
uint32_t phyBase;
uint32_t phyAddr; /* PHY registers associated with this phy port */
uint32_t VLANTableSetting; /* Value to be written to VLAN table */
} athrPhyInfo_t;
/*
* Per-PHY information, indexed by PHY unit number.
*/
static athrPhyInfo_t athrPhyInfo[] = {
{TRUE, /* phy port 0 -- LAN port 0 */
FALSE,
ENET_UNIT_LAN,
0,
ATHR_PHY0_ADDR,
ATHR_LAN_PORT_VLAN
},
{TRUE, /* phy port 1 -- LAN port 1 */
FALSE,
ENET_UNIT_LAN,
0,
ATHR_PHY1_ADDR,
ATHR_LAN_PORT_VLAN
},
{TRUE, /* phy port 2 -- LAN port 2 */
FALSE,
ENET_UNIT_LAN,
0,
ATHR_PHY2_ADDR,
ATHR_LAN_PORT_VLAN
},
{TRUE, /* phy port 3 -- LAN port 3 */
FALSE,
ENET_UNIT_LAN,
0,
ATHR_PHY3_ADDR,
ATHR_LAN_PORT_VLAN
},
{TRUE, /* phy port 4 -- WAN port or LAN port 4 */
FALSE,
1,
0,
ATHR_PHY4_ADDR,
ATHR_LAN_PORT_VLAN /* Send to all ports */
},
{FALSE, /* phy port 5 -- CPU port (no RJ45 connector) */
TRUE,
ENET_UNIT_LAN,
0,
0x00,
ATHR_LAN_PORT_VLAN /* Send to all ports */
},
};
#ifdef CFG_ATHRHDR_EN
typedef struct {
uint8_t data[ATHRHDR_MAX_DATA];
uint8_t len;
uint32_t seq;
} cmd_resp_t;
typedef struct {
uint16_t reg_addr;
uint16_t cmd_len;
uint8_t *reg_data;
}cmd_write_t;
static cmd_write_t cmd_write,cmd_read;
static cmd_resp_t cmd_resp;
static struct eth_device *lan_mac;
//static atomic_t seqcnt = ATOMIC_INIT(0);
static int seqcnt = 0;
static int cmd = 1;
//volatile uchar AthrHdrPkt[60];
#endif
#define ATHR_GLOBALREGBASE 0
//#define ATHR_PHY_MAX (sizeof(athrPhyInfo) / sizeof(athrPhyInfo[0]))
#define ATHR_PHY_MAX 5
/* Range of valid PHY IDs is [MIN..MAX] */
#define ATHR_ID_MIN 0
#define ATHR_ID_MAX (ATHR_PHY_MAX-1)
/* Convenience macros to access myPhyInfo */
#define ATHR_IS_ENET_PORT(phyUnit) (athrPhyInfo[phyUnit].isEnetPort)
#define ATHR_IS_PHY_ALIVE(phyUnit) (athrPhyInfo[phyUnit].isPhyAlive)
#define ATHR_ETHUNIT(phyUnit) (athrPhyInfo[phyUnit].ethUnit)
#define ATHR_PHYBASE(phyUnit) (athrPhyInfo[phyUnit].phyBase)
#define ATHR_PHYADDR(phyUnit) (athrPhyInfo[phyUnit].phyAddr)
#define ATHR_VLAN_TABLE_SETTING(phyUnit) (athrPhyInfo[phyUnit].VLANTableSetting)
#define ATHR_IS_ETHUNIT(phyUnit, ethUnit) \
(ATHR_IS_ENET_PORT(phyUnit) && \
ATHR_ETHUNIT(phyUnit) == (ethUnit))
#define ATHR_IS_WAN_PORT(phyUnit) (!(ATHR_ETHUNIT(phyUnit)==ENET_UNIT_LAN))
/* Forward references */
BOOL athrs26_phy_is_link_alive(int phyUnit);
//static uint32_t athrs26_reg_read(uint16_t reg_addr);
static void athrs26_reg_write(uint16_t reg_addr,
uint32_t reg_val);
/******************************************************************************
*
* athrs26_phy_is_link_alive - test to see if the specified link is alive
*
* RETURNS:
* TRUE --> link is alive
* FALSE --> link is down
*/
void athrs26_reg_init(void)
{
athrs26_reg_write(0x200, 0x200);
athrs26_reg_write(0x300, 0x200);
athrs26_reg_write(0x400, 0x200);
athrs26_reg_write(0x500, 0x200);
athrs26_reg_write(0x600, 0x7d);
#ifdef S26_VER_1_0
phy_reg_write(0, 0, 29, 41);
phy_reg_write(0, 0, 30, 0);
phy_reg_write(0, 1, 29, 41);
phy_reg_write(0, 1, 30, 0);
phy_reg_write(0, 2, 29, 41);
phy_reg_write(0, 2, 30, 0);
phy_reg_write(0, 3, 29, 41);
phy_reg_write(0, 3, 30, 0);
phy_reg_write(0, 4, 29, 41);
phy_reg_write(0, 4, 30, 0);
#endif
athrs26_reg_write(0x38, 0xc000050e);
#ifdef CFG_ATHRHDR_EN
athrs26_reg_write(0x104, 0x4804);
#else
athrs26_reg_write(0x104, 0x4004);
#endif
athrs26_reg_write(0x60, 0xffffffff);
athrs26_reg_write(0x64, 0xaaaaaaaa);
athrs26_reg_write(0x68, 0x55555555);
athrs26_reg_write(0x6c, 0x0);
athrs26_reg_write(0x70, 0x41af);
}
BOOL
athrs26_phy_is_link_alive(int phyUnit)
{
uint16_t phyHwStatus;
uint32_t phyBase;
uint32_t phyAddr;
phyBase = ATHR_PHYBASE(phyUnit);
phyAddr = ATHR_PHYADDR(phyUnit);
phy_reg_read(phyBase, phyAddr, ATHR_PHY_SPEC_STATUS, &phyHwStatus);
if (phyHwStatus & ATHR_STATUS_LINK_PASS)
return TRUE;
return FALSE;
}
/******************************************************************************
*
* athrs26_phy_setup - reset and setup the PHY associated with
* the specified MAC unit number.
*
* Resets the associated PHY port.
*
* RETURNS:
* TRUE --> associated PHY is alive
* FALSE --> no LINKs on this ethernet unit
*/
BOOL
athrs26_phy_setup(int ethUnit)
{
int phyUnit;
uint16_t phyHwStatus;
uint16_t timeout;
int liveLinks = 0;
uint32_t phyBase = 0;
BOOL foundPhy = FALSE;
uint32_t phyAddr = 0;
uint32_t regVal;
/* See if there's any configuration data for this enet */
/* start auto negogiation on each phy */
for (phyUnit=0; phyUnit < ATHR_PHY_MAX; phyUnit++) {
if (!ATHR_IS_ETHUNIT(phyUnit, ethUnit)) {
continue;
}
foundPhy = TRUE;
phyBase = ATHR_PHYBASE(phyUnit);
phyAddr = ATHR_PHYADDR(phyUnit);
phy_reg_write(phyBase, phyAddr, ATHR_AUTONEG_ADVERT,
ATHR_ADVERTISE_ALL);
/* Reset PHYs*/
phy_reg_write(phyBase, phyAddr, ATHR_PHY_CONTROL,
ATHR_CTRL_AUTONEGOTIATION_ENABLE
| ATHR_CTRL_SOFTWARE_RESET);
}
if (!foundPhy) {
return FALSE; /* No PHY's configured for this ethUnit */
}
/*
* After the phy is reset, it takes a little while before
* it can respond properly.
*/
sysMsDelay(1000);
/*
* Wait up to .75 seconds for ALL associated PHYs to finish
* autonegotiation. The only way we get out of here sooner is
* if ALL PHYs are connected AND finish autonegotiation.
*/
for (phyUnit=0; (phyUnit < ATHR_PHY_MAX) /*&& (timeout > 0) */; phyUnit++) {
if (!ATHR_IS_ETHUNIT(phyUnit, ethUnit)) {
continue;
}
timeout=20;
for (;;) {
phyHwStatus = 0;
phy_reg_read(phyBase, phyAddr, ATHR_PHY_CONTROL, &phyHwStatus);
if (ATHR_RESET_DONE(phyHwStatus)) {
DRV_PRINT(DRV_DEBUG_PHYSETUP,
("Port %d, Neg Success\n", phyUnit));
break;
}
if (timeout == 0) {
DRV_PRINT(DRV_DEBUG_PHYSETUP,
("Port %d, Negogiation timeout\n", phyUnit));
break;
}
if (--timeout == 0) {
DRV_PRINT(DRV_DEBUG_PHYSETUP,
("Port %d, Negogiation timeout\n", phyUnit));
break;
}
sysMsDelay(150);
}
}
/*
* All PHYs have had adequate time to autonegotiate.
* Now initialize software status.
*
* It's possible that some ports may take a bit longer
* to autonegotiate; but we can't wait forever. They'll
* get noticed by mv_phyCheckStatusChange during regular
* polling activities.
*/
for (phyUnit=0; phyUnit < ATHR_PHY_MAX; phyUnit++) {
if (!ATHR_IS_ETHUNIT(phyUnit, ethUnit)) {
continue;
}
if (athrs26_phy_is_link_alive(phyUnit)) {
liveLinks++;
ATHR_IS_PHY_ALIVE(phyUnit) = TRUE;
} else {
ATHR_IS_PHY_ALIVE(phyUnit) = FALSE;
}
phy_reg_read(ATHR_PHYBASE(phyUnit), ATHR_PHYADDR(phyUnit),
ATHR_PHY_SPEC_STATUS, &regVal);
DRV_PRINT(DRV_DEBUG_PHYSETUP,
("eth%d: Phy Specific Status=%4.4x\n", ethUnit, regVal));
}
#if 0
/* if using header for register configuration, we have to */
/* configure s26 register after frame transmission is enabled */
athrs26_reg_write(0x200, 0x200);
athrs26_reg_write(0x300, 0x200);
athrs26_reg_write(0x400, 0x200);
athrs26_reg_write(0x500, 0x200);
athrs26_reg_write(0x600, 0x200);
athrs26_reg_write(0x38, 0x50e);
#endif
#ifndef CFG_ATHRHDR_EN
/* if using header for register configuration, we have to */
/* configure s26 register after frame transmission is enabled */
athrs26_reg_init();
#endif
return (liveLinks > 0);
}
/******************************************************************************
*
* athrs26_phy_is_fdx - Determines whether the phy ports associated with the
* specified device are FULL or HALF duplex.
*
* RETURNS:
* 1 --> FULL
* 0 --> HALF
*/
int
athrs26_phy_is_fdx(int ethUnit)
{
int phyUnit;
uint32_t phyBase;
uint32_t phyAddr;
uint16_t phyHwStatus;
int ii = 200;
if (ethUnit == ENET_UNIT_LAN)
return TRUE;
for (phyUnit=0; phyUnit < ATHR_PHY_MAX; phyUnit++) {
if (!ATHR_IS_ETHUNIT(phyUnit, ethUnit)) {
continue;
}
if (athrs26_phy_is_link_alive(phyUnit)) {
phyBase = ATHR_PHYBASE(phyUnit);
phyAddr = ATHR_PHYADDR(phyUnit);
do {
phy_reg_read(phyBase, phyAddr, ATHR_PHY_SPEC_STATUS, &phyHwStatus);
sysMsDelay(10);
} while((!(phyHwStatus & ATHR_STATUS_RESOVLED)) && --ii);
if (phyHwStatus & ATHER_STATUS_FULL_DEPLEX)
return TRUE;
}
}
return FALSE;
}
/******************************************************************************
*
* athrs26_phy_speed - Determines the speed of phy ports associated with the
* specified device.
*
* RETURNS:
* AG7100_PHY_SPEED_10T, AG7100_PHY_SPEED_100TX;
* AG7100_PHY_SPEED_1000T;
*/
BOOL
athrs26_phy_speed(int ethUnit)
{
int phyUnit;
uint16_t phyHwStatus;
uint32_t phyBase;
uint32_t phyAddr;
int ii = 200;
if (ethUnit == ENET_UNIT_LAN)
return _100BASET;
for (phyUnit=0; phyUnit < ATHR_PHY_MAX; phyUnit++) {
if (!ATHR_IS_ETHUNIT(phyUnit, ethUnit)) {
continue;
}
if (athrs26_phy_is_link_alive(phyUnit)) {
phyBase = ATHR_PHYBASE(phyUnit);
phyAddr = ATHR_PHYADDR(phyUnit);
do {
phy_reg_read(phyBase, phyAddr,
ATHR_PHY_SPEC_STATUS, &phyHwStatus);
sysMsDelay(10);
}while((!(phyHwStatus & ATHR_STATUS_RESOVLED)) && --ii);
phyHwStatus = ((phyHwStatus & ATHER_STATUS_LINK_MASK) >>
ATHER_STATUS_LINK_SHIFT);
switch(phyHwStatus) {
case 0:
return _10BASET;
case 1:
return _100BASET;
case 2:
return _1000BASET;
default:
DRV_PRINT(DRV_DEBUG_PHYERROR, ("Unkown speed read!\n"));
}
}
}
return _10BASET;
}
/*****************************************************************************
*
* athr_phy_is_up -- checks for significant changes in PHY state.
*
* A "significant change" is:
* dropped link (e.g. ethernet cable unplugged) OR
* autonegotiation completed + link (e.g. ethernet cable plugged in)
*
* When a PHY is plugged in, phyLinkGained is called.
* When a PHY is unplugged, phyLinkLost is called.
*/
int
athrs26_phy_is_up(int ethUnit)
{
int phyUnit;
uint16_t phyHwStatus;
athrPhyInfo_t *lastStatus;
int linkCount = 0;
int lostLinks = 0;
int gainedLinks = 0;
uint32_t phyBase;
uint32_t phyAddr;
#ifdef CFG_ATHRHDR_REG
/* if using header to config s26, the link of MAC0 should always be up */
if (ethUnit == ENET_UNIT_LAN)
return 1;
#endif
for (phyUnit=0; phyUnit < ATHR_PHY_MAX; phyUnit++) {
if (!ATHR_IS_ETHUNIT(phyUnit, ethUnit)) {
continue;
}
phyBase = ATHR_PHYBASE(phyUnit);
phyAddr = ATHR_PHYADDR(phyUnit);
lastStatus = &athrPhyInfo[phyUnit];
phy_reg_read(phyBase, phyAddr, ATHR_PHY_SPEC_STATUS, &phyHwStatus);
if (lastStatus->isPhyAlive) { /* last known link status was ALIVE */
/* See if we've lost link */
if (phyHwStatus & ATHR_STATUS_LINK_PASS) {
linkCount++;
} else {
lostLinks++;
DRV_PRINT(DRV_DEBUG_PHYCHANGE,("\nenet%d port%d down\n",
ethUnit, phyUnit));
lastStatus->isPhyAlive = FALSE;
}
} else { /* last known link status was DEAD */
/* Check for reset complete */
phy_reg_read(phyBase, phyAddr, ATHR_PHY_STATUS, &phyHwStatus);
if (!ATHR_RESET_DONE(phyHwStatus))
continue;
/* Check for AutoNegotiation complete */
if (ATHR_AUTONEG_DONE(phyHwStatus)) {
//printk("autoneg done\n");
gainedLinks++;
linkCount++;
DRV_PRINT(DRV_DEBUG_PHYCHANGE,("\nenet%d port%d up\n",
ethUnit, phyUnit));
lastStatus->isPhyAlive = TRUE;
}
}
}
return (linkCount);
#if 0
if (linkCount == 0) {
if (lostLinks) {
/* We just lost the last link for this MAC */
phyLinkLost(ethUnit);
}
} else {
if (gainedLinks == linkCount) {
/* We just gained our first link(s) for this MAC */
phyLinkGained(ethUnit);
}
}
#endif
}
#ifdef CFG_ATHRHDR_EN
void athr_hdr_timeout(void){
eth_halt();
NetState = NETLOOP_FAIL;
}
void athr_hdr_handler(uchar *recv_pkt, unsigned dest, unsigned src, unsigned len){
header_receive_pkt(recv_pkt);
NetState = NETLOOP_SUCCESS;
}
static int
athrs26_header_config_reg (struct eth_device *dev, uint8_t wr_flag,
uint16_t reg_addr, uint16_t cmd_len,
uint8_t *val)
{
at_header_t at_header;
reg_cmd_t reg_cmd;
uchar *AthrHdrPkt;
AthrHdrPkt = NetTxPacket;
if(AthrHdrPkt == NULL) {
printf("Null packet\n");
return;
}
memset(AthrHdrPkt,0,60);
/*fill at_header*/
at_header.reserved0 = 0x10; //default
at_header.priority = 0;
at_header.type = 0x5;
at_header.broadcast = 0;
at_header.from_cpu = 1;
at_header.reserved1 = 0x01; //default
at_header.port_num = 0;
AthrHdrPkt[0] = at_header.port_num;
AthrHdrPkt[0] |= at_header.reserved1 << 4;
AthrHdrPkt[0] |= at_header.from_cpu << 6;
AthrHdrPkt[0] |= at_header.broadcast << 7;
AthrHdrPkt[1] = at_header.type;
AthrHdrPkt[1] |= at_header.priority << 4;
AthrHdrPkt[1] |= at_header.reserved0 << 6;
/*fill reg cmd*/
if(cmd_len > 4)
cmd_len = 4;//only support 32bits register r/w
reg_cmd.reg_addr = reg_addr&0x3FFFC;
reg_cmd.cmd_len = cmd_len;
reg_cmd.cmd = wr_flag;
reg_cmd.reserved2 = 0x5; //default
reg_cmd.seq_num = seqcnt;
AthrHdrPkt[2] = reg_cmd.reg_addr & 0xff;
AthrHdrPkt[3] = (reg_cmd.reg_addr & 0xff00) >> 8;
AthrHdrPkt[4] = (reg_cmd.reg_addr & 0x30000) >> 16;
AthrHdrPkt[4] |= reg_cmd.cmd_len << 4;
AthrHdrPkt[5] = reg_cmd.cmd << 4;
AthrHdrPkt[5] |= reg_cmd.reserved2 << 5;
AthrHdrPkt[6] = (reg_cmd.seq_num & 0x7f) << 1;
AthrHdrPkt[7] = (reg_cmd.seq_num & 0x7f80) >> 7;
AthrHdrPkt[8] = (reg_cmd.seq_num & 0x7f8000) >> 15;
AthrHdrPkt[9] = (reg_cmd.seq_num & 0x7f800000) >> 23;
/*fill reg data*/
if(!wr_flag)//write
memcpy((AthrHdrPkt + 10), val, cmd_len);
/*start xmit*/
if(dev == NULL) {
printf("ERROR device not found\n");
return -1;
}
header_xmit(dev, AthrHdrPkt ,60);
return 0;
}
void athr_hdr_func(void) {
NetSetTimeout (1 * CFG_HZ,athr_hdr_timeout );
NetSetHandler (athr_hdr_handler);
if(cmd)
athrs26_header_config_reg(lan_mac, cmd, cmd_read.reg_addr, cmd_read.cmd_len, cmd_read.reg_data);
else
athrs26_header_config_reg(lan_mac, cmd, cmd_write.reg_addr, cmd_write.cmd_len, cmd_write.reg_data);
}
static int
athrs26_header_write_reg(uint16_t reg_addr, uint16_t cmd_len, uint8_t *reg_data)
{
int i = 2;
cmd_write.reg_addr = reg_addr;
cmd_write.cmd_len = cmd_len;
cmd_write.reg_data = reg_data;
cmd = 0;
seqcnt++;
do {
if (NetLoop(ATHRHDR) >= 0) /* polls for read/write ack from PHY */
break;
} while (i--);
return i;
}
static int
athrs26_header_read_reg(uint16_t reg_addr, uint16_t cmd_len, uint8_t *reg_data)
{
int i = 2;
cmd_read.reg_addr = reg_addr;
cmd_read.cmd_len = cmd_len;
cmd_read.reg_data = reg_data;
cmd = 1;
seqcnt++;
do {
if (NetLoop(ATHRHDR) >= 0) /* polls for read/write ack from PHY */
break;
} while (i--);
if ((i==0) || (seqcnt != cmd_resp.seq) || (cmd_len != cmd_resp.len)) {
return -1;
}
memcpy (cmd_read.reg_data, cmd_resp.data, cmd_len);
return 0;
}
int header_receive_pkt(uchar *recv_pkt)
{
cmd_resp.len = recv_pkt[4] >> 4;
if (cmd_resp.len > 10)
goto out;
cmd_resp.seq = recv_pkt[6] >> 1;
cmd_resp.seq |= recv_pkt[7] << 7;
cmd_resp.seq |= recv_pkt[8] << 15;
cmd_resp.seq |= recv_pkt[9] << 23;
if (cmd_resp.seq < seqcnt)
goto out;
memcpy (cmd_resp.data, (recv_pkt + 10), cmd_resp.len);
out:
return 0;
}
void athrs26_reg_dev(struct eth_device *mac)
{
lan_mac = mac;
}
#endif
/*static uint32_t
athrs26_reg_read(uint16_t reg_addr)
{
#ifndef CFG_ATHRHDR_REG
uint16_t reg_word_addr = reg_addr / 2, phy_val;
uint32_t phy_addr;
uint8_t phy_reg;
phy_addr = 0x18;
phy_reg = 0x0;
phy_val = (reg_word_addr >> 8) & 0x1ff;
phy_reg_write (0, phy_addr, phy_reg, phy_val);
phy_addr = 0x10 | ((reg_word_addr >> 5) & 0x7);
phy_reg = reg_word_addr & 0x1f;
phy_reg_read(0, phy_addr, phy_reg, &phy_val);
return phy_val;
#else
uint8_t reg_data[4];
memset (reg_data, 0, 4);
athrs26_header_read_reg(reg_addr, 4, reg_data);
return (reg_data[0] | (reg_data[1] << 8) | (reg_data[2] << 16) | (reg_data[3] << 24));
#endif
}
*/
static void
athrs26_reg_write(uint16_t reg_addr, uint32_t reg_val)
{
#ifndef CFG_ATHRHDR_REG
uint16_t reg_word_addr = reg_addr / 2, phy_val;
uint32_t phy_addr;
uint8_t phy_reg;
/* configure register high address */
phy_addr = 0x18;
phy_reg = 0x0;
phy_val = (reg_word_addr >> 8) & 0x1ff; /* bit16-8 of reg address*/
phy_reg_write (0, phy_addr, phy_reg, phy_val);
/* read register with low address */
phy_addr = 0x10 | ((reg_word_addr >> 5) & 0x7); /* bit7-5 of reg address */
phy_reg = reg_word_addr & 0x1f; /* bit 4-0 of reg address */
phy_reg_write (0, phy_addr, phy_reg, reg_val);
#else
uint8_t reg_data[4];
memset (reg_data, 0, 4);
reg_data[0] = (uint8_t)(0x00ff & reg_val);
reg_data[1] = (uint8_t)((0xff00 & reg_val) >> 8);
reg_data[2] = (uint8_t)((0xff0000 & reg_val) >> 16);
reg_data[3] = (uint8_t)((0xff000000 & reg_val) >> 24);
athrs26_header_write_reg (reg_addr, 4, reg_data);
#endif
}